Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear topological pumping in momentum space lattice of ultracold atoms

Yuan Tao Dai Han-Ning Chen Yu-Ao

Citation:

Nonlinear topological pumping in momentum space lattice of ultracold atoms

Yuan Tao, Dai Han-Ning, Chen Yu-Ao
PDF
HTML
Get Citation
  • Topological pumping enables the quantized transport of matter waves through an adiabatic evolution of the system, which plays an essential role in the applications of transferring quantum states and exploring the topological properties in higher-dimensional quantum systems. Recently, exploring the interplay between novel topological pumping and interactions has attracted growing attention in topological systems, such as nonlinear topological pumping induced by interactions. So far, the experimental realizations of the nonlinear topological pumps have been realized only in the optical waveguide systems with Kerr nonlinearity. It is still necessary to further explore the phenomenon in different systems. Here, we present an experimental proposal for realizing the nonlinear topological pumping via a one-dimensional (1D) off-diagonal Aubry-André-Harper (AAH) model with mean-field interactions in the momentum space lattice of ultracold atoms. In particular, we develop a numerical method for calculating the energy band of the nonlinear systems. With numerical calculations, we first solve the nonlinear energy band structure and soliton solution of the 1D nonlinear off-diagonal AAH model in the region of weak interaction strengths. The result shows that the lowest or the highest energy band is modulated in the nonlinear system of $ g > 0$ or $ g < 0$, respectively. The eigenstates of the associated energy bands have the features of the soliton solutions. We then show that the topological pumping of solitons exhibits quantized transport characteristics. Moreover, we numerically calculate the Chern number associated with the lowest and highest energy bands at different interaction strengths. The result shows that the quantized transport of solitons is determined by the Chern number of the associated energy band of the system from which solitons emanate. Finally, we propose a nonlinear topological pumping scheme based on a momentum lattice experimental system with $ ^{7}\text{Li}$ atoms. We can prepare the initial state, which is approximately the distribution of the soliton state of the lowest energy band, and calculate the dynamical evolution of this initial state in the case of $ U > 0$. Also, we analyze the influence of adiabatic evolution conditions on the pumping process, demonstrating the feasibility of nonlinear topological pumping in the momentum lattice system. Our study provides a feasible route for investigating nonlinear topological pumping in ultracold atom systems, which is helpful for further exploring the topological transport in nonlinear systems, such as topological phase transitions and edge effects induced by nonlinearity.
      Corresponding author: Dai Han-Ning, daihan@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074367), the National Key R&D Program of China (Grant No. 2020YFA0309804), the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01), and the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0302002)
    [1]

    Thouless D J 1983 Phys. Rev. B 27 6083Google Scholar

    [2]

    Nakajima S, Tomita T, Taie S, Ichinose T, Ozawa H, Wang L, Troyer M, Takahashi Y 2016 Nat. Phys. 12 296Google Scholar

    [3]

    Hu S, Ke Y G, Lee C H 2020 Phys. Rev. A 101 052323Google Scholar

    [4]

    Lohse M, Schweizer C, Price H M, Zilberberg O, Bloch I 2018 Nature 553 55Google Scholar

    [5]

    Citro R, Aidelsburger M 2023 Nat. Rev. Phys. 5 87Google Scholar

    [6]

    Cerjan A, Wang M, Huang S, Chen K P, Rechtsman M C 2020 Light Sci. Appl. 9 178Google Scholar

    [7]

    Ke Y G, Qin X Z, Kivshar Y S, Lee C H 2017 Phys. Rev. A 95 063630Google Scholar

    [8]

    Lohse M, Schweizer C, Zilberberg O, Aidelsburger M, Bloch I 2016 Nat. Phys. 12 350Google Scholar

    [9]

    Ma W, Zhou L, Zhang Q, Li M, Cheng C, Geng J, Rong X, Shi F, Gong J, Du J 2018 Phys. Rev. Lett. 120 120501Google Scholar

    [10]

    Zilberberg O, Huang S, Guglielmon J, Wang M, Chen K P, Kraus Y E, Rechtsman M C 2018 Nature 553 59Google Scholar

    [11]

    Cheng W, Prodan E, Prodan C 2020 Phys. Rev. Lett. 125 224301Google Scholar

    [12]

    Jung P S, Parto M, Pyrialakos G G, et al. 2022 Phys. Rev. A 105 013513Google Scholar

    [13]

    Fu Q, Wang P, Kartashov Y V, Konotop V V, Ye F 2022 Phys. Rev. Lett. 128 154101Google Scholar

