Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Symmetries and effect of time dimension in non-equilibrium quantum matter

Cai Zi

Citation:

Symmetries and effect of time dimension in non-equilibrium quantum matter

Cai Zi
PDF
HTML
Get Citation
  • Non-equilibrium quantum many-body systems have attracted considerable attention in the past decades. The scope of the research of this kind of novel system involves interdisciplinary research of condensed matter, atomic and molecular physics, quantum optics, quantum information and quantum computation, as well as the non-equilibrium statistical physics. The non-equilibrium phenomena emerging from the aforementioned quantum systems can exhibit rich and universal behaviors, which have far from being well understood due to the novelties and complexities of these systems, and hence the quantum many-body physics becomes the research highlight. At the same time, with the rapid development of quantum techniques, the understanding of these complex systems is of important practical significance due to their potential applications in quantum computation and quantum manipulation. In this paper, we show our recent progress of non-equilibrium quantum many-body systems. We focus on the novel phenomena closely related to the temporary symmetry breaking, including the exotic quantum matter, quasi-particles as well as the dynamical universality classes in non-equilibrium quantum many-body systems.
      Corresponding author: Cai Zi, zcai@sjtu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309000), the National Natural Science Foundation of China (Grant No. 12174251), and the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01).
    [1]

    张广铭, 于渌 2010 物理 39 543

    Zhang G M, Yu L 2010 Physics 39 543

    [2]

    Fausti D, Tobey R I, Dean N, Kasier S, Dienst A, Hoffmann M C, Pyon S, Takayama T, Takagi H, Cavalleri A 2011 Science 331 189Google Scholar

    [3]

    Wan Y, Moessner R 2017 Phys. Rev. Lett. 119 167203Google Scholar

    [4]

    Lindner N H, Refael G, Galitski V 2011 Nat. Phys. 7 490Google Scholar

    [5]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar

    [6]

    Wilczek F 2012 Phys. Rev. Lett. 109 160401Google Scholar

    [7]

    Mankowsky R, Subedi A, Forst M, Mariager S O, Chollet M, Lemke H T, Robinson J S, Glownia J M, Minitti M P, Frano A, Fechner M, Spaldin N A, Loew T, Keimer B, Georges A, Cavalleri A 2014 Nature 516 71Google Scholar

    [8]

    Kuehn W, Reimann K, Woerner M, Elsaesser T, Hey R 2011 J. Phys. Chem. B 115 5448Google Scholar

    [9]

    Yang Y, Tang T, Duan S, Zhou C, Hao D, Zhang W 2019 Rev. Sci. Instrum. 90 063905Google Scholar

    [10]

    Rigol M, Dunjko V, Olshanii M 2008 Nature (London) 452 854

    [11]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M 2011 Rev. Mod. Phys. 83 863Google Scholar

    [12]

    Gring M, Kuhnert M, Langen T, Kitagawa T, Rauer B, Schreitl M, Mazets I, Smith D A, Demler E, Schmiedmayer J 2012 Science 337 1318Google Scholar

    [13]

    Trotzky S, Chen Y A, Flesch A, McCulloch I P, Schollwöck U, Eisert J, Bloch I 2012 Nat. Phys. 8 325Google Scholar

    [14]

    Braun S, Friesdorf M, Hodgman S S, Schreiber M, Ronzheimer J P, Riera A, del Rey M, Bloch I, Eisert J, Schneider U 2015 Proc. Natl. Acad. Sci. 112 3641Google Scholar

    [15]

    Clark L W, Feng L, Chin C 2016 Science 354 606Google Scholar

    [16]

    Struck J, Ölschläger C, Le Targat R, Soltan-Panahi P, Eckardt A, Lewenstein M, Windpassinger P, Sengstock K 2011 Science 333 996Google Scholar

    [17]

    Struck J, Ölschläger C, Weinberg M, Hauke P, Simonet J, Eckardt A, Lewenstein M, Sengstock K, Windpassinger P 2012 Phys. Rev. Lett. 108 225304Google Scholar

    [18]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [19]

    Clark L W, Anderson B M, Feng L, Gaj A, Levin K, Chin C, 2018 Phys. Rev. Lett. 121 030402Google Scholar

    [20]

    Yang X, Cai Z 2021 Phys. Rev. Lett. 126 020602Google Scholar

    [21]

