-
玻色-爱因斯坦凝聚体内的准粒子激发导致系统里真实的玻色原子间产生量子纠缠. 采用谱展开的方法, 本文在准一维无限深方势阱下数值求解了 Bogoliubov–de Gennes 方程的本征值和本征态. 针对准粒子低能激发态, 我们研究了玻色-爱因斯坦凝聚体的量子纠缠熵随散射长度的变化.我们的结果表明纠缠熵随散射长度增加缓慢增大, 并且这种增大趋势可以近似用幂函数模型描述.
-
关键词:
- 玻色-爱因斯坦凝聚 /
- Bogoliubov 理论 /
- 量子纠缠熵
Quasi-particle excitations in a Bose-Einstein condensate lead to quantum entanglement between real bosonic atoms in the system. By employing spectral expansion method, the eigenvalues and eigenstates of Bogoliubov-de Gennes equation are numerically calculated in a quasi-one-dimension infinite square well potential. For the low-energy collective excitations of the quasi-particles, we explore the dependence of quantum entanglement entropy of the Bose-Einstein condensate on scattering length. Our results show that the entanglement entropy increases slowly with the increase of the scattering length, and such an increasing trend can be well described by a power function. These results are analogous to those in a onedimension uniform BEC, where the entanglement entropy of the Bogoliubov ground state is approximately proportional to the square root of the scattering length. This work provides a viable way to investigate many-particle entanglement in a quasi-one-dimension trapped BEC where the quantum entanglement closely relates with the interaction strength between particles. -
[1] Pethick C J, Smith H 2008 Bose– Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[2] Leggett A J 2009 Compendium of Quantum Physics (Berlin: Springer Berlin Heidelberg Press)
[3] Carr L D, Clark C W, Reinhardt W P 2000 Phys. Rev. A 62 063610
[4] Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120
[5] Li B, Duan L, Wang S, Yang Z Y 2025 Phys. Lett. A 548 130534
[6] Hayashi N, Isoshima T, Ichioka M, Machida K 1998 Phys. Rev. Lett. 80 2921
[7] Cichy A, Ptok A 2020 J. Phys. Commun. 4 055006
[8] You L, Hoston W, Lewenstein M 1997 Phys. Rev. A 55 R1581
[9] Walczak P B, Anglin J R 2011 Phys. Rev. A 84 013611
[10] Hu B, Huang G X, Ma Y L 2004 Phys. Rev. A 69 063608
[11] Jiao C, Jian Y, Zhang A X, Xue J K 2023 Acta Phys. Sin. 72 060302(in Chinses)[焦宸, 简粤, 张爱 霞, 薛具奎 2023 物理学报 72 060302]
[12] Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge: Cambridge University Press)
[13] Lambert N, Emary C, Brandes T 2004 Phys. Rev. Lett. 92 073602
[14] Brukner C, Vedral V, Zeilinger A 2006 Phys. Rev. A 73 012110
[15] Osborne T J, Nielsen M A 2002 Phys. Rev. A 66 032110
[16] Vidal J, Dusuel S, Barthel T 2007 J. Stat. Mech. 2007 P01015
[17] Yoshino T, Furukawa S, Ueda M 2021 Phys. Rev. A 103 043321
[18] Ueda M 2010 Fundamentals and New Frontiers of Bose-Einstein Condensation (WORLD SCIENTIFIC)
[19] Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[20] Landau L 1949 Phys. Rev. 75 884
[21] Blaizot J P, Ripka G 1986 Quantum Theory of Finite Systems (Cambridge: MIT Press)
[22] Brauner T 2010 Symmetry 2 609
[23] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865
计量
- 文章访问数: 617
- PDF下载量: 3
- 被引次数: 0