搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间增殖系数修正的钚材料快中子多重性测量

李凯乐 黎素芬 蔡幸福 霍勇刚 王飞

引用本文:
Citation:

基于空间增殖系数修正的钚材料快中子多重性测量

李凯乐, 黎素芬, 蔡幸福, 霍勇刚, 王飞
cstr: 32037.14.aps.74.20241529

Fast neutron multiplicity measurement of plutonium material based on spatial multiplication coefficient correction

LI Kaile, LI Sufen, CAI Xingfu, HUO Yonggang, WANG Fei
cstr: 32037.14.aps.74.20241529
PDF
HTML
导出引用
  • 快中子多重性测量技术是军控核查领域一项重要的无损检测技术, 可用于核材料的质量衡算. 但该方法是基于点模型假设建立的, 会造成系统偏差. 为修正偏差提升测量精度, 本文对两种不同形状的样品进行了快中子多重性模拟测量, 得到了材料空间体积内中子产生、吸收和净增长随位置的变化关系, 发现了中子泄漏增殖系数的空间变化规律. 根据中子多重性阶乘矩与待测参数间的函数关系, 提出了一种基于空间增殖系数修正的方法, 通过引入修正因子$ {g_n} $, 推导了快中子多重性加权点模型方程. 为验证该方法的准确性, 本文通过Geant4搭建了一套测量模型, 对球体和圆柱体两种形状的公斤级钚样品进行了模拟测量. 结果表明, 快中子多重性加权点模型方程的测量精度高于点模型方程, 测量偏差缩小至6%以内, 提供了一种求解公斤级钚样品质量的优化方法, 推动了快中子多重性测量技术向前发展.
    Fast neutron multiplicity measurement technology is an important non-destructive testing technology in the field of arms control verification. In the technique, the liquid scintillation detector is used to detect the fission neutron and combined with the time correlation analysis method to extract multiplicity counting rates from the pulse signals. This technique is commonly used to measure the mass of nuclear materials, however, it is based on the point model that assumes that the neutron multiplication coefficient keeps constant in the whole spatial volume, which will lead to overestimation of the multiplication coefficient and result in system deviation. To correct the deviation and improve the measurement accuracy, the fast neutron multiplicity simulation measurements are carried out on spherical and cylindrical samples in this work. The relationship among the position of neutron generation, absorption and net growth in the space volume of the material is obtained. According to the definition of the leakage multiplication coefficient, the leakage multiplication coefficients at different positions in the space volume of the material are calculated. On this basis, a method based on spatial multiplication coefficient correction is proposed according to the functional relationship between neutron multiplicity factorial moments and the unknown parameters. In this method, the n-order multiplication coefficient is modified by introducing a weight factor $ {g_n} $, and the fast neutron multiplicity weighted point model equation is derived. To verify the accuracy of this method, a set of fast neutron multiplicity detection model is built by Geant4, and the fast neutron multiplicity simulation measurement is carried out on the spherical and cylindrical samples. The results show that the solution accuracy of the weighted point model equation is higher than that of the standard point model equation, and the measurement deviation is reduced to less than 6 %. This work provides an optimization method for solving plutonium samples with several kilograms in mass, and promotes the development of the fast neutron multiplicity measurement technology.
      通信作者: 黎素芬, leesf2006@sina.cn
    • 基金项目: 国家自然科学基金(批准号: 12475307)资助的课题.
      Corresponding author: LI Sufen, leesf2006@sina.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12475307).
    [1]

    Fulvio A D, Shin T H, Jordan T, Sosa C, Ruch M L, Clarke S D, Chichester D L, Pozzi S A 2017 Nucl. Instrum. Meth. A 855 92Google Scholar

    [2]

    Li S F, Qiu S Z, Zhang Q H 2016 Appl. Radiat. Isot. 110 53Google Scholar

    [3]

    Stewart J, Menlove H, Mayo D, Geist W, Carrillo L, Herrera G D 2000 The Ephithermal Neutron Multiplicity Counter Design and Performance Manual: More Rapid Plutonium and Uranium Inventory Verifications by Factors of 5–20 (United States: Los Alamos National Lab) p168

    [4]