    Cai Z, Huang Y, Liu W V 2020 Chin. Phys. Lett. 37 050503Google Scholar

    [22]

    Wang Z J, Li Q Y, Li W, Cai Z 2021 Phys. Rev. Lett. 126 237201Google Scholar

    [23]

    Ren J, Li Q Y, Li W, Cai Z, Wang X Q 2020 Phys. Rev. Lett. 124 130602Google Scholar

    [24]

    Wang Z J, Navarrete-Benlloch C, Cai Z 2020 Phys. Rev. Lett. 125 115301Google Scholar

    [25]

    Watanabe H, Oshikawa M 2015 Phys. Rev. Lett. 114 251603Google Scholar

    [26]

    Else D V, Bauer B, Nayak C 2016 Phys. Rev. Lett. 117 090402Google Scholar

    [27]

    Khemani V, Lazarides A, Moessner R, Sondhi S 2016 Phys. Rev. Lett. 116 250401Google Scholar

    [28]

    Choi S, Choi J, Landig R, Kucsko G, Zhou H Y, Isoya J C, Jelezko F, Onoda S, Sumiya H, Khemani V, von Keyserlingk C, Yao N Y, Demler E, Lukin M D 2017 Nature 543 221Google Scholar

    [29]

    Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I Q, Potter A C, Vishwanath A, Yao N Y, Monroe C 2017 Nature 543 217Google Scholar

    [30]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [31]

    Kozii V, Fu L 2017 arXiv: 1708.05841

    [32]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [33]

    Chen X, Gu Z C, Liu Z X, Wen X G 2012 Science 338 1604Google Scholar

    [34]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [35]

    McGinley M, Cooper N R 2020 Nat. Phys. 16 1181Google Scholar

    [36]

    Affleck I, Kennedy T, Lieb E H, Tasaki H 1987 Phys. Rev. Lett. 59 799Google Scholar

    [37]

    Berg E, Torre E G D, Giamarchi T, Altman E 2009 Phys. Rev. B 77 245119

    [38]

    Deng T S, Pan L, Chen Y, Zhai H 2021 Phys. Rev. Lett. 127 086801Google Scholar

    [39]

    Hohenberg P C, Halperin B I 1977 Rev. Mod. Phys. 49 435Google Scholar

    [40]

    Kardar M, Parisi G, Zhang Y C 1986 Phys. Rev. Lett. 56 889Google Scholar

    [41]

    Lüschen H P, Bordia P, Hodgman S S, Schreiber M, Sarkar S, Daley A J, Fischer M H, Altman E, Bloch I, Schneider U 2017 Phys. Rev. X 7 011034

    [42]

    Bouganne R, Aguilera M B, Ghermaoui A, Beugnon J, Gerbier F 2020 Nat. Phys. 16 21

    [43]

    Cross M Greenside H 2009 Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge: Cambridge University Press)

    [44]

    Pethick C J, Smith H 2002 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)

    [45]

    Daley A J, Kollath C, Schollwöck U, Vidal G 2005 J. Stat. Mech. P04005

    [46]

    Mitra A, Giamarchi T 2012 Phys. Rev. B 85 075117Google Scholar

    [47]

    Kamenev A 2011 Field Theory of Non-equilibrium Systems (Cambridge: Cambridge University Press)

    [48]

    Cai Z, Schollwock U, Pollet L 2014 Phys. Rev. Lett. 113 260403Google Scholar

    [49]

    Aoki H, Tsuji N, Eckstein M, Kollar M, Oka T, Werner P 2014 Rev. Mod. Phys. 86 779Google Scholar

  • 图 1  (a) 分立时间晶体态的示意图; (b) 通过含时扰动局部破坏周期驱动的周期性, 导致时间晶体瞬子激发(不同简并时间晶体之间的隧穿)

    Figure 1.  Schematic diagram of (a) a period doubling dynamics in the presence of periodical driving and two degenerate TC phases and (b) the phase ramping protocol in our model and an instanton-like excitation induced by it.

    图 2  (a)虚时间晶体在2+1维欧几里得时空中一种典型的时空构型的示意图; (b) 其物理性质随温度振荡

    Figure 2.  (a) A typical world-line configurations of iTC in a (2+1)D Euclidean space; (b) the (inverse) temperature dependence of the CDW order parameter in the iTC phase.

