-
基于室温原子的超外差太赫兹电场探测, 场强灵敏度可达5.76 μV/(cm·Hz1/2), 线性动态范围优于60 dB. 原子超外差太赫兹探测具有极高的灵敏度, 可用于精确测量材料的透射率, 实现对材料厚度的高精度测量. 本文实验测量了蓝宝石晶体材料和聚四氟乙烯有机材料的厚度, 而且由太赫兹透射信号可以清晰地分辨出单层石墨烯与少层石墨烯. 甚至对于厚度达到1 μm的超导金属铌薄膜也可以探测到微弱的太赫兹透射信号, 这都得益于原子超外差太赫兹探测器的高灵敏度. 总之, 本文采用的基于原子超外差探测太赫兹测厚技术, 在有机材料缺陷检测、涂层材料测厚及二维材料参数测量等方面都具有重要的应用价值.Terahertz thickness measurement is very important in materials research and industrial test. And it can beused to measure various materials such as wood, paper, ceramics, plastics, and composite materials. Atomic superheterodyne terahertz detector has extremely high sensitivity. The sensitivity of terahertz electric field strength measurement can reach 5.76 μV/(cm·Hz1/2). Simultaneously, the linear dynamic range is better than 60 dB. So, it can be used to precisely measure the thickness of materials through the terahertz transmission efficiency. The experiments in this work demonstrate the thickness measurement of sapphire crystal and organic materials PTFE. The terahertz signal is shown in Fig. (a) sapphire material and Fig. (b) PTFE material. The thickness can be calculated from the transmittance, and the result is consistent with the result measured directly with a vernier caliper. Furthermore, single-layer graphene and few-layer graphene can be clearly distinguished from terahertz transmission signals as shown in Fig. (c) graphene material. Even for niobium meta thin films with thickness of 1 μm, very weak terahertz signal can be well distinguished due to the high sensitivity of atomic superheterodyne terahertz detector. In summary, the technology developed for terahertz thickness measurement based on atomic superheterodyne detection is very important for detecting defects, checking coating, and measuring the parameters of materials.
[1] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar
[2] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Raithel G 2014 IEEE T. Antenn. Propag. 62 6169Google Scholar
[3] 焦月春, 赵建明, 贾锁堂 2018 物理学报 67 073201Google Scholar
Jiao Y C, Zhao J M, Jia S T 2018 Acta Phys. Sin. 67 073201Google Scholar
[4] 吴逢川, 安强, 姚佳伟, 付云起 2023 物理学报 72 047401Google Scholar
Wu F C, An Q, Yao J W, Fu Y Q 2023 Acta Phys. Sin. 72 047401Google Scholar
[5] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar
[6] Holloway C L, Simons M T, Kautz M D, Haddab A H, Gordon J A, Crowley T P 2018 Appl. Phys. Lett. 113 094101Google Scholar
[7] Daschner R, Kübler H, Löw R, Baur H, Frühauf N, Pfau T 2014 Appl. Phys. Lett. 105 041107Google Scholar
[8] Holloway C L, Prajapati N, Kitching J, Sherman J A, Teale C, Rufenacht A, Norrgard E B 2021 arxiv: 2110.02335
[9] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar
[10] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar
[11] Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antenn. Wirel. Pr. 18 1853Google Scholar
[12] Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502Google Scholar
[13] Anderson D A, Sapiro R E, Raithel G 2020 IEEE T Antenn. Propag. 69 2455
[14] Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J. Appl. Phys. 129 154503Google Scholar
[15] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar
[16] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047Google Scholar
[17] Yang B W, Yan Y H, Li X J, Xiao L, Li X L, Chen L Q, Deng J L, Cheng H D 2024 Phys. Rev. Appl. 21 L031003Google Scholar
[18] Zhang L H, Liu Z K, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014033Google Scholar
[19] Liu X H, Liao K Y, Zhang Z X, Tu H T, Bian W, Li Z Q, Zheng S Y, Li H H, Huang W 2022 Phys. Rev. Appl. 18 054003Google Scholar
[20] Chen S, Reed D J, Mac Kellar A R, Downes L A, Almuhawish N F, Jamieson M J, Weatherill K J 2022 Optica 9 485Google Scholar
[21] Wade C G, Šibalić N, De Melo N R., Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar
[22] Downes L A, Mac Kellar A R, Whiting D J, Bourgenot C, Adams C S, Weatherill K J 2020 Phys. Rev. X 10 011027
[23] 陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮 2021 物理学报 70 060702Google Scholar
Chen Z W, She Z Y, Liao K Y, Huang W, Yan H, Zhu S L 2021 Acta Phys. Sin. 70 060702Google Scholar
[24] Lin Y Y, She Z Y, Chen Z W, Li X Z, Zhang C X, Liao K Y, Zhang X D, Chen J H, Huang W, Yan H, Zhu S L 2023 Fundamental Research https://doi.org/10.1016/j.fmre.2023. 02.019
[25] She Z Y, Zhu X J, Lin YY, Li X Z, Yang X L, Shang Y F, Teng Y Q, Tu H Q, Liao K Y, Zhang C X, Liu X H, Chen J H, Huang W 2024 Chin. Phys. Lett. 41 084201Google Scholar
[26] Ospald F, Zouaghi W, Beigang R, Matheis C, Jonuscheit J, Recur B, Vandewal M 2014 Opt. Eng. 53 031208
[27] Yasui T, Yasuda T, Sawanaka K I, Araki T 2005 Appl. Optics 44 6849Google Scholar
[28] Iwata T, Yoshioka S, Nakamura S, Mizutani Y, Yasui T 2013 J. Infrared Millim. Te. 34 646Google Scholar
[29] 张洪桢, 何明霞, 石粒力, 王鹏騛 2020 光谱学和光谱分析 40 3066
Zhang H Z, He M X, Shi L L, Wang P F 2020 Spectrosc. Spect. Anal. 40 3066
[30] 林玉华, 何明霞, 赖慧彬, 李鹏飞, 马文鹤 2017 光谱学和光谱分析 37 3332
Lin Y H, He M X, Lai H B, Li P F, Ma W H 2017 Spectrosc. Spect. Anal. 37 3332
[31] James L H, Jeon T I 2012 J. Infrared Millim. Te. 33 871Google Scholar
-
图 4 固体材料厚度测量 (a) 0.49 mm厚蓝宝石材料透射光谱; (b) 2 mm厚蓝宝石材料透射光谱; (c) 2 mm厚聚四氟乙烯材料透射光谱; (d) 8 mm厚聚四氟乙烯材料透射光谱
Fig. 4. Solid material thickness measurements: (a) Transmission spectrum of 0.49 mm thick sapphire material; (b) transmission spectrum of 2 mm thick sapphire material; (c) transmission spectrum of 2 mm thick PTFE material; (d) transmission spectrum of 8 mm thick PTFE material.