    Piau V, Litaize O, Chebboubi A, Oberstedt S, Gook A, Oberstedt A 2023 Phys. Lett. B. 837 137648Google Scholar

    [5]

    Clark A, Mattingly J, Favorite J 2020 Nucl. Sci. Eng. 194 308Google Scholar

    [6]

    Fraïsse B, Bélier G, Méot V, Gaudefroy L, Francheteau A, Roig O 2023 Phys. Rev. C 108 014610Google Scholar

    [7]

    Zhang Q H, Yang J Q, Li X S, Li S F, Hou S X, Su X H, Zhou M, Zhuang L, Lin H T 2019 Appl. Radiat. Isot. 152 45Google Scholar

    [8]

    黎素芬, 李凯乐, 张全虎, 蔡幸福 2022 物理学报 71 091401Google Scholar

    Li S F, Li K L, Zhang Q H, Cai X F 2022 Acta Phys. Sin. 71 091401Google Scholar

    [9]

    Shin T H, Hutchinson J, Bahran R 2019 Nucl. Sci. Eng. 193 663Google Scholar

    [10]

    Croft S, Alvarez E, Chard P, McElroy R, Philips S 2007 48th INMM Annual Meeting (Tucson) p89

    [11]

    Li S F, Li K L, Zhang Q H, Cai X F 2022 Nucl. Instrum. Meth. A 1027 166314Google Scholar

    [12]

    Liu X B, Chen L G 2021 Nucl. Instrum. Meth. A 1016 165779Google Scholar

    [13]

    Zhang Q H, Su X H, Hou S X, Li S F, Yang J Q, Hou L J, Zhuang L, Huo Y G, Li J J 2020 J. Nucl. Sci. Technol. 57 678Google Scholar

    [14]

    Li K L, Li S F, Zhang Q H 2021 AIP Adv. 11 165

    [15]

    Enqvist A, Pázsit I, Avdic S 2010 Nucl. Instrum. Meth. A 615 62Google Scholar

    [16]

    Burward-Hoy J M, Geist W H, Krick M S, Mayo D R 2004 Achieving Accurate Nuetron-Multiplicity Analysis of Metals and Oxides with Weighted Point Model Equations (United States: Los Alamos National Lab) p132

    [17]

    Fulvio A D, Shin T H, Basley A, Swenson C, Sosa C, Clarke S D, Sanders J, Watson S, Chichester D L, Pozzi S A 2018 Nucl. Instrum. Meth. A 907 248Google Scholar

    [18]

    Zhang Q H, Li S F, Zhuang L, Huo Y G, Lin H T, Zuo W M 2018 Appl. Radiat. Isot. 135 92Google Scholar

    [19]

    Bai H Y, Xiong Z H, Zhao D S, Su M, Gao F, Xia B Y, Li C G, Pang C G, Mo Z H, Wen J 2023 Nucl. Instrum. Meth. A 1056 168652Google Scholar

    [20]

    Böhnel K 1985 Nucl. Sci. Eng. 90 75Google Scholar

    [21]

    Brown D A, Chadwick M B, Capote R 2018 Nucl. Data Sheets 148 142

  • 图 1  快中子多重性测量系统

    Fig. 1.  Fast neutron multiplicity measurement system.

    图 2  多重移位寄存器原理图

    Fig. 2.  Principle of multiplicity shift register.

    图 3  中子产生量和吸收量 (a)球体; (b)圆柱体

    Fig. 3.  neutron production and absorption: (a) Sphere; (b) cylinder.

    图 4  中子泄漏增殖系数空间分布 (a)球体; (b)圆柱体

    Fig. 4.  Spatial distribution of neutron multiplication coefficient: (a) Sphere; (b) cylinder.

    图 5  泄漏增殖系数拟合结果

    Fig. 5.  Multiplication coefficient fitting results.

    表 1  中子净增殖量

    Table 1.  Net increase of neutron.

    样品第1层第2层第3层第4层第5层第6层第7层第8层第9层第10层
    球体173663156111142509131236121585110940102358926828274472978
    圆柱体21284720130018967517798016528615454614022412841911341997833
    下载: 导出CSV

    表 2  离散修正因子

    Table 2.  Discrete correction factor.

