Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry

Zeng Chao Mao Yi-Yi Wu Ji-Zhou Yuan Tao Dai Han-Ning Chen Yu-Ao

Citation:

Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry

Zeng Chao, Mao Yi-Yi, Wu Ji-Zhou, Yuan Tao, Dai Han-Ning, Chen Yu-Ao
PDF
HTML
Get Citation
  • Symmetry plays a crucial role in understanding topological phases in materials. In one-dimensional systems, such as the Su-Schrieffer-Heeger (SSH) model, chiral symmetry is thought to ensure the quantization of the Zak phase and the nontrivial topological phase. However, our work demonstrates that the one-dimensional lattice system with broken chiral symmetry can still possess quantized Zak phase and nontrivial topological phase. Specifically, we use a Bose-Einstein condensate of 87Rb atoms in a momentum space lattice of ultracold atoms to effectively simulate a one-dimensional Zigzag model of 26 sites, which intrinsically breaks the chiral symmetry by additional next-nearest-neighbor coupling. To ensure the existence of the nontrivial topological phase, where the Zak phase can be measured from the time-averaged displacement during the system’s evolution, we need to preserve the inversion symmetry by modulating laser power so that all next-nearest-neighbor coupling strengths are equal. Furthermore, by changing the ratio of nearest-neighbor coupling strengths, we observe a topological phase transition from a nontrivial topological phase to a trivial topological phase at the point where the ratio equals 1. Our work demonstrates that the ultracold atom system provides a controllable platform for studying the symmetrical phase and topological phase, with the potential to explore nonlinear topological phenomena by increasing the interactions among atoms. In addition, our system can be used to investigate other interesting topological phenomena with more complex models, such as critical phenomena at the phase transitions and flat band structures in the extended SSH model with long-range coupling. By controlling the coupling strengths, we can also explore the influence of different symmetries on the topological properties of extended SSH models in the future. Moreover, our platform makes it possible to studythe models with more energy bands, such as the Aharonov-Bohm caging model with a three-level structure, which shows peculiar flat-band properties. This work provides opportunities for various studies in the fields of symmetry, topology, and the interaction of controllable quantum systems.
      Corresponding author: Dai Han-Ning, daihan@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074367), the National Key Research and Development Program of China (Grant No. 2020YFA0309804), the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01), the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB35020200), the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0302002), and the New Cornerstone Science Foundation, China.
    [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [3]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [4]

    Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1093Google Scholar

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [6]

    Huang S M, Xu S Y, Belopolski I, et al. 2015 Nat. Commun. 6 7373Google Scholar

    [7]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [8]

    Ryu S, Schnyder A P, Furusaki A, Ludwig A W W 2010 New J. Phys. 12 065010Google Scholar

    [9]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [10]

    Zak J 1989 Phys. Rev. Lett. 62 2747Google Scholar

    [11]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nat. Phys. 9 795Google Scholar

    [12]

    Cardano F, D’Errico A, Dauphin A, et al. 2017 Nat. Commun. 8 15516Google Scholar

    [13]

    Li G Z, Wang L J, Ye R, Zheng Y L, Wang D W, Liu X J, Dutt A, Yuan L Q, Chen X F 2023 Light Sci. Appl. 12 81Google Scholar

    [14]

    Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 929Google Scholar

    [15]

    Xie D Z, Deng T S, Xiao T, Gou W, Chen T, Yi W, Yan B 2020 Phys. Rev. Lett. 124 050502Google Scholar

    [16]

    Choi J Y, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A, Bloch I, Gross C 2016 Science 352 1547Google Scholar

    [17]

    苑涛 戴汉宁 陈宇翱 2023 物理学报 72 160302Google Scholar

    Yuan T, Dai H N, Chen Y A 2023 Acta Phys. Sin. 72 160302Google Scholar

    [18]

    Miert G V, Ortix C, Smith C M 2017 2D Mater. 4 015023

    [19]

    Pérez-González B, Bello M, Gómez-León Á, Platero G 2019 Phys. Rev. B 99 035146Google Scholar

    [20]

    Ahmadi N, Abouie J 2020 Phys. Rev. B 101 195117Google Scholar

    [21]

    Altland A, Zirnbauer M R 1997 Phys. Rev. B 55 1142Google Scholar

    [22]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [23]

    Morimoto T, Furusaki A 2013 Phys. Rev. B 88 125129Google Scholar

    [24]