    图 4  量子多体系统在无序、噪声、相互作用、对称性等因素共同作用下产生普适的弛豫动力学行为

    Figure 4.  Schematic of a open quantum many-body system and its universal dynamics induced by the interplay between disorder, noise, interaction and symmetry.

    图 3  一条对称保护的拓扑量子态(AKLT态)通过不同的方式, 耦合上不同量子环境的示意图

    Figure 3.  Schematic of the symmetry-protected topological systems (AKLT state) coupled to different quantum baths via various SB couplings.

    图 5  耗散-驱动玻色-赫伯特模型的非平衡稳态中涌现的条纹相 (a), (b) 和奇异玻色液体态(c), (d)

    Figure 5.  The stripe phase (a), (b) and the exotic bose liquid (c), (d) emerging from the steady state of a dissipative-driven Bose Hubbard model.

    图 6  当前处理非平衡量子关联系统的部分解析与数值方法

    Figure 6.  A review of current analytical and numerical methods to deal with non-equilibrium quantum many-body systems.

  • [1]

    张广铭, 于渌 2010 物理 39 543

    Zhang G M, Yu L 2010 Physics 39 543

    [2]

    Fausti D, Tobey R I, Dean N, Kasier S, Dienst A, Hoffmann M C, Pyon S, Takayama T, Takagi H, Cavalleri A 2011 Science 331 189Google Scholar

    [3]

    Wan Y, Moessner R 2017 Phys. Rev. Lett. 119 167203Google Scholar

    [4]

    Lindner N H, Refael G, Galitski V 2011 Nat. Phys. 7 490Google Scholar

    [5]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar

    [6]

    Wilczek F 2012 Phys. Rev. Lett. 109 160401Google Scholar

    [7]

    Mankowsky R, Subedi A, Forst M, Mariager S O, Chollet M, Lemke H T, Robinson J S, Glownia J M, Minitti M P, Frano A, Fechner M, Spaldin N A, Loew T, Keimer B, Georges A, Cavalleri A 2014 Nature 516 71Google Scholar

    [8]

    Kuehn W, Reimann K, Woerner M, Elsaesser T, Hey R 2011 J. Phys. Chem. B 115 5448Google Scholar

    [9]

    Yang Y, Tang T, Duan S, Zhou C, Hao D, Zhang W 2019 Rev. Sci. Instrum. 90 063905Google Scholar

    [10]

    Rigol M, Dunjko V, Olshanii M 2008 Nature (London) 452 854

    [11]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M 2011 Rev. Mod. Phys. 83 863Google Scholar

    [12]

    Gring M, Kuhnert M, Langen T, Kitagawa T, Rauer B, Schreitl M, Mazets I, Smith D A, Demler E, Schmiedmayer J 2012 Science 337 1318Google Scholar

    [13]

    Trotzky S, Chen Y A, Flesch A, McCulloch I P, Schollwöck U, Eisert J, Bloch I 2012 Nat. Phys. 8 325Google Scholar

    [14]

    Braun S, Friesdorf M, Hodgman S S, Schreiber M, Ronzheimer J P, Riera A, del Rey M, Bloch I, Eisert J, Schneider U 2015 Proc. Natl. Acad. Sci. 112 3641Google Scholar

    [15]

    Clark L W, Feng L, Chin C 2016 Science 354 606Google Scholar

    [16]

    Struck J, Ölschläger C, Le Targat R, Soltan-Panahi P, Eckardt A, Lewenstein M, Windpassinger P, Sengstock K 2011 Science 333 996Google Scholar

    [17]

    Struck J, Ölschläger C, Weinberg M, Hauke P, Simonet J, Eckardt A, Lewenstein M, Sengstock K, Windpassinger P 2012 Phys. Rev. Lett. 108 225304Google Scholar

    [18]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [19]

    Clark L W, Anderson B M, Feng L, Gaj A, Levin K, Chin C, 2018 Phys. Rev. Lett. 121 030402Google Scholar

    [20]

    Yang X, Cai Z 2021 Phys. Rev. Lett. 126 020602Google Scholar

    [21]

    Cai Z, Huang Y, Liu W V 2020 Chin. Phys. Lett. 37 050503Google Scholar

    [22]

    Wang Z J, Li Q Y, Li W, Cai Z 2021 Phys. Rev. Lett. 126 237201Google Scholar

    [23]

