搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻色-爱因斯坦凝聚体中非线性相互作用对量子共振棘流的影响

赵文垒 豆福全 王建忠

引用本文:
Citation:

玻色-爱因斯坦凝聚体中非线性相互作用对量子共振棘流的影响

赵文垒, 豆福全, 王建忠

Effects of nonlinearity on quantum resonance ratchet

Zhao Wen-Lei, Dou Fu-Quan, Wang Jian-Zhong
PDF
导出引用
  • 研究了玻色-爱因斯坦凝聚体中非线性相互作用对量子共振棘流的影响. 满足量子共振条件的周期驱动使得波包在动量空间出现弹道扩散, 当波包扩散具有特定方向时, 系统就出现定向的动量流.弱非线性相互作用下的冷原子分成两簇, 它们分别受到方向相反的稳定周期驱动力, 以各自恒定的加速度沿相反方向运动.波包在动量空间的扩散表现为两个稳定的沿相反方向运动的峰.非线性相互作用的增强使得正方向运动的冷原子减少, 负方向运动的冷原子增加, 从而系统的动量流减弱甚至反转.当非线性相互作用足够强时, 动量空间中的波包只有一个稳定的峰, 且峰值对应的动量不随时间变化.此时冷原子受的周期驱动力为零, 定向的动量流消失.
    We investigate the effect of the nonlinear interaction on the quantum resonance ratchet for the periodically kicked Bose-Einstein condensate that is realized on a ring. In the noninteracting case, the wave packet spreads asymmetrically in momentum space, leading to a directed current. We show that for the weak nonlinear interaction, the probability density distribution in momentum space has two peaks which linearly shift to ward positive and negative momentum, respectively. The force periodically acting on each peak is a constant with time evolution. The competition between the motions of the two parts of cold atoms leads to the reduce or the revival of the momentum current. For the strong nonlinearity, the momentum distribution has only one peak which does not shift with time. The force on this peak is almost zero with time evolution, thus the directed current varnishes.
    • 基金项目: 国家高技术研究发展计划(863计划) (批准号: 2011AA120101) 和国家重点基础研究发展计划(973计划) (批准号: 2011CB921503)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No.2011AA120101), and the National Basic Research Program of China (Grant No. 2011CB921503).
    [1]

    Feynmann R P 1966 The Feynman Lectures on Physics (Addison-Wesley, Reading, MA)

    [2]

    Kohler S, Lehmann J, Hänggi P 2005 Phys. Rep. 406 379

    [3]

    Sun Y S 2009 Some Important Problems in Nonlinear Sciences (University of Science and Technology of China Press) p463 (in Chinese) [孙义燧, 2009 非线性科学若干前沿问题(合肥:中国科学技术大学出版社) 第463页]

    [4]

    Reimann P 2002 Phys. Rep. 361 57

    [5]

    Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 1

    [6]

    Astumian R D 1997 Science 276 917

    [7]

    Reimann P, Hänggi P 2002 Appl. Phys. A 75 169

    [8]

    Dittrich T, Naranjo N 2010 Chem. Phys. 375 486

    [9]

    Jülicher F, Ajdari A, Prost J 1997 Rev. Mod. Phys. 69 1269

    [10]

    Astumian R D, Hänggi P 2002 Phys. Today. 55 33

    [11]

    Wambaugh J F 1999 Phys. Rev. Lett. 83 5106

    [12]

    Zhu B Y, Marchesoni F, Nori F 2004 Phys. Rev. Lett. 92 180602

    [13]

    Flach S, Yevtushenko O, Zolotaryuk Y 2000 Phys. Rev. Lett. 84 2358

    [14]

    Denisov S, Morales-Molina L, Flach S, Hänggi P 2007 Phys. Rev. A 75 063424

    [15]

    Schanz H, Otto M, Ketzmerick R, Dittrich T 2001 Phys. Rev. Lett. 87 070601

    [16]

    Schanz H, Dittrich T, Ketzmerick R 2005 Phys. Rev. E 71 026228

    [17]