    [14]

    Mostaan N, Grusdt F, Goldman N 2022 Nat. Commun. 13 5997Google Scholar

    [15]

    Jürgensen M, Mukherjee S, Rechtsman M C 2021 Nature 596 63Google Scholar

    [16]

    Jürgensen M, Mukherjee S, Jörg C, Rechtsman M C 2023 Nat. Phys. 19 420Google Scholar

    [17]

    Schäfer F, Fukuhara T, Sugawa S, Takasu Y, Takahashi Y 2020 Nat. Rev. Phys. 2 411Google Scholar

    [18]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [19]

    Kartashov Y V, Malomed B A, Torner L 2011 Rev. Mod. Phys. 83 247Google Scholar

    [20]

    Kevrekidis P G, Frantzeskakis D J, Carretero-González R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates (Vol. 45) (Berlin: Springer) pp99–130

    [21]

    Gadway B 2015 Phys. Rev. A 92 043606Google Scholar

    [22]

    An F A, Sundar B, Hou J, Luo X W, Meier E J, Zhang C, Hazzard K R A, Gadway B 2021 Phys. Rev. Lett. 127 130401Google Scholar

    [23]

    An F A, Padavicć K, Meier E J, Hegde S, Ganeshan S, Pixley J H, Vishveshwara S, Gadway B 2021 Phys. Rev. Lett. 126 040603Google Scholar

    [24]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 133

    [25]

    Harper P G 1955 Proc. Phys. Soc. A 68 874Google Scholar

    [26]

    Cao J, Xing Y, Qi L, Wang D Y, Bai C H, Zhu A D, Zhang S, Wang H F 2018 Laser Phys. Lett. 15 015211Google Scholar

    [27]

    Martinez Alvarez V M, Coutinho-Filho M D 2019 Phys. Rev. A 99 013833Google Scholar

    [28]

    Nguyen J H V, Dyke P, Luo D, Malomed B A, Hulet R G 2014 Nat. Phys. 10 918Google Scholar

    [29]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [30]

    Fukui T, Hatsugai Y, Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674Google Scholar

    [31]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [32]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290Google Scholar

    [33]

    Leykam D, Chong Y D 2016 Phys. Rev. Lett. 117 143901Google Scholar

    [34]

    Bongiovanni D, Jukić D, Hu Z, Lunić F, Hu Y, Song D, Morandotti R, Chen Z, Buljan H 2021 Phys. Rev. Lett. 127 184101Google Scholar

    [35]

    Kartashov Y V, Arkhipova A A, Zhuravitskii S A, Skryabin N N, Dyakonov I V, Kalinkin A A, Kulik S P, Kompanets V O, Chekalin S V, Torner L, Zadkov V N 2022 Phys. Rev. Lett. 128 093901Google Scholar

  • 图 1  (a)一维非对角AAH模型示意图, 每个晶格原胞有3个格点(A, B, C), 最近邻格点之间的耦合强度($J_{{ab}}$, $J_{{bc}}$, $J_{{ca}}$)随时间变化, 每个格点上的能量设置为零; (b)在一个泵浦周期内, 耦合强度的周期性调制函数 (由(2)式定义); (c)在$\varOmega t=0$时刻, 非对角AAH模型非线性能带结构在不同相互作用强度$g = 0, 1.5, 2.0$下的分布. 图中的物理量均以$J_{{\rm{max}}}$为单位, 耦合强度值$J_{{ab}}=0.77$, $J_{{bc}}=0.10$和$J_{{ca}}=0.77$

    Figure 1.  (a) Schematic illustration of 1D off-diagonal AAH model with three sites (A, B, C) per unit cell and time-dependent couplings ($J_{{ab}}$, $J_{{bc}}$, $J_{{ca}}$) between neighbouring sites; (b) variation of the couplings during one pumping cycle defined by Eq. (2); (c) energy bands of nonlinear off-diagonal AAH model vs. interaction strength g. All quantities shown in the pictures are given in units of $J_{{\rm{max}}}$, with coupling strength values $J_{{ab}}=0.77$, $J_{{bc}}=0.10$ and $J_{{ca}}=0.77$

    图 2  (a), (b)在$g > 0$的系统中, 计算得到的最低能带的孤子态的波函数分布, 在淬火动力学演化过程中是严格局域化的; (c), (d)在$g<0$的系统中, 最高能带的孤子态波函数分布和能带结构的分布