    样品$ \overline {M_{\text{L}}^n} $$ {(\overline {{M_{\text{L}}}} )^n} $$ {g_n} $
    $ \overline {{M_{\text{L}}}} $$ \overline {M_{\text{L}}^{2}} $$ \overline {M_{\text{L}}^{3}} $$ \overline {M_{\text{L}}^{4}} $$ \overline {M_{\text{L}}^{5}} $$ {(\overline {{M_{\text{L}}}} )^1} $$ {(\overline {{M_{\text{L}}}} )^2} $$ {(\overline {{M_{\text{L}}}} )^3} $$ {(\overline {{M_{\text{L}}}} )^4} $$ {(\overline {{M_{\text{L}}}} )^5} $$ {g_1} $$ {g_2} $$ {g_3} $$ {g_4} $$ {g_5} $
    球体2.034.218.8718.9741.242.034.148.4217.1334.8411.0171.0531.1071.184
    圆柱体2.385.7614.1635.3689.522.385.6613.4531.9976.0911.0171.0521.1051.176
    下载: 导出CSV

    表 3  离散修正效果

    Table 3.  discrete correction effect.

    泄漏增殖系数 计算质量 计算偏差/%
    球体 圆柱体 球体 圆柱体 球体 圆柱体
    修正前 2.16 2.51 161.05 243.06 –28.04 –27.6
    修正后 2.07 2.40 236.03 344.30 5.5 2.6
    下载: 导出CSV

    表 4  拟合修正因子

    Table 4.  Fitting correction factor.

    样品$ \overline {M_{\text{L}}^n} $$ {(\overline {{M_{\text{L}}}} )^n} $$ {g_n} $
    $ \overline {{M_{\text{L}}}} $$ \overline {M_{\text{L}}^{2}} $$ \overline {M_{\text{L}}^{3}} $$ \overline {M_{\text{L}}^{4}} $$ \overline {M_{\text{L}}^{5}} $$ {(\overline {{M_{\text{L}}}} )^1} $$ {(\overline {{M_{\text{L}}}} )^2} $$ {(\overline {{M_{\text{L}}}} )^3} $$ {(\overline {{M_{\text{L}}}} )^4} $$ {(\overline {{M_{\text{L}}}} )^5} $$ {g_1} $$ {g_2} $$ {g_3} $$ {g_4} $$ {g_5} $
    球体2.034.188.7618.6440.222.034.118.3516.9334.3411.0161.0491.1011.171
    圆柱体2.375.7414.0835.0988.612.375.6413.3931.7875.4711.0171.0521.1041.174
    下载: 导出CSV

    表 5  拟合修正效果

    Table 5.  Fitting correction effect.

    泄漏增殖系数 计算质量 计算偏差/%
    球体 圆柱体 球体 圆柱体 球体 圆柱体
    离散修正 2.07 2.40 236.03 344.30 5.45 2.55
    拟合修正 2.08 2.39 231.24 343.02 3.32 2.13
    下载: 导出CSV
  • [1]

    Fulvio A D, Shin T H, Jordan T, Sosa C, Ruch M L, Clarke S D, Chichester D L, Pozzi S A 2017 Nucl. Instrum. Meth. A 855 92Google Scholar

    [2]

    Li S F, Qiu S Z, Zhang Q H 2016 Appl. Radiat. Isot. 110 53Google Scholar

    [3]

    Stewart J, Menlove H, Mayo D, Geist W, Carrillo L, Herrera G D 2000 The Ephithermal Neutron Multiplicity Counter Design and Performance Manual: More Rapid Plutonium and Uranium Inventory Verifications by Factors of 5–20 (United States: Los Alamos National Lab) p168

    [4]

    Piau V, Litaize O, Chebboubi A, Oberstedt S, Gook A, Oberstedt A 2023 Phys. Lett. B. 837 137648Google Scholar

    [5]

    Clark A, Mattingly J, Favorite J 2020 Nucl. Sci. Eng. 194 308Google Scholar

    [6]

    Fraïsse B, Bélier G, Méot V, Gaudefroy L, Francheteau A, Roig O 2023 Phys. Rev. C 108 014610Google Scholar