    Ren J, Li Q Y, Li W, Cai Z, Wang X Q 2020 Phys. Rev. Lett. 124 130602Google Scholar

    [24]

    Wang Z J, Navarrete-Benlloch C, Cai Z 2020 Phys. Rev. Lett. 125 115301Google Scholar

    [25]

    Watanabe H, Oshikawa M 2015 Phys. Rev. Lett. 114 251603Google Scholar

    [26]

    Else D V, Bauer B, Nayak C 2016 Phys. Rev. Lett. 117 090402Google Scholar

    [27]

    Khemani V, Lazarides A, Moessner R, Sondhi S 2016 Phys. Rev. Lett. 116 250401Google Scholar

    [28]

    Choi S, Choi J, Landig R, Kucsko G, Zhou H Y, Isoya J C, Jelezko F, Onoda S, Sumiya H, Khemani V, von Keyserlingk C, Yao N Y, Demler E, Lukin M D 2017 Nature 543 221Google Scholar

    [29]

    Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I Q, Potter A C, Vishwanath A, Yao N Y, Monroe C 2017 Nature 543 217Google Scholar

    [30]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [31]

    Kozii V, Fu L 2017 arXiv: 1708.05841

    [32]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [33]

    Chen X, Gu Z C, Liu Z X, Wen X G 2012 Science 338 1604Google Scholar

    [34]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [35]

    McGinley M, Cooper N R 2020 Nat. Phys. 16 1181Google Scholar

    [36]

    Affleck I, Kennedy T, Lieb E H, Tasaki H 1987 Phys. Rev. Lett. 59 799Google Scholar

    [37]

    Berg E, Torre E G D, Giamarchi T, Altman E 2009 Phys. Rev. B 77 245119

    [38]

    Deng T S, Pan L, Chen Y, Zhai H 2021 Phys. Rev. Lett. 127 086801Google Scholar

    [39]

    Hohenberg P C, Halperin B I 1977 Rev. Mod. Phys. 49 435Google Scholar

    [40]

    Kardar M, Parisi G, Zhang Y C 1986 Phys. Rev. Lett. 56 889Google Scholar

    [41]

    Lüschen H P, Bordia P, Hodgman S S, Schreiber M, Sarkar S, Daley A J, Fischer M H, Altman E, Bloch I, Schneider U 2017 Phys. Rev. X 7 011034

    [42]

    Bouganne R, Aguilera M B, Ghermaoui A, Beugnon J, Gerbier F 2020 Nat. Phys. 16 21

    [43]

    Cross M Greenside H 2009 Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge: Cambridge University Press)

    [44]

    Pethick C J, Smith H 2002 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)

    [45]

    Daley A J, Kollath C, Schollwöck U, Vidal G 2005 J. Stat. Mech. P04005

    [46]

    Mitra A, Giamarchi T 2012 Phys. Rev. B 85 075117Google Scholar

    [47]

    Kamenev A 2011 Field Theory of Non-equilibrium Systems (Cambridge: Cambridge University Press)

    [48]

    Cai Z, Schollwock U, Pollet L 2014 Phys. Rev. Lett. 113 260403Google Scholar

    [49]

    Aoki H, Tsuji N, Eckstein M, Kollar M, Oka T, Werner P 2014 Rev. Mod. Phys. 86 779Google Scholar