    Izrailev F M 1990 Phys. Rep. 196 299

    [18]

    Hu B, Li B, Liu J, Gu Y 1999 Phys. Rev. Lett. 82 4224

    [19]

    Liu J, Cheng W T, Cheng C G 2000 Commun. Theor. Phys. 33 15

    [20]

    Moore F L, Robinson J C, Bharucha C F, Sundaram B, Raizen M G 1995 Phys. Rev. Lett. 75 4598

    [21]

    Duffy G J, Parkins S, Müller T, Sadgrove M, Leonhardt R, Wilson A C 2004 Phys. Rev. E 70 056206

    [22]

    Reimann P, Grifoni M, Hänggi P 1997 Phys. Rev. Lett. 79 10

    [23]

    Lehmann J, Kohler S, Hänggi P, Nitzan A 2002 Phys. Rev. Lett. 88 228305

    [24]

    Carlo G G, Benenti G, Casati G, Shepelyansky D L 2005 Phys. Rev. Lett. 94 164101

    [25]

    Carlo G G 2006 Phys. Rev. A 74 033617

    [26]

    Cavallasca L, Artuso R, Casati G 2007 Phys. Rev. E 75 066213

    [27]

    Gong J, Polleti D, Hänggi P 2007 Phys. Rev. A 75 033602

    [28]

    Gong J, Brumer P 2006 Phys. Rev. Lett. 97 240602

    [29]

    Gong J, Brumer P 2004 Phys. Rev. E 70 016202

    [30]

    Monteiro T S, Dando P A, Hutchings N A C, Isherwood M R 2002 Phys. Rev. E 89 194102

    [31]

    Jones P H, Goonasekera M, Meacher D R, Jonckheere T, Monteiro T S 2007 Phys. Rev. Lett. 98 073002

    [32]

    Lundh E, Wallin M 2005 Phys. Rev. Lett. 94 110603

    [33]

    Kenfack A, Gong J, Pattanayak A K 2008 Phys. Rev. Lett. 100 044104

    [34]

    Poletti D, Carlo G G, Li B 2007 Phys. Rev. E 75 01110

    [35]

    Sadgrove M, Horikoshi M, Sekimura T, Nakagawa K 2007 Phys. Rev. Lett. 99 043002

    [36]

    Dana I, Ramareddy V, Talukdar I, Summy G S 2008 Phys. Rev. Lett. 100 024103

    [37]

    Dana I, Roitberg V 2007 Phys. Rev. E 76 015201

    [38]

    Mennerat-Robilliard C 1999 Phys. Rev. Lett. 82 851

    [39]

    Schiavoni M, Sanchez-Palencia L, Renzoni F, Grynberg G 2003 Phys. Rev. Lett. 90 094101

    [40]

    Gommers R, Denisov S, Renzoni F 2006 Phys. Rev. Lett. 96 240604

    [41]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463

    [42]

    Pitaevskii L P, Stringari S 2003 Bose-Einstein Condensation (Oxford University Press, New York)

    [43]

    Morales-Molina L, Flach S 2008 New J. Phys. 10 013008

    [44]

    Lundh E 2006 Phys. Rev. E 74 016212

    [45]

    Poletti D, Benenti G, Casati G, Li B 2007 Phys. Rev. A 76 023421

    [46]

    Poletti D, Benenti G, Casati G, Hänggi P, Li B 2009 Phys. Rev. Lett. 102 130604

    [47]

    Gupta S 2005 Phys. Rev. Lett. 95 143201

    [48]

    Ryu C 2007 Phys. Rev. Lett. 99 260401

    [49]

    Olson S E, Terraciano M L, Bashkansky M, Fatemi F K 2007 Phys. Rev. A 76 061404

    [50]

    Liu J, Zhang C, Raizen M B, Niu Q 2006 Phys. Rev. A 73 013601

    [51]

    Liu J, Wang W, Zhang C, Niu Q, Li B 2005 Phys. Rev. A 72 063623

    [52]

    Zhang C, Liu J, Raizen M G, Niu Q 2004 Phys. Rev. Lett. 92 054101

    [53]

    Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601

    [54]

    Fu L B 2004 Phys. Rev. Lett. 92 130404

    [55]

    Liu J, Hu B, Li B 1998 Phys. Rev. Lett. 81 1749

    [56]

    Wang G F, Fu L B, Zhao H, Liu J 2005 Acta Phys. Sin. 54 5003 (in Chinese) [王冠芳, 傅立斌, 赵鸿, 刘杰 2005 物理学报 54 5003]

    [57]

    Ma Y, Fu L B, Yang Z A, Liu J 2006 Acta Phys. Sin. 55 5623 (in Chinese) [马云, 傅立斌, 杨志安, 刘杰 2006 物理学报 55 5623]

    [58]

    Bandrauk A D, Shen H 1994 J. Phys. A 27 7147

    [59]

    Wang G F, Fu L B, Liu J 2006 Phys. Rev. A 73 013619

    [60]

    Wang B, Fu P, Liu J, Wu B 2006 Phys. Rev. A 74 063610

    [61]

    Kottos T, Weiss M 2004 Phys. Rev. Lett. 93 190604

  • [1]

    Feynmann R P 1966 The Feynman Lectures on Physics (Addison-Wesley, Reading, MA)

    [2]

    Kohler S, Lehmann J, Hänggi P 2005 Phys. Rep. 406 379

    [3]

    Sun Y S 2009 Some Important Problems in Nonlinear Sciences (University of Science and Technology of China Press) p463 (in Chinese) [孙义燧, 2009 非线性科学若干前沿问题(合肥:中国科学技术大学出版社) 第463页]

    [4]

    Reimann P 2002 Phys. Rep. 361 57

    [5]

    Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 1

    [6]

    Astumian R D 1997 Science 276 917

    [7]

    Reimann P, Hänggi P 2002 Appl. Phys. A 75 169

    [8]

    Dittrich T, Naranjo N 2010 Chem. Phys. 375 486

    [9]

    Jülicher F, Ajdari A, Prost J 1997 Rev. Mod. Phys. 69 1269

    [10]

    Astumian R D, Hänggi P 2002 Phys. Today. 55 33

    [11]

    Wambaugh J F 1999 Phys. Rev. Lett. 83 5106

    [12]

    Zhu B Y, Marchesoni F, Nori F 2004 Phys. Rev. Lett. 92 180602

    [13]

    Flach S, Yevtushenko O, Zolotaryuk Y 2000 Phys. Rev. Lett. 84 2358

    [14]

    Denisov S, Morales-Molina L, Flach S, Hänggi P 2007 Phys. Rev. A 75 063424

    [15]

    Schanz H, Otto M, Ketzmerick R, Dittrich T 2001 Phys. Rev. Lett. 87 070601

    [16]

    Schanz H, Dittrich T, Ketzmerick R 2005 Phys. Rev. E 71 026228

    [17]

    Izrailev F M 1990 Phys. Rep. 196 299

    [18]

    Hu B, Li B, Liu J, Gu Y 1999 Phys. Rev. Lett. 82 4224

    [19]

    Liu J, Cheng W T, Cheng C G 2000 Commun. Theor. Phys. 33 15

    [20]

    Moore F L, Robinson J C, Bharucha C F, Sundaram B, Raizen M G 1995 Phys. Rev. Lett. 75 4598

    [21]

    Duffy G J, Parkins S, Müller T, Sadgrove M, Leonhardt R, Wilson A C 2004 Phys. Rev. E 70 056206

    [22]

    Reimann P, Grifoni M, Hänggi P 1997 Phys. Rev. Lett. 79 10

    [23]

    Lehmann J, Kohler S, Hänggi P, Nitzan A 2002 Phys. Rev. Lett. 88 228305

    [24]

    Carlo G G, Benenti G, Casati G, Shepelyansky D L 2005 Phys. Rev. Lett. 94 164101

    [25]

    Carlo G G 2006 Phys. Rev. A 74 033617

    [26]