    Jiao Z Q, Longhi S, Wang X W, Gao J, Zhou W H, Wang Y, Fu Y X, Wang L, Ran R J, Qiao L F, Jin X M 2021 Phys. Rev. Lett. 127 147401Google Scholar

    [25]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [26]

    Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbéne S, Cooper N R, Bloch I, Goldman N 2015 Nat. Phys. 11 612Google Scholar

    [27]

    Longhi S 2018 Opt. Lett. 43 4639Google Scholar

    [28]

    Gadway B 2015 Phys. Rev. A 92 043606Google Scholar

    [29]

    An F A, Meier E J, Gadway B 2018 Phys. Rev. X 8 031045Google Scholar

    [30]

    Rufo S, Lopes N, Continentino M A, Griffith M A R 2019 Phys. Rev. B 100 195432Google Scholar

    [31]

    Pyykkönen V A J, Peotta S, Fabritius P, Mohan J, Esslinger T, Törmä P 2021 Phys. Rev. B 103 144519Google Scholar

    [32]

    Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O, Szameit A 2020 Nat. Commun. 11 907Google Scholar

    [33]

    Cáceres-Aravena G, Guzmán-Silva D, Salinas I, Vicencio R A 2022 Phys. Rev. Lett. 128 256602Google Scholar

    [34]

    Li H, Dong Z L, Longhi S, Liang Q, Xie D Z, Yan B 2022 Phys. Rev. Lett. 129 220403Google Scholar

    [35]

    Zhang W X, Wang H T, Sun H J, Zhang X D 2023 Phys. Rev. Lett. 130 206401Google Scholar

  • 图 1  (a) 一维Zigzag模型示意图, 格点之间的最近邻耦合强度为$ u_1 $和$ u_2 $, 次近邻耦合强度为$ v_1 $和$ v_2 $; (b) Zigzag模型的能带分布图; (c), (d)在系统不同的$ u_1/u_2 $情况下, Zigzag模型的环绕数和Zak相位的变化结果, 参数为$ v_1=v_2 $, $ v_1/u_2=0.4 $

    Figure 1.  (a) Schematic diagram of a one-dimensional (1D) Zigzag model with nearest-neighbor coupling strengths $ u_1 $ and $ u_2 $ and next-nearest-neighbor coupling strengths $ v_1 $ and $ v_2 $; (b) band structure of the Zigzag model; (c), (d) variations of the winding number and Zak phase of the Zigzag model as a function of $ u_1/u_2 $, with parameters $ v_1 = v_2 $ and $ v_1/u_2 = 0.4 $.

    图 2  实现一维Zigzag晶格 (a)利用Bragg过程实现一维动量晶格(上部分)和通过时间飞行成像探测原子数分布(下部分); (b)动量晶格中的原子色散曲线, 分别利用一阶和二阶Bragg跃迁耦合最近邻和次近邻格点

    Figure 2.  Realization of 1D Zigzag lattice: (a) 1D momentum lattice realized using Bragg processes (upper part) and visualized via time-of-flight imaging (lower part); (b) atomic dispersion curve in the momentum lattice includes first-order and second-order Bragg transitions, which are used to couple the nearest-neighbor and next-nearest-neighbor lattice sites.

    图 3  时间平均波包位移的测量 (a) $ u_1/u_2=2 $时, 系统的动力学演化过程, 其中左图为实验结果, 右图为数值模拟结果; (b) 通过(5)式得到的图(a)对应的TAMD的演化结果; (c), (d) $ u_1/u_2=0.4 $时, 测量得到的动力学演化过程和TAMD演化结果. 图中采用的实验参数: L = 26, $ v_1=v_2=0.15 $ kHz, $ u_2=0.35 $ kHz, 演化时长为$ 3.1\hbar/u_2 $, 时间间隔为$ 0.11\hbar/u_2 $

    Figure 3.  Measurement of time-averaged wavepacket displacement: (a) Dynamics evolution of the system for $ u_1/u_2=2 $, where the left plot shows experimental results, and the right plot presents numerical simulations; (b) evolution of TAMD corresponding to panel (a) obtained using Eq. (5); (c), (d) dynamics evolution and TAMD results were obtained for $ u_1/u_2=0.4 $. Experimental parameters: L = 26, $ v_1=v_2=0.15 $ kHz, $ u_2=0.35 $ kHz, an evolution time of $ 3.1\hbar/u_2 $, and a time interval of $ 0.11\hbar/u_2 $.