    Figure 2.  (a), (b) In the system of $g > 0$, the wave function distribution of soliton state for the lowest energy band is strictly localized in the process of the quench dynamics; (c), (d) in the system of $g < 0$, the wave function distribution of soliton state for the highest band and the energy band structure

    图 3  非线性拓扑泵浦 (a) $g=0$系统中, 最低能带上分布的瓦尼尔态的线性泵浦演化; (b) $g=1.5$系统中, 最低能带的孤子态的非线性演化; (c) $g=-1.5$系统中, 最高能带的孤子态的非线性演化; (d) 在两个泵浦周期内, 系统的质心位移结果. 上述结果均是对(3)式进行数值求解所得, 所用参数: (a)耦合强度$J_{{\rm{max}}} =1$, 调制频率$\varOmega / J_{{\rm{max}}}=0.02$, 原胞数$N_{\rm{c}} =101$; (b), (c)耦合强度$J_{{\rm{max}}} =1$, 调制频率$\varOmega / J_{{\rm{max}}} =0.01$, 原胞数$N_{\rm{c}}=21$

    Figure 3.  Interaction induced nonlinear propagation in topological pumps: (a) At $g =0$, the linear pump evolution of uniformly distributed Wanier states at the lowest band; (b) at $g =1.5$, the nonlinear evolution of the soliton state for the lowest occupancy band; (c) at the $g = -1.5$, the nonlinear evolution of the soliton state for the highest occupancy band; (d) displacement of the centre of mass for the cases shown in a to c. The results are obtained by numerically solving Eq. (3) with parameters: (a) $J_{{\rm{max}}} =1$, $\varOmega / J_{{\rm{max}}} = 0.02$, $N_{\rm{c}} = 101$; (b), (c)$J_{{\rm{max}}} = 1$, $\varOmega / J_{{\rm{max}}} = 0.01$, $N_{\rm{c }}= 21$

    图 4  在$g > 0$和$g < 0$的弱相互作用系统中, 分别计算最低能带的陈数$C_0$和最高能带的陈数$C_2$

    Figure 4.  Chern number associated with the energy band are calculated for $g > 0$ and $g < 0$ in the regime of weak interaction strengths, respectively

    图 5  利用动量晶格系统演示非线性拓扑泵浦方案 (a) 动量晶格示意图; (b) 初态制备过程; (c) 在两个泵浦周期内, 调制频率为$\varOmega/J_{{\rm{max}}} = 0.5$时孤子态的动力学演化; (d) 在两个泵浦周期内质心移动的晶格距离(红线为动量晶格的实际哈密顿量计算的结果, 蓝线为理想哈密顿量计算的结果); (e) 绝热演化条件分析, 不同$\varOmega/J_{{\rm{max}}}$对应的每个泵浦周期质心位置的移动距离. 设置参数为: $J_{{\rm{max}}} = 2 \pi \times 10.0$ kHz, $U / J_{{\rm{max}}} = 1.5$, $N_{\rm{c}} = 21$

    Figure 5.  Implementatial proposal of nonlinear topological pumping based on the momentum lattice: (a) Schematic diagram of the momentum lattice; (b) preparation of initial state; (c) dynamics evolution of soliton state in two pumping periods, with modulation frequency of $\varOmega/J_{{\rm{max}}} = 0.5$; (d) lattice displacement of the center-of-mass during two pumping periods (The red line is the result calculated from actual Hamiltonian of the momentum lattice, and the blue line is the result of the ideal Hamiltonian); (e) analysis of adiabatic evolution conditions. The shift of center-of-mass for each pumping period corresponding to different values of $\varOmega/J_{{\rm{max}}}$. Parameters are: $J_{{\rm{max}}} = 2 \pi \times 10.0$ kHz, $U / J_{{\rm{max}}} = 1.5$, $N_{\rm{c}} = 21$.

  • [1]

    Thouless D J 1983 Phys. Rev. B 27 6083Google Scholar

    [2]

    Nakajima S, Tomita T, Taie S, Ichinose T, Ozawa H, Wang L, Troyer M, Takahashi Y 2016 Nat. Phys. 12 296Google Scholar

    [3]

    Hu S, Ke Y G, Lee C H 2020 Phys. Rev. A 101 052323Google Scholar

    [4]

    Lohse M, Schweizer C, Price H M, Zilberberg O, Bloch I 2018 Nature 553 55Google Scholar

    [5]

    Citro R, Aidelsburger M 2023 Nat. Rev. Phys. 5 87Google Scholar

    [6]