  • [1] DING Xiaoguan, ZHAO Kaijun, XIE Yaoyu, CHEN Zhipeng, CHEN Zhongyong, YANG Zhoujun, GAO Li, DING Yonghua, WEN Siyu, HU Yingxin. Effects of turbulence spreading and symmetry breaking on edge shear flow during sawtooth cycles in J-TEXT tokamak. Acta Physica Sinica, 2025, 74(4): 045201. doi: 10.7498/aps.74.20241364
    [2] Zeng Chao, Mao Yi-Yi, Wu Ji-Zhou, Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry. Acta Physica Sinica, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [3] Yang Shuo-Ying, Yin Jia-Xin. Transport phenomena in time-reversal symmetry-breaking Kagome superconductors. Acta Physica Sinica, 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [4] Wang Zhen-Yu, Li Zhi-Xiong, Yuan Huai-Yang, Zhang Zhi-Zhi, Cao Yun-Shan, Yan Peng. Topological states and quantum effects in magnonics. Acta Physica Sinica, 2023, 72(5): 057503. doi: 10.7498/aps.72.20221997
    [5] Zhai Hui. Non-equilibrium quantum many-body physics with ultracold atoms. Acta Physica Sinica, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [6] Wang En-Quan, Chen Hao, Yang Yi, Long Zheng-Wen, Hassanabadi Hassan. Generalized Klein-Gordon oscillator in Lorentz symmetry violation framework. Acta Physica Sinica, 2022, 71(6): 060301. doi: 10.7498/aps.71.20211733
    [7] Wang En, Dong Wen-Han, Zhou Hui, Liu Meng, Ji Hong-Yan, Meng Sheng, Sun Jia-Tao. Nonequilibrium states in quantum materials under time-period driving. Acta Physica Sinica, 2021, 70(13): 138101. doi: 10.7498/aps.70.20201808
    [8] . Acta Physica Sinica, 2021, 70(23): 230101. doi: 10.7498/aps.70.230101
    [9] Zhang Wei-Feng, Li Chun-Yan, Chen Xian-Feng, Huang Chang-Ming, Ye Fang-Wei. Topological zero-energy modes in time-reversal-symmetry-broken systems. Acta Physica Sinica, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [10] Geng Hu, Ji Qing-Shan, Zhang Cun-Xi, Wang Rui. Time-reversal-symmetry broken quantum spin Hall in Lieb lattice. Acta Physica Sinica, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [11] Zhang Ying, Lei You-Ming, Fang Tong. Symmetry breaking crisis of chaotic attractors. Acta Physica Sinica, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [12] Lu Gong-Ru, Li Xiang, Li Pei-Ying. Probing R-parity violating interactions from top quark polarization at LHC. Acta Physica Sinica, 2008, 57(2): 778-783. doi: 10.7498/aps.57.778
    [13] . Acta Physica Sinica, 2000, 49(2): 339-343. doi: 10.7498/aps.49.339
    [14] YI LIN, YAO KAI-LUN. THREE-DIMENSIONAL QUANTUM SPIN GLASS THEORY(Ⅲ) ──REPLICA SYMMETRY BREAKING SOLUTION. Acta Physica Sinica, 1996, 45(1): 133-139. doi: 10.7498/aps.45.133
    [15] YU YANG-ZHENG, CHEN XIONG-XIONG. BREAKING OF SUPERSYMMETRY AND WITTEN INDEX IN TWO-DIMENSIONAL SUPERSYMMETRIC MODELS. Acta Physica Sinica, 1993, 42(2): 214-222. doi: 10.7498/aps.42.214
    [16] SUN ZONG-QI. DEFECT OF SYMMETRY OF THE TIME-MEAN-INTERACTION-FIELD BETWEEN AN OSCILLATING KINK AND POINT DEFECT AND SELF-ORGANIZATION PHENOMENON. Acta Physica Sinica, 1992, 41(12): 1987-1992. doi: 10.7498/aps.41.1987
    [17] ZHOU GUANG-ZHAO, SU ZHAO-BIN. TIME REVERSAL SYMMETRY AND NON-EQUILIBRIUM STATISTICAL STATIONARY STATES (II). Acta Physica Sinica, 1981, 30(3): 401-409. doi: 10.7498/aps.30.401
    [18] ZHOU GUANG-ZHAO, SU ZHAO-BIN. TIME REVERSAL SYMMETRY AND NON-EQUILIBRIUM STATISTICAL STATIONARY STATES (I). Acta Physica Sinica, 1981, 30(2): 164-171. doi: 10.7498/aps.30.164
    [19] HOU BO-YU. GAUGE INDEPENDENCE, UNITARITY AND RENORMALI-ZABILITY OF A SPONTANEOUSLY BROKEN MODEL IN THE PERTURBATION THEORY. Acta Physica Sinica, 1977, 26(4): 317-332. doi: 10.7498/aps.26.317
    [20] ZHAO BAO-HENG. PHOTON-PHOTON SCATTERING IN SPONTANEOUSLY BROKEN GAUGE THEORIES. Acta Physica Sinica, 1976, 25(1): 53-57. doi: 10.7498/aps.25.53
Metrics
  • Abstract views:  6045
  • PDF Downloads:  284
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2021
  • Accepted Date:  10 October 2021
  • Published Online:  05 December 2021

/

返回文章
返回