搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原子超外差探测的太赫兹测厚

刘笑宏 滕玉勤 李婉钰 张彩霞 黄巍

引用本文:
Citation:

基于原子超外差探测的太赫兹测厚

刘笑宏, 滕玉勤, 李婉钰, 张彩霞, 黄巍

Terahertz thickness measurement based on atomic superheterodyne detection

Liu Xiao-Hong, Teng Yu-Qin, Li Wan-Yu, Sheng Wei-Di, Zhang Cai-Xia
PDF
导出引用
  • 基于室温原子的超外差太赫兹电场探测,场强灵敏度可达5.76 μV cm-1Hz-1/2,线性动态范围优于60 dB。原子超外差太赫兹探测具有极高的灵敏度,可用于精确测量材料的透射率,实现对材料厚度的高精度测量。本文实验测量了蓝宝石晶体材料和聚四氟乙烯有机材料的厚度,而且由太赫兹透射信号可以清晰的分辨出单层石墨烯与少层石墨烯。甚至对于厚度达到1 μm的超导金属铌薄膜也可以探测到微弱的太赫兹透射信号,这都得益于原子超外差太赫兹探测器的高灵敏度。总之,本文采用的基于原子超外差探测太赫兹测厚技术,在有机材料缺陷检测、涂层材料测厚及二维材料参数测量等方面都具有重要的应用价值。
    Terahertz thickness measurement is of great important in materials research and industrial test. And it’s can be applied in materials measurement including wood, paper, ceramics, plastics, and composite materials. Atomic superheterodyne terahertz detector has extremely high sensitivity. The sensitivity of terahertz electric field strength measurement can reach 5.76 μV cm-1 Hz-1/2. Simultaneously, the linear dynamic range is better than 60 dB. So, it can be applied to realize precise thickness measurement of materials through the terahertz transmission efficiency. The experiments in this paper demonstrated the thickness measurement of sapphire crystal and organic materials PTFE. The terahertz signal is shown in Figure A1(a,b). The thickness can be calculated from the transmittance, which is consistent with the result measured directly with a vernier caliper. Furthermore, single-layer graphene and few-layer graphene can be clearly distinguished from terahertz transmission signals, as shown in Figure A1(c). Even for niobium meta thin films with thickness 1 μm, very weak terahertz signal can be well distinguished due to the high sensitivity of atomic superheterodyne terahertz detector. In summary, the technology developed for terahertz thickness measurement based on atomic superheterodyne detection is very important for defect detection, coating check, and parameter measurement of materials.
  • [1]

    Sedlacek Jonathon A, Arne Schwettmann, Harald Kübler, Robert Löw, Tilman Pfau, and James P Shaffer 20128 819

    [2]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Raithel G 2014IEEE 62 6169.

    [3]

    Jiao Y C, Zhao J M, Jia S T 2018Acta 67 073201(in Chinese)

    [4]

    Wu F C, An Q,Yao J W, Fu Y Q 2023Acta Phys Sin 72 047401 (in Chinese)

    [5]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014105 024104.

    [6]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. phys.8 819

    [7]

    Holloway C L, Simons M T, Kautz M D, Haddab A H, Gordon J A, Crowley T P 2018 Appl. Phys. Lett.113 094101.

    [8]

    Daschner R, Kübler H, Löw R, Baur H, Frühauf N, Pfau T 2014 Appl. Phys. Lett105 041107.

    [9]

    Holloway C L, Prajapati N, Kitching J, Sherman J A, Teale C, Rufenacht A, Norrgard E B 2021arxiv preprint arxiv:2110.02335.

    [10]

    Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett.118 114001.

    [11]

    Song Z, Liu H, Liu X, Zhang W, Zou H, Zhang J, Qu J 2019Opt Express 27 8848.

    [12]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019IEEE Antenn. Wirel. PR 18 1853.

    [13]

    Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys.Rev. Lett. 121110502.

    [14]

    Anderson D A, Sapiro R E, Raithel G 2020IEEE T Antenn. Propag. 69 2455.

    [15]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J Appl. Phys. 129 154503.

    [16]

    Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, Jia S 2020 Nat.Phys. 16 911.

    [17]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev.Appl. 15 014047.

    [18]

    Yang B, Yan Y, Li X, Xiao L, Li X, Chen L Q, Cheng H 2024 Phys. Rev. Appl.21 L031003.

    [19]

    Zhang L H, Liu Z K, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl.18 014033.

    [20]

    Liu X H, Liao K Y, Zhang Z X, Tu H T, Bian W, Li Z Q, Zhu S L 2022 Phys. Rev. Appl.18 54003.

