搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弯曲时空下的Aubry-André-Harper动量态链

毛一屹 戴汉宁

引用本文:
Citation:

弯曲时空下的Aubry-André-Harper动量态链

毛一屹, 戴汉宁

Aubry-André-Harper momentum-state chain in curved spacetime

Mao Yi-Yi, Dai Han-Ning
PDF
导出引用
  • Anderson局域化是凝聚态物理中一个影响深远的现象,它代表了由无序引发的本征态的根本性转变.本文提出了一个基于超冷原子动量态晶格系统的实验方案,用以实现弯曲时空下的Aubry-André-Harper (AAH)模型,并研究其中的Anderson局域化.得益于每对相邻动量态之间耦合的单独可操控性,动量态晶格中的耦合强度可以被编辑成幂律位置依赖的形式$J_n\propto n^{\sigma}$,从而能够有效模拟弯曲时空.动量态晶格中波包演化的数值计算结果表现出初始格点依赖的局域化性质,符合理论预测的相分离现象.通过分析波包演化动力学数据,可以观测到相分离临界格点的移动.同时,本文还提出了通过调制时空弯曲参数$\sigma$来制备本征态的方案,并在动量态晶格中进行了数值仿真.最后,在不同准周期调制相位下制备能谱中所有本征态,分析了本征态的局域化性质,验证了在能谱中共存的局域相、延展相和摇摆相.本文为在实验中研究弯曲时空下的Anderson局域化物理提供了新的可行途径.
    Anderson localization is a profound phenomenon in condensed matter physics, representing a fundamental transition of eigenstates induced by disorder. The one-dimensional Aubry-André-Harper (AAH) model, an iconic quasiperiodic lattice model, is one of the simplest models that demonstrate the Anderson localization transition. Recently, with the growing interest in quantum lattice models in curved spacetime (CST), the AAH model in CST has been proposed as a way to explore the interplay between Anderson localization and CST physics. While a few CST lattice models have been realized in optical waveguide systems to date, significant challenges remain in the experimental preparation and measurement of states, primarily due to the difficulty of dynamically modulating lattices in such systems. In this study, we propose an experimental scheme using a momentum-state lattice (MSL) in an ultracold atom system to realize the AAH model in CST and study the Anderson localization in this context. Thanks to the individual controllability of the coupling between each pair of adjacent momentum states, the coupling amplitude in the MSL can be encoded as a power-law position-dependent form $J_n \propto n^{\sigma}$, facilitating effective simulation of CST. Numerical calculation results of the MSL Hamiltonian show an emergence of the phase separation in a 34-site AAH chain in CST, where wave packet dynamics exhibit localized behavior on one side of the critical site and extended behavior on the other. The phase separation critical site is observed by extracting turning points of the evolving fractal dimension and the wave packet width derived from evolution dynamic simulations. Furthermore, by modulating the spacetime curvature parameter $\sigma$, we propose a method for eigenstates preparation of the AAH chain in CST, and perform numerical simulations in the MSL. Through calculating the fractal dimension of eigenstates prepared following the aforementioned method, we analyze the localization properties of eigenstates under various quasiperiodic modulation phases, confirming the coexistence of localized phase, swing phase, and extended phase in the energy spectrum. Unlike traditional localized and extended phases, eigenstates in the swing phase of the AAH model in CST exhibit different localization properties under different modulation phases, indicating the prescence of a swing mobility edge. Our results provide a feasible experimental approach to study Anderson localization in CST and introduce a new platform for realizing quantum lattice models in curved spacetime.
  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287

    [3]

    Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355

    [4]

    Mott N F 2001 Adv. Phys. 50 865

    [5]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891

    [6]

    Kondov S S, McGehee W R, Zirbel J J, DeMarco B 2011 Science 334 66

    [7]

    Jendrzejewski F, Bernard A, Müller K, Cheinet P, Josse V, Piraud M, Pezzé L, Sanchez-Palencia L, Aspect A, Bouyer P 2012 Nat. Phys. 8 398

    [8]