    Cavallasca L, Artuso R, Casati G 2007 Phys. Rev. E 75 066213

    [27]

    Gong J, Polleti D, Hänggi P 2007 Phys. Rev. A 75 033602

    [28]

    Gong J, Brumer P 2006 Phys. Rev. Lett. 97 240602

    [29]

    Gong J, Brumer P 2004 Phys. Rev. E 70 016202

    [30]

    Monteiro T S, Dando P A, Hutchings N A C, Isherwood M R 2002 Phys. Rev. E 89 194102

    [31]

    Jones P H, Goonasekera M, Meacher D R, Jonckheere T, Monteiro T S 2007 Phys. Rev. Lett. 98 073002

    [32]

    Lundh E, Wallin M 2005 Phys. Rev. Lett. 94 110603

    [33]

    Kenfack A, Gong J, Pattanayak A K 2008 Phys. Rev. Lett. 100 044104

    [34]

    Poletti D, Carlo G G, Li B 2007 Phys. Rev. E 75 01110

    [35]

    Sadgrove M, Horikoshi M, Sekimura T, Nakagawa K 2007 Phys. Rev. Lett. 99 043002

    [36]

    Dana I, Ramareddy V, Talukdar I, Summy G S 2008 Phys. Rev. Lett. 100 024103

    [37]

    Dana I, Roitberg V 2007 Phys. Rev. E 76 015201

    [38]

    Mennerat-Robilliard C 1999 Phys. Rev. Lett. 82 851

    [39]

    Schiavoni M, Sanchez-Palencia L, Renzoni F, Grynberg G 2003 Phys. Rev. Lett. 90 094101

    [40]

    Gommers R, Denisov S, Renzoni F 2006 Phys. Rev. Lett. 96 240604

    [41]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463

    [42]

    Pitaevskii L P, Stringari S 2003 Bose-Einstein Condensation (Oxford University Press, New York)

    [43]

    Morales-Molina L, Flach S 2008 New J. Phys. 10 013008

    [44]

    Lundh E 2006 Phys. Rev. E 74 016212

    [45]

    Poletti D, Benenti G, Casati G, Li B 2007 Phys. Rev. A 76 023421

    [46]

    Poletti D, Benenti G, Casati G, Hänggi P, Li B 2009 Phys. Rev. Lett. 102 130604

    [47]

    Gupta S 2005 Phys. Rev. Lett. 95 143201

    [48]

    Ryu C 2007 Phys. Rev. Lett. 99 260401

    [49]

    Olson S E, Terraciano M L, Bashkansky M, Fatemi F K 2007 Phys. Rev. A 76 061404

    [50]

    Liu J, Zhang C, Raizen M B, Niu Q 2006 Phys. Rev. A 73 013601

    [51]

    Liu J, Wang W, Zhang C, Niu Q, Li B 2005 Phys. Rev. A 72 063623

    [52]

    Zhang C, Liu J, Raizen M G, Niu Q 2004 Phys. Rev. Lett. 92 054101

    [53]

    Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601

    [54]

    Fu L B 2004 Phys. Rev. Lett. 92 130404

    [55]

    Liu J, Hu B, Li B 1998 Phys. Rev. Lett. 81 1749

    [56]

    Wang G F, Fu L B, Zhao H, Liu J 2005 Acta Phys. Sin. 54 5003 (in Chinese) [王冠芳, 傅立斌, 赵鸿, 刘杰 2005 物理学报 54 5003]

    [57]

    Ma Y, Fu L B, Yang Z A, Liu J 2006 Acta Phys. Sin. 55 5623 (in Chinese) [马云, 傅立斌, 杨志安, 刘杰 2006 物理学报 55 5623]

    [58]

    Bandrauk A D, Shen H 1994 J. Phys. A 27 7147

    [59]

    Wang G F, Fu L B, Liu J 2006 Phys. Rev. A 73 013619

    [60]

    Wang B, Fu P, Liu J, Wu B 2006 Phys. Rev. A 74 063610

    [61]

