-
基于室温原子的超外差太赫兹电场探测,场强灵敏度可达5.76 μV cm-1Hz-1/2,线性动态范围优于60 dB。原子超外差太赫兹探测具有极高的灵敏度,可用于精确测量材料的透射率,实现对材料厚度的高精度测量。本文实验测量了蓝宝石晶体材料和聚四氟乙烯有机材料的厚度,而且由太赫兹透射信号可以清晰的分辨出单层石墨烯与少层石墨烯。甚至对于厚度达到1 μm的超导金属铌薄膜也可以探测到微弱的太赫兹透射信号,这都得益于原子超外差太赫兹探测器的高灵敏度。总之,本文采用的基于原子超外差探测太赫兹测厚技术,在有机材料缺陷检测、涂层材料测厚及二维材料参数测量等方面都具有重要的应用价值。Terahertz thickness measurement is of great important in materials research and industrial test. And it’s can be applied in materials measurement including wood, paper, ceramics, plastics, and composite materials. Atomic superheterodyne terahertz detector has extremely high sensitivity. The sensitivity of terahertz electric field strength measurement can reach 5.76 μV cm-1 Hz-1/2. Simultaneously, the linear dynamic range is better than 60 dB. So, it can be applied to realize precise thickness measurement of materials through the terahertz transmission efficiency. The experiments in this paper demonstrated the thickness measurement of sapphire crystal and organic materials PTFE. The terahertz signal is shown in Figure A1(a,b). The thickness can be calculated from the transmittance, which is consistent with the result measured directly with a vernier caliper. Furthermore, single-layer graphene and few-layer graphene can be clearly distinguished from terahertz transmission signals, as shown in Figure A1(c). Even for niobium meta thin films with thickness 1 μm, very weak terahertz signal can be well distinguished due to the high sensitivity of atomic superheterodyne terahertz detector. In summary, the technology developed for terahertz thickness measurement based on atomic superheterodyne detection is very important for defect detection, coating check, and parameter measurement of materials.
-
[1] Sedlacek Jonathon A, Arne Schwettmann, Harald Kübler, Robert Löw, Tilman Pfau, and James P Shaffer 20128 819
[2] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Raithel G 2014IEEE 62 6169.
[3] Jiao Y C, Zhao J M, Jia S T 2018Acta 67 073201(in Chinese)
[4] Wu F C, An Q,Yao J W, Fu Y Q 2023Acta Phys Sin 72 047401 (in Chinese)
[5] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014105 024104.
[6] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. phys.8 819
[7] Holloway C L, Simons M T, Kautz M D, Haddab A H, Gordon J A, Crowley T P 2018 Appl. Phys. Lett.113 094101.
[8] Daschner R, Kübler H, Löw R, Baur H, Frühauf N, Pfau T 2014 Appl. Phys. Lett105 041107.
[9] Holloway C L, Prajapati N, Kitching J, Sherman J A, Teale C, Rufenacht A, Norrgard E B 2021arxiv preprint arxiv:2110.02335.
[10] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett.118 114001.
[11] Song Z, Liu H, Liu X, Zhang W, Zou H, Zhang J, Qu J 2019Opt Express 27 8848.
[12] Holloway C L, Simons M T, Gordon J A, Novotny D 2019IEEE Antenn. Wirel. PR 18 1853.
[13] Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys.Rev. Lett. 121110502.
[14] Anderson D A, Sapiro R E, Raithel G 2020IEEE T Antenn. Propag. 69 2455.
[15] Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J Appl. Phys. 129 154503.
[16] Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, Jia S 2020 Nat.Phys. 16 911.
[17] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev.Appl. 15 014047.
[18] Yang B, Yan Y, Li X, Xiao L, Li X, Chen L Q, Cheng H 2024 Phys. Rev. Appl.21 L031003.
[19] Zhang L H, Liu Z K, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl.18 014033.
[20] Liu X H, Liao K Y, Zhang Z X, Tu H T, Bian W, Li Z Q, Zhu S L 2022 Phys. Rev. Appl.18 54003.
[21] Chen S, Reed D J, Mac Kellar A R, Downes L A, Almuhawish N F, Jamieson M J, Weatherill K J 2022Optica 9 485.
[22] Wade C G, Šibalić N, De Melo N R., Kondo J M, Adams C S, Weatherill K J 2017Nat 11 40-43.
[23] Downes L A, Mac Kellar A R, Whiting D J, Bourgenot C, Adams C S, Weatherill K J 2020Phys. Rev.X 10 011027.
[24] Chen Z W, She Z Y, Liao K Y, Huang W, Yan H, Zhu S L 2021Acta Phys. Sin. 70 060702(in Chinese).
[25] Lin Y Y, She Z Y, Chen Z W, Li X Z, Zhang C X, Liao K Y, Zhu S L 2023 Fund. Res. China https://doi.org/10.1016/j.fmre.2023.02.019.
[26] She Z, Zhu X, Lin Y, Li X, Yang X, Shang Y, Huang W 2024 Chinese Phys. Lett. 41 084201.
[27] Ospald F, Zouaghi W, Beigang R, Matheis C, Jonuscheit J, Recur B, Vandewal M 2014 Opt. Eng.53 031208.
[28] Yasui T, Yasuda T, Sawanaka K I, Araki T 2005ApplOptics, 2005, 44(32): 6849-6856.
[29] Iwata T, Yoshioka S, Nakamura S, Mizutani Y, Yasui T 2013 Infrared Millim. TE 34 646.
[30] Zhang H Z, He M X, Shi L L, Wang P F 2020 Spectrosc. Spect. Anal.403066(in Chinese).
[31] Lin Y H, He M X, Lai H B, Li P F, Ma W H 2017 Spectrosc. Spect. Anal.37 3332(in Chinese).
[32] James L H, Jeon T I 2012Journal of Infrared, Millimeter, and Terahertz Waves 33 pp871-925.
计量
- 文章访问数: 82
- PDF下载量: 5
- 被引次数: 0