    Semeghini G, Landini M, Castilho P, Roy S, Spagnolli G, Trenkwalder A, Fattori M, Inguscio M, Modugno G 2015 Nat. Phys. 11 554

    [9]

    Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N, Silberberg Y 2008 Phys. Rev. Lett. 100 013906

    [10]

    Sperling T, Bührer W, Aegerter C M, Maret G 2013 Nat. Photonics 7 48

    [11]

    Wiersma D S 2013 Nat. Photonics 7 188

    [12]

    Wiersma D S 2021 Nat. Rev. Mater. 6 226

    [13]

    Abrahams E, Anderson P W, Licciardello D C, Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673

    [14]

    Das Sarma S, Kobayashi A, Prange R E 1986 Phys. Rev. Lett. 56 1280

    [15]

    Das Sarma S, He S, Xie X C 1990 Phys. Rev. B 41 5544

    [16]

    Biddle J, Das Sarma S 2010 Phys. Rev. Lett. 104 070601

    [17]

    Ganeshan S, Pixley J H, Das Sarma S 2015 Phys. Rev. Lett. 114 146601

    [18]

    Yao H, Khoudli A, Bresque L, Sanchez-Palencia L 2019 Phys. Rev. Lett. 123 070405

    [19]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 18

    [20]

    Deng X, Ray S, Sinha S, Shlyapnikov G V, Santos L 2019 Phys. Rev. Lett. 123 025301

    [21]

    Danieli C, Bodyfelt J D, Flach S 2015 Phys. Rev. B 91 235134

    [22]

    Li X, Li X, Das Sarma S 2017 Phys. Rev. B 96 085119

    [23]

    Wang Y, Xia X, Zhang L, Yao H, Chen S, You J, Zhou Q, Liu X J 2020 Phys. Rev. Lett. 125 196604

    [24]

    Lüschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Das Sarma S, Bloch I 2018 Phys. Rev. Lett. 120 160404

    [25]

    An F A, Padavić K, Meier E J, Hegde S, Ganeshan S, Pixley J H, Vishveshwara S, Gadway B 2021 Phys. Rev. Lett. 126 040603

    [26]

    Wang Y, Zhang J H, Li Y, Wu J, Liu W, Mei F, Hu Y, Xiao L, Ma J, Chin C, Jia S 2022 Phys. Rev. Lett. 129 103401

    [27]

    HAWKING S W 1974 Nature 248 30

    [28]

    Unruh W G 1976 Phys. Rev. D 14 870

    [29]

    Unruh W G 1981 Phys. Rev. Lett. 46 1351

    [30]

    Hu J, Feng L, Zhang Z, Chin C 2019 Nat. Phys. 15 785

    [31]

    Muñoz de Nova J R, Golubkov K, Kolobov V I, Steinhauer J 2019 Nature 569 688

    [32]

    Drori J, Rosenberg Y, Bermudez D, Silberberg Y, Leonhardt U 2019 Phys. Rev. Lett. 122 010404

    [33]

    Almeida C R, Jacquet M J 2023 Eur. Phys. J. H 48 15

    [34]

    Kedem Y, Bergholtz E J, Wilczek F 2020 Phys. Rev. Res. 2 043285

    [35]

    Morice C, Moghaddam A G, Chernyavsky D, van Wezel J, van den Brink J 2021 Phys. Rev. Res. 3 L022022

    [36]

    Sheng C, Huang C, Yang R, Gong Y, Zhu S, Liu H 2021 Phys. Rev. A 103 033703

    [37]

    Mertens L, Moghaddam A G, Chernyavsky D, Morice C, van den Brink J, van Wezel J 2022 Phys. Rev. Res. 4 043084

    [38]

    Könye V, Morice C, Chernyavsky D, Moghaddam A G, van den Brink J, van Wezel J 2022 Phys. Rev. Res. 4 033237

    [39]

    Li S Z, Yu X J, Zhu S L, Li Z 2023 Phys. Rev. B 108 094209

    [40]

    Wang Y, Sheng C, Lu Y H, Gao J, Chang Y J, Pang X L, Yang T H, Zhu S N, Liu H, Jin X M 2020 Natl. Sci. Rev. 7 1476