-
[1] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar
[2] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Raithel G 2014 IEEE T. Antenn. Propag. 62 6169Google Scholar
[3] 焦月春, 赵建明, 贾锁堂 2018 物理学报 67 073201Google Scholar
Jiao Y C, Zhao J M, Jia S T 2018 Acta Phys. Sin. 67 073201Google Scholar
[4] 吴逢川, 安强, 姚佳伟, 付云起 2023 物理学报 72 047401Google Scholar
Wu F C, An Q, Yao J W, Fu Y Q 2023 Acta Phys. Sin. 72 047401Google Scholar
[5] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar
[6] Holloway C L, Simons M T, Kautz M D, Haddab A H, Gordon J A, Crowley T P 2018 Appl. Phys. Lett. 113 094101Google Scholar
[7] Daschner R, Kübler H, Löw R, Baur H, Frühauf N, Pfau T 2014 Appl. Phys. Lett. 105 041107Google Scholar
[8] Holloway C L, Prajapati N, Kitching J, Sherman J A, Teale C, Rufenacht A, Norrgard E B 2021 arxiv: 2110.02335
[9] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar
[10] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar
[11] Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antenn. Wirel. Pr. 18 1853Google Scholar
[12] Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502Google Scholar
[13] Anderson D A, Sapiro R E, Raithel G 2020 IEEE T Antenn. Propag. 69 2455
[14] Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J. Appl. Phys. 129 154503Google Scholar
[15] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar
[16] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047Google Scholar
[17] Yang B W, Yan Y H, Li X J, Xiao L, Li X L, Chen L Q, Deng J L, Cheng H D 2024 Phys. Rev. Appl. 21 L031003Google Scholar
[18] Zhang L H, Liu Z K, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014033Google Scholar
[19] Liu X H, Liao K Y, Zhang Z X, Tu H T, Bian W, Li Z Q, Zheng S Y, Li H H, Huang W 2022 Phys. Rev. Appl. 18 054003Google Scholar
[20] Chen S, Reed D J, Mac Kellar A R, Downes L A, Almuhawish N F, Jamieson M J, Weatherill K J 2022 Optica 9 485Google Scholar
[21] Wade C G, Šibalić N, De Melo N R., Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar
[22] Downes L A, Mac Kellar A R, Whiting D J, Bourgenot C, Adams C S, Weatherill K J 2020 Phys. Rev. X 10 011027
[23] 陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮 2021 物理学报 70 060702Google Scholar
Chen Z W, She Z Y, Liao K Y, Huang W, Yan H, Zhu S L 2021 Acta Phys. Sin. 70 060702Google Scholar
[24] Lin Y Y, She Z Y, Chen Z W, Li X Z, Zhang C X, Liao K Y, Zhang X D, Chen J H, Huang W, Yan H, Zhu S L 2023 Fundamental Research https://doi.org/10.1016/j.fmre.2023. 02.019
[25] She Z Y, Zhu X J, Lin YY, Li X Z, Yang X L, Shang Y F, Teng Y Q, Tu H Q, Liao K Y, Zhang C X, Liu X H, Chen J H, Huang W 2024 Chin. Phys. Lett. 41 084201Google Scholar
[26] Ospald F, Zouaghi W, Beigang R, Matheis C, Jonuscheit J, Recur B, Vandewal M 2014 Opt. Eng. 53 031208
[27] Yasui T, Yasuda T, Sawanaka K I, Araki T 2005 Appl. Optics 44 6849Google Scholar
[28] Iwata T, Yoshioka S, Nakamura S, Mizutani Y, Yasui T 2013 J. Infrared Millim. Te. 34 646Google Scholar
[29] 张洪桢, 何明霞, 石粒力, 王鹏騛 2020 光谱学和光谱分析 40 3066
Zhang H Z, He M X, Shi L L, Wang P F 2020 Spectrosc. Spect. Anal. 40 3066
[30] 林玉华, 何明霞, 赖慧彬, 李鹏飞, 马文鹤 2017 光谱学和光谱分析 37 3332
Lin Y H, He M X, Lai H B, Li P F, Ma W H 2017 Spectrosc. Spect. Anal. 37 3332
[31] James L H, Jeon T I 2012 J. Infrared Millim. Te. 33 871Google Scholar
计量
- 文章访问数: 264
- PDF下载量: 12
- 被引次数: 0