    [21]

    Chen S, Reed D J, Mac Kellar A R, Downes L A, Almuhawish N F, Jamieson M J, Weatherill K J 2022Optica 9 485.

    [22]

    Wade C G, Šibalić N, De Melo N R., Kondo J M, Adams C S, Weatherill K J 2017Nat 11 40-43.

    [23]

    Downes L A, Mac Kellar A R, Whiting D J, Bourgenot C, Adams C S, Weatherill K J 2020Phys. Rev.X 10 011027.

    [24]

    Chen Z W, She Z Y, Liao K Y, Huang W, Yan H, Zhu S L 2021Acta Phys. Sin. 70 060702(in Chinese).

    [25]

    Lin Y Y, She Z Y, Chen Z W, Li X Z, Zhang C X, Liao K Y, Zhu S L 2023 Fund. Res. China https://doi.org/10.1016/j.fmre.2023.02.019.

    [26]

    She Z, Zhu X, Lin Y, Li X, Yang X, Shang Y, Huang W 2024 Chinese Phys. Lett. 41 084201.

    [27]

    Ospald F, Zouaghi W, Beigang R, Matheis C, Jonuscheit J, Recur B, Vandewal M 2014 Opt. Eng.53 031208.

    [28]

    Yasui T, Yasuda T, Sawanaka K I, Araki T 2005ApplOptics, 2005, 44(32): 6849-6856.

    [29]

    Iwata T, Yoshioka S, Nakamura S, Mizutani Y, Yasui T 2013 Infrared Millim. TE 34 646.

    [30]

    Zhang H Z, He M X, Shi L L, Wang P F 2020 Spectrosc. Spect. Anal.403066(in Chinese).

    [31]

    Lin Y H, He M X, Lai H B, Li P F, Ma W H 2017 Spectrosc. Spect. Anal.37 3332(in Chinese).

    [32]

    James L H, Jeon T I 2012Journal of Infrared, Millimeter, and Terahertz Waves 33 pp871-925.

  • [1] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量. 物理学报, doi: 10.7498/aps.73.20231778
    [2] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长. 物理学报, doi: 10.7498/aps.73.20240397
    [3] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱. 物理学报, doi: 10.7498/aps.72.20230039
    [4] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, doi: 10.7498/aps.72.20222059
    [5] 吴逢川, 安强, 姚佳伟, 付云起. 里德堡原子超外差接收链路中的内禀增益系数研究. 物理学报, doi: 10.7498/aps.72.20222091
    [6] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, doi: 10.7498/aps.71.20220972
    [7] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究. 物理学报, doi: 10.7498/aps.71.20211284
    [8] 张正源, 张天乙, 刘宗凯, 丁冬生, 史保森. 里德堡原子多体相互作用的研究进展. 物理学报, doi: 10.7498/aps.69.20200649
    [9] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠. 物理学报, doi: 10.7498/aps.67.20172052
    [10] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量. 物理学报, doi: 10.7498/aps.66.193701
    [11] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离. 物理学报, doi: 10.7498/aps.65.223201
    [12] 段俊毅, 王勇, 张临杰, 李昌勇, 赵建明, 贾锁堂. 铯47D精细能级超冷里德堡原子自由演化的动力学研究. 物理学报, doi: 10.7498/aps.64.023201
    [13] 李洪云, 尹妍妍, 王青, 王立飞. 平行电磁场中里德堡氢原子的自相似结构研究. 物理学报, doi: 10.7498/aps.64.180502
    [14] 董慧杰, 王新宇, 李昌勇, 贾锁堂. 镓原子的Stark能级结构. 物理学报, doi: 10.7498/aps.64.093201
    [15] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, doi: 10.7498/aps.64.160702
    [16] 李洪云, 岳大光, 梁志强, 伊长虹, 陈建中. 外电场中金属表面附近里德堡氢原子的动力学行为. 物理学报, doi: 10.7498/aps.62.203401
    [17] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, doi: 10.7498/aps.61.163202
    [18] 张森, 邱济真, 王刚. 静电场中Ca原子里德堡态的能级结构. 物理学报, doi: 10.7498/aps.38.481
    [19] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, doi: 10.7498/aps.38.1717
    [20] 张森, 邱济真, 胡素芬, 陆杰, 钟建伟, 梁宜, 孙家祯. Sr原子里德堡态的电场效应. 物理学报, doi: 10.7498/aps.37.983
计量
  • 文章访问数:  82
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-09

/

返回文章
返回