    [41]

    He R, Zhao Y, Sheng C, Duan J, Wei Y, Sun C, Lu L, Gong Y X, Zhu S, Liu H 2024 Phys. Rev. Res. 6 013233

    [42]

    Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895

    [43]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842

    [44]

    Parshin D A, Schober H R 1999 Phys. Rev. Lett. 83 4590

    [45]

    Zhou X C, Wang Y, Poon T F J, Zhou Q, Liu X J 2023 Phys. Rev. Lett. 131 176401

    [46]

    Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 929

    [47]

    Li H, Dong Z, Longhi S, Liang Q, Xie D, Yan B 2022 Phys. Rev. Lett. 129 220403

    [48]

    Yuan T, Zeng C, Mao Y Y, Wu F F, Xie Y J, Zhang W Z, Dai H N, Chen Y A, Pan J W 2023 Phys. Rev. Res. 5 L032005

    [49]

    Zeng C, Shi Y R, Mao Y Y, Wu F F, Xie Y J, Yuan T, Zhang W, Dai H N, Chen Y A, Pan J W 2024 Phys. Rev. Lett. 132 063401

    [50]

    Gadway B 2015 Phys. Rev. A 92 043606

    [51]

    Xiao T, Xie D, Gou W, Chen T, Deng T S, Yi W, Yan B 2020 Eur. Phys. J. D 74 152

    [52]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290

  • [1] 刘钊. 莫尔超晶格中的分数化拓扑量子态. 物理学报, doi: 10.7498/aps.73.20241029
    [2] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相. 物理学报, doi: 10.7498/aps.73.20231566
    [3] 蔡德欢, 屈苏平. 周期驱动拉曼晶格系统中的动力学拓扑现象. 物理学报, doi: 10.7498/aps.73.20240535
    [4] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, doi: 10.7498/aps.72.20230701
    [5] 苑涛, 戴汉宁, 陈宇翱. 超冷原子动量光晶格中的非线性拓扑泵浦. 物理学报, doi: 10.7498/aps.72.20230740
    [6] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞. 物理学报, doi: 10.7498/aps.71.20211308
    [7] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞. 物理学报, doi: 10.7498/aps.70.20211308
    [8] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 物理学报, doi: 10.7498/aps.69.20200513
    [9] 鹿博, 韩成银, 庄敏, 柯勇贯, 黄嘉豪, 李朝红. 超冷原子系综的非高斯纠缠态与精密测量. 物理学报, doi: 10.7498/aps.68.20190147
    [10] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, doi: 10.7498/aps.68.20190153
    [11] 邓天舒, 易为. 动力学淬火过程中的不动点及衍生拓扑现象. 物理学报, doi: 10.7498/aps.68.20181928
    [12] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展. 物理学报, doi: 10.7498/aps.68.20181965
    [13] 吕腾博, 张沛, 武瑞涛, 王小力. 弯曲时空中转动对自旋流的影响. 物理学报, doi: 10.7498/aps.68.20182260
    [14] 赵洋洋, 宋筠. 无序效应对1T-TaS2材料中Mott绝缘相的影响. 物理学报, doi: 10.7498/aps.66.057101
    [15] 王勇, 张好, 陈杰, 王丽梅, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷nS Rydberg原子的态转移. 物理学报, doi: 10.7498/aps.62.093201
    [16] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应. 物理学报, doi: 10.7498/aps.60.120305
    [17] 孙宇航, 李福利. 单个二能级超冷原子在多个单模腔场间的共振隧穿和光子辐射. 物理学报, doi: 10.7498/aps.55.1153
    [18] 李双九. 爱因斯坦转盘上的热平衡及其时空对偶性. 物理学报, doi: 10.7498/aps.53.3252
    [19] 熊锦, 牛中奇, 张智明. 原子质心运动的量子效应对光场量子噪声压缩的影响. 物理学报, doi: 10.7498/aps.51.2245
    [20] 魏国柱. 对称Anderson晶格基态的局域方法近似. 物理学报, doi: 10.7498/aps.36.1433
计量
  • 文章访问数:  93
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-04

/

返回文章
返回