    [7]

    Zhang Q H, Yang J Q, Li X S, Li S F, Hou S X, Su X H, Zhou M, Zhuang L, Lin H T 2019 Appl. Radiat. Isot. 152 45Google Scholar

    [8]

    黎素芬, 李凯乐, 张全虎, 蔡幸福 2022 物理学报 71 091401Google Scholar

    Li S F, Li K L, Zhang Q H, Cai X F 2022 Acta Phys. Sin. 71 091401Google Scholar

    [9]

    Shin T H, Hutchinson J, Bahran R 2019 Nucl. Sci. Eng. 193 663Google Scholar

    [10]

    Croft S, Alvarez E, Chard P, McElroy R, Philips S 2007 48th INMM Annual Meeting (Tucson) p89

    [11]

    Li S F, Li K L, Zhang Q H, Cai X F 2022 Nucl. Instrum. Meth. A 1027 166314Google Scholar

    [12]

    Liu X B, Chen L G 2021 Nucl. Instrum. Meth. A 1016 165779Google Scholar

    [13]

    Zhang Q H, Su X H, Hou S X, Li S F, Yang J Q, Hou L J, Zhuang L, Huo Y G, Li J J 2020 J. Nucl. Sci. Technol. 57 678Google Scholar

    [14]

    Li K L, Li S F, Zhang Q H 2021 AIP Adv. 11 165

    [15]

    Enqvist A, Pázsit I, Avdic S 2010 Nucl. Instrum. Meth. A 615 62Google Scholar

    [16]

    Burward-Hoy J M, Geist W H, Krick M S, Mayo D R 2004 Achieving Accurate Nuetron-Multiplicity Analysis of Metals and Oxides with Weighted Point Model Equations (United States: Los Alamos National Lab) p132

    [17]

    Fulvio A D, Shin T H, Basley A, Swenson C, Sosa C, Clarke S D, Sanders J, Watson S, Chichester D L, Pozzi S A 2018 Nucl. Instrum. Meth. A 907 248Google Scholar

    [18]

    Zhang Q H, Li S F, Zhuang L, Huo Y G, Lin H T, Zuo W M 2018 Appl. Radiat. Isot. 135 92Google Scholar

    [19]

    Bai H Y, Xiong Z H, Zhao D S, Su M, Gao F, Xia B Y, Li C G, Pang C G, Mo Z H, Wen J 2023 Nucl. Instrum. Meth. A 1056 168652Google Scholar

    [20]

    Böhnel K 1985 Nucl. Sci. Eng. 90 75Google Scholar

    [21]

    Brown D A, Chadwick M B, Capote R 2018 Nucl. Data Sheets 148 142

  • [1] 黎素芬, 李凯乐, 张全虎, 蔡幸福. 铀材料快中子多重性测量方程推导. 物理学报, 2022, 71(9): 091401. doi: 10.7498/aps.71.20211653
    [2] 孔德智, 孙超, 李明杨. 浅海环境中基于模态衰减规律加权的子空间检测方法. 物理学报, 2020, 69(16): 164301. doi: 10.7498/aps.69.20191948
    [3] 赵磊, 徐妙华, 张翌航, 张喆, 朱保君, 姜炜曼, 张笑鹏, 赵旭, 仝博伟, 贺书凯, 卢峰, 吴玉迟, 周维民, 张发强, 周凯南, 谢娜, 黄征, 仲佳勇, 谷渝秋, 李玉同, 李英骏. 利用气泡探测器测量激光快中子. 物理学报, 2018, 67(22): 222101. doi: 10.7498/aps.67.20181035
    [4] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [5] 楚化强, 冯艳, 曹文健, 任飞, 顾明言. 灰气体加权和辐射模型综合评估及分析. 物理学报, 2017, 66(9): 094207. doi: 10.7498/aps.66.094207
    [6] 王雨, 郭进利. 基于多重影响力矩阵的有向加权网络节点重要性评估方法. 物理学报, 2017, 66(5): 050201. doi: 10.7498/aps.66.050201
    [7] 鲁昌兵, 许鹏, 鲍杰, 王朝