    Kottos T, Weiss M 2004 Phys. Rev. Lett. 93 190604

  • [1] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [2] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [3] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [4] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应. 物理学报, 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [5] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [6] 王建忠, 曹辉, 豆福全. 玻色-爱因斯坦凝聚体Rosen-Zener跃迁中的多体量子涨落效应 . 物理学报, 2012, 61(22): 220305. doi: 10.7498/aps.61.220305
    [7] 李飞, 张冬霞, 李文斌. 玻色-爱因斯坦凝聚系统中原子的空间混沌分布. 物理学报, 2011, 60(12): 120304. doi: 10.7498/aps.60.120304
    [8] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [9] 徐岩, 贾多杰, 李照鑫, 侯风超, 谭磊, 张鲁殷. 大N近似下旋量玻色-爱因斯坦凝聚的基态能级分裂. 物理学报, 2009, 58(1): 55-60. doi: 10.7498/aps.58.55
    [10] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, 2009, 58(6): 3679-3684. doi: 10.7498/aps.58.3679
    [11] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控. 物理学报, 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [12] 曲春雷, 赵清. 周期驱动玻色-爱因斯坦凝聚系统的棘齿效应. 物理学报, 2009, 58(7): 4390-4395. doi: 10.7498/aps.58.4390
    [13] 王冠芳, 刘 红. 扫描磁场中玻色-爱因斯坦凝聚体系的奇异自旋隧穿. 物理学报, 2008, 57(2): 667-673. doi: 10.7498/aps.57.667
    [14] 房永翠, 杨志安. 玻色-爱因斯坦凝聚体系中的混沌隧穿行为. 物理学报, 2008, 57(12): 7438-7446. doi: 10.7498/aps.57.7438
    [15] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性. 物理学报, 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [16] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制. 物理学报, 2008, 57(12): 7586-7590. doi: 10.7498/aps.57.7586
    [17] 房永翠, 杨志安, 杨丽云. 对称双势阱玻色-爱因斯坦凝聚系统在周期驱动下的动力学相变及其量子纠缠熵表示. 物理学报, 2008, 57(2): 661-666. doi: 10.7498/aps.57.661
    [18] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响. 物理学报, 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [19] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应. 物理学报, 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [20] 崔海涛, 王林成, 衣学喜. 低维俘获原子的玻色-爱因斯坦凝聚中的有限粒子数效应. 物理学报, 2004, 53(4): 991-995. doi: 10.7498/aps.53.991
计量
  • 文章访问数:  6660
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-13
  • 修回日期:  2012-05-31
  • 刊出日期:  2012-11-05

玻色-爱因斯坦凝聚体中非线性相互作用对量子共振棘流的影响

  • 1. 北京理工大学物理学院, 北京 100081;
  • 2. 北京应用物理与计算数学研究所, 计算物理国家重点实验室, 北京 100088;
  • 3. 北京大学应用物理与技术研究中心, 高能量密度物理数值模拟教育部重点实 验室, 北京 100084
    基金项目: 国家高技术研究发展计划(863计划) (批准号: 2011AA120101) 和国家重点基础研究发展计划(973计划) (批准号: 2011CB921503)资助的课题.

摘要: 研究了玻色-爱因斯坦凝聚体中非线性相互作用对量子共振棘流的影响. 满足量子共振条件的周期驱动使得波包在动量空间出现弹道扩散, 当波包扩散具有特定方向时, 系统就出现定向的动量流.弱非线性相互作用下的冷原子分成两簇, 它们分别受到方向相反的稳定周期驱动力, 以各自恒定的加速度沿相反方向运动.波包在动量空间的扩散表现为两个稳定的沿相反方向运动的峰.非线性相互作用的增强使得正方向运动的冷原子减少, 负方向运动的冷原子增加, 从而系统的动量流减弱甚至反转.当非线性相互作用足够强时, 动量空间中的波包只有一个稳定的峰, 且峰值对应的动量不随时间变化.此时冷原子受的周期驱动力为零, 定向的动量流消失.

English Abstract

参考文献 (61)

目录

    /

    返回文章
    返回