    Cerjan A, Wang M, Huang S, Chen K P, Rechtsman M C 2020 Light Sci. Appl. 9 178Google Scholar

    [7]

    Ke Y G, Qin X Z, Kivshar Y S, Lee C H 2017 Phys. Rev. A 95 063630Google Scholar

    [8]

    Lohse M, Schweizer C, Zilberberg O, Aidelsburger M, Bloch I 2016 Nat. Phys. 12 350Google Scholar

    [9]

    Ma W, Zhou L, Zhang Q, Li M, Cheng C, Geng J, Rong X, Shi F, Gong J, Du J 2018 Phys. Rev. Lett. 120 120501Google Scholar

    [10]

    Zilberberg O, Huang S, Guglielmon J, Wang M, Chen K P, Kraus Y E, Rechtsman M C 2018 Nature 553 59Google Scholar

    [11]

    Cheng W, Prodan E, Prodan C 2020 Phys. Rev. Lett. 125 224301Google Scholar

    [12]

    Jung P S, Parto M, Pyrialakos G G, et al. 2022 Phys. Rev. A 105 013513Google Scholar

    [13]

    Fu Q, Wang P, Kartashov Y V, Konotop V V, Ye F 2022 Phys. Rev. Lett. 128 154101Google Scholar

    [14]

    Mostaan N, Grusdt F, Goldman N 2022 Nat. Commun. 13 5997Google Scholar

    [15]

    Jürgensen M, Mukherjee S, Rechtsman M C 2021 Nature 596 63Google Scholar

    [16]

    Jürgensen M, Mukherjee S, Jörg C, Rechtsman M C 2023 Nat. Phys. 19 420Google Scholar

    [17]

    Schäfer F, Fukuhara T, Sugawa S, Takasu Y, Takahashi Y 2020 Nat. Rev. Phys. 2 411Google Scholar

    [18]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [19]

    Kartashov Y V, Malomed B A, Torner L 2011 Rev. Mod. Phys. 83 247Google Scholar

    [20]

    Kevrekidis P G, Frantzeskakis D J, Carretero-González R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates (Vol. 45) (Berlin: Springer) pp99–130

    [21]

    Gadway B 2015 Phys. Rev. A 92 043606Google Scholar

    [22]

    An F A, Sundar B, Hou J, Luo X W, Meier E J, Zhang C, Hazzard K R A, Gadway B 2021 Phys. Rev. Lett. 127 130401Google Scholar

    [23]

    An F A, Padavicć K, Meier E J, Hegde S, Ganeshan S, Pixley J H, Vishveshwara S, Gadway B 2021 Phys. Rev. Lett. 126 040603Google Scholar

    [24]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 133

    [25]

    Harper P G 1955 Proc. Phys. Soc. A 68 874Google Scholar

    [26]

    Cao J, Xing Y, Qi L, Wang D Y, Bai C H, Zhu A D, Zhang S, Wang H F 2018 Laser Phys. Lett. 15 015211Google Scholar

    [27]

    Martinez Alvarez V M, Coutinho-Filho M D 2019 Phys. Rev. A 99 013833Google Scholar

    [28]

    Nguyen J H V, Dyke P, Luo D, Malomed B A, Hulet R G 2014 Nat. Phys. 10 918Google Scholar

    [29]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [30]

    Fukui T, Hatsugai Y, Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674Google Scholar

    [31]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [32]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290Google Scholar

    [33]

    Leykam D, Chong Y D 2016 Phys. Rev. Lett. 117 143901Google Scholar

    [34]

    Bongiovanni D, Jukić D, Hu Z, Lunić F, Hu Y, Song D, Morandotti R, Chen Z, Buljan H 2021 Phys. Rev. Lett. 127 184101Google Scholar

    [35]

    Kartashov Y V, Arkhipova A A, Zhuravitskii S A, Skryabin N N, Dyakonov I V, Kalinkin A A, Kulik S P, Kompanets V O, Chekalin S V, Torner L, Zadkov V N 2022 Phys. Rev. Lett. 128 093901Google Scholar