    图 4  不同$ u_1/u_2 $的Zigzag模型对应的TAMD变化曲线. 图中灰色虚线是理想模型对应的结果

    Figure 4.  Variation curves of TAMD for different $ u_1/u_2 $ in the Zigzag model. Gray dashed lines indicate results from the ideal model.

  • [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [3]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [4]

    Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1093Google Scholar

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [6]

    Huang S M, Xu S Y, Belopolski I, et al. 2015 Nat. Commun. 6 7373Google Scholar

    [7]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [8]

    Ryu S, Schnyder A P, Furusaki A, Ludwig A W W 2010 New J. Phys. 12 065010Google Scholar

    [9]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [10]

    Zak J 1989 Phys. Rev. Lett. 62 2747Google Scholar

    [11]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nat. Phys. 9 795Google Scholar

    [12]

    Cardano F, D’Errico A, Dauphin A, et al. 2017 Nat. Commun. 8 15516Google Scholar

    [13]

    Li G Z, Wang L J, Ye R, Zheng Y L, Wang D W, Liu X J, Dutt A, Yuan L Q, Chen X F 2023 Light Sci. Appl. 12 81Google Scholar

    [14]

    Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 929Google Scholar

    [15]

    Xie D Z, Deng T S, Xiao T, Gou W, Chen T, Yi W, Yan B 2020 Phys. Rev. Lett. 124 050502Google Scholar

    [16]

    Choi J Y, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A, Bloch I, Gross C 2016 Science 352 1547Google Scholar

    [17]

    苑涛 戴汉宁 陈宇翱 2023 物理学报 72 160302Google Scholar

    Yuan T, Dai H N, Chen Y A 2023 Acta Phys. Sin. 72 160302Google Scholar

    [18]

    Miert G V, Ortix C, Smith C M 2017 2D Mater. 4 015023

    [19]

    Pérez-González B, Bello M, Gómez-León Á, Platero G 2019 Phys. Rev. B 99 035146Google Scholar

    [20]

    Ahmadi N, Abouie J 2020 Phys. Rev. B 101 195117Google Scholar

    [21]

    Altland A, Zirnbauer M R 1997 Phys. Rev. B 55 1142Google Scholar

    [22]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [23]

    Morimoto T, Furusaki A 2013 Phys. Rev. B 88 125129Google Scholar

    [24]

    Jiao Z Q, Longhi S, Wang X W, Gao J, Zhou W H, Wang Y, Fu Y X, Wang L, Ran R J, Qiao L F, Jin X M 2021 Phys. Rev. Lett. 127 147401Google Scholar

    [25]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [26]

    Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbéne S, Cooper N R, Bloch I, Goldman N 2015 Nat. Phys. 11 612Google Scholar

    [27]

    Longhi S 2018 Opt. Lett. 43 4639Google Scholar

    [28]

    Gadway B 2015 Phys. Rev. A 92 043606Google Scholar

    [29]

    An F A, Meier E J, Gadway B 2018 Phys. Rev. X 8 031045Google Scholar

    [30]

    Rufo S, Lopes N, Continentino M A, Griffith M A R 2019 Phys. Rev. B 100 195432Google Scholar

    [31]

    Pyykkönen V A J, Peotta S, Fabritius P, Mohan J, Esslinger T, Törmä P 2021 Phys. Rev. B 103 144519Google Scholar

    [32]

    Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O, Szameit A 2020 Nat. Commun. 11 907Google Scholar

    [33]

    Cáceres-Aravena G, Guzmán-Silva D, Salinas I, Vicencio R A 2022 Phys. Rev. Lett. 128 256602Google Scholar

    [34]

    Li H, Dong Z L, Longhi S, Liang Q, Xie D Z, Yan B 2022 Phys. Rev. Lett. 129 220403Google Scholar

    [35]

    Zhang W X, Wang H T, Sun H J, Zhang X D 2023 Phys. Rev. Lett. 130 206401Google Scholar

  • [1] Chen Hong-Xiang, Liu Mo-Dian, Fan Zhi-Bin, Chen Xiao-Dong. Topological light transport in low-symmetry valley photonic crystals. Acta Physica Sinica, 2024, 73(10): 104205. doi: 10.7498/aps.73.20240040
    [2] Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Nonlinear topological pumping in momentum space lattice of ultracold atoms. Acta Physica Sinica, 2023, 72(16): 160302. doi: 10.7498/aps.72.20230740
    [3] Gao Hui-Fen, Zhou Xiao-Fang, Huang Xue-Qin. Zak phase induced interface states in two-dimensional phononic crystals. Acta Physica Sinica, 2022, 71(4): 044301. doi: 10.7498/aps.71.20211642
    [4] Zak phase induces interface states in two-dimensional phononic crystals. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211642
    [5] Zhang Yi, Xue Yun, Ge Wei-Kuan. Symmetries and conserved quantities of the Rosenberg problem. Acta Physica Sinica, 2010, 59(7): 4434-4436. doi: 10.7498/aps.59.4434
    [6] Ding Guang-Tao. Hojman method for construction of Birkhoffian representation and the Birkhoff symmetry. Acta Physica Sinica, 2010, 59(6): 3643-3647. doi: 10.7498/aps.59.3643
    [7] Ding Guang-Tao. Effects of gauge transformations on symmetries of Birkhoffian system. Acta Physica Sinica, 2009, 58(11): 7431-7435. doi: 10.7498/aps.58.7431
    [8] Lu Kai, Fang Jian-Hui, Zhang Ming-Jiang, Wang Peng. Noether symmetry and Mei symmetry of discrete holonomic system in phase space. Acta Physica Sinica, 2009, 58(11): 7421-7425. doi: 10.7498/aps.58.7421
    [9] Luo Shao-Kai. A new type of non-Noether adiabatic invariants, i.e. adiabatic invariants of Lut zky type, for Lagrangian systems. Acta Physica Sinica, 2007, 56(10): 5580-5584. doi: 10.7498/aps.56.5580
    [10] Xia Li-Li, Li Yuan-Cheng. Perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical system in phase place. Acta Physica Sinica, 2007, 56(11): 6183-6187. doi: 10.7498/aps.56.6183
    [11] Jing Hong-Xing, Li Yuan-Cheng, Xia Li-Li. Perturbation of Lie symmetries and a type of generalized Hojman adiabatic invariants for variable mass systems with unilateral holonomic constraints. Acta Physica Sinica, 2007, 56(6): 3043-3049. doi: 10.7498/aps.56.3043
    [12] Zhang Yi. Lie symmetries and adiabatic invariants for holonomic systems in event space. Acta Physica Sinica, 2007, 56(6): 3054-3059. doi: 10.7498/aps.56.3054
    [13] Zhang Yi, Fan Cun-Xin, Mei Feng-Xiang. Perturbation of symmetries and Hojman adiabatic invariants for Lagrangian system. Acta Physica Sinica, 2006, 55(7): 3237-3240. doi: 10.7498/aps.55.3237
    [14] Wu Hui-Bin, Mei Feng-Xiang. Symmetries of Lagrange system subjected to gyroscopic forces. Acta Physica Sinica, 2005, 54(6): 2474-2477. doi: 10.7498/aps.54.2474
    [15] Zheng Shi-Wang, Fu Jing-Li, Li Xian-Hui. Momentum-dependent symmetries and non-Noether conserved quantities for mechanico-electrical systems. Acta Physica Sinica, 2005, 54(12): 5511-5516. doi: 10.7498/aps.54.5511
    [16] Luo Shao-Kai. Mei symmetry,Noether symmetry and Lie symmetry of Hamiltonian canonical equations in a singular system. Acta Physica Sinica, 2004, 53(1): 5-10. doi: 10.7498/aps.53.5
    [17] Zhang Yi, Mei Feng-Xiang. Perturbation to symmetries and adiabatic invariant for systems of generalized c lassical mechanics. Acta Physica Sinica, 2003, 52(10): 2368-2372. doi: 10.7498/aps.52.2368
    [18] Zhang Yi. . Acta Physica Sinica, 2002, 51(11): 2417-2422. doi: 10.7498/aps.51.2417
    [19] Zhang Yi. . Acta Physica Sinica, 2002, 51(8): 1666-1670. doi: 10.7498/aps.51.1666
    [20] QIAO YONG-FEN, LI REN-JIE, ZHAO SHU-HONG. SYMMETRY AND INVARIANT IN GENERALIZED MECHANICAL SYSTEMS IN THE HIGH-DIMENSIONAL EXTENDED PHASE SPACE. Acta Physica Sinica, 2001, 50(5): 811-815. doi: 10.7498/aps.50.811
Metrics
  • Abstract views:  3321
  • PDF Downloads:  196
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2023
  • Accepted Date:  13 October 2023
  • Available Online:  17 November 2023
  • Published Online:  20 February 2024

/

返回文章
返回