  • [1] MAO Yiyi, DAI Hanning. Aubry-André-Harper momentum-state chain in curved spacetime. Acta Physica Sinica, 2025, 74(2): 020301. doi: 10.7498/aps.74.20241592
    [2] Wang Juan-Fen, Wei Xin, Liu Shuai, Yang Ling-Zhen, Xue Ping-Ping, Fan Lin-Lin. Transmission and control of band gap vortex solitons in fractional-order diffraction honeycomb lattices. Acta Physica Sinica, 2024, 73(9): 094205. doi: 10.7498/aps.73.20232005
    [3] Cai De-Huan, Qu Su-Ping. Dynamic topological phenomena in periodically driven Raman lattice. Acta Physica Sinica, 2024, 73(14): 140301. doi: 10.7498/aps.73.20240535
    [4] Zeng Chao, Mao Yi-Yi, Wu Ji-Zhou, Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry. Acta Physica Sinica, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [5] Deng Tian-Shu, Yi Wei. Fixed points and dynamic topological phenomena in quench dynamics. Acta Physica Sinica, 2019, 68(4): 040303. doi: 10.7498/aps.68.20181928
    [6] Wang Cheng-Hui, Cheng Jian-Chun. Nonlinear acoustical response of multibubbles in elastic tube. Acta Physica Sinica, 2014, 63(13): 134301. doi: 10.7498/aps.63.134301
    [7] Che Jun-Ling, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Evolution of ultracold 70S Cs Rydberg atom. Acta Physica Sinica, 2012, 61(4): 043205. doi: 10.7498/aps.61.043205
    [8] Fang Li-Min. First principles study of interactions between Au and N atoms on SrTiO3(001) surface. Acta Physica Sinica, 2011, 60(5): 056801. doi: 10.7498/aps.60.056801
    [9] Zhao Jian-Ming, Zhang Lin-Jie, Li Chang-Yong, Jia Suo-Tang. The transformation of ultra-cold Rydberg atom to plasma. Acta Physica Sinica, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [10] Cao Long-Gui, Lu Da-Quan, Hu Wei, Yang Ping-Bao, Zhu Ye-Qing, Guo Qi. Interaction between spacial optical solitons in sub-strongly non-local nonlinear media. Acta Physica Sinica, 2008, 57(10): 6365-6372. doi: 10.7498/aps.57.6365
    [11] Liu Zhi-Ming, Cui Tian, Ma Yan-Ming, Liu Bing-Bing, Zou Guang-Tian. Interactions in Nb2H and its electronic structure. Acta Physica Sinica, 2007, 56(8): 4877-4883. doi: 10.7498/aps.56.4877
    [12] Jiang De-Sheng, She Wei-Long. Interactions between counter-propagating photovoltaic spatial solitons. Acta Physica Sinica, 2007, 56(1): 245-251. doi: 10.7498/aps.56.245
    [13] Li Yang-Gang, She Wei-Long, Wang Hong-Cheng. Perpendicular all-optical control of interactional optical spatical soliton pair. Acta Physica Sinica, 2007, 56(4): 2229-2236. doi: 10.7498/aps.56.2229
    [14] Men Fu-Dian. Thermodynamic properties of a weakly interacting Fermi gas in weak magnetic field. Acta Physica Sinica, 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [15] Huang Xiao-Jing, He Su-Zhen, Wu Chen-Xu. Interactions of CO molecules adsorbed on metallic nanostructured surfaces in an external electric field. Acta Physica Sinica, 2006, 55(5): 2454-2458. doi: 10.7498/aps.55.2454
    [16] Sun Yu-Hang, Li Fu-Li. Resonant tunneling and photon emission of an ultracold two-level atom passing through multi single-mode cavity fields. Acta Physica Sinica, 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [17] Jiang De-Sheng, She Wei-Long. Coherent collisions of multi photovoltaic bright spatial solitons. Acta Physica Sinica, 2005, 54(5): 2090-2095. doi: 10.7498/aps.54.2090
    [18] Song Ke-Hui. Scheme for quantum information processing via Λ-type atoms interacting with bimodal cavity field. Acta Physica Sinica, 2005, 54(10): 4730-4735. doi: 10.7498/aps.54.4730
    [19] Jiang Jin-Huan, Li Zi-Ping. Interaction potential between spatial optical solitons based on holographic focusing mechanism. Acta Physica Sinica, 2004, 53(9): 2991-2994. doi: 10.7498/aps.53.2991
    [20] Jiang De-Sheng, Ouyang Shi-Gen, She Wei-Long. Interaction of photovotaic spatial solitons between dark and dark as well as dark and bright. Acta Physica Sinica, 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
Metrics
  • Abstract views:  4781
  • PDF Downloads:  271
  • Cited By: 0
Publishing process
  • Received Date:  06 May 2023
  • Accepted Date:  02 June 2023
  • Available Online:  14 June 2023
  • Published Online:  20 August 2023

/

返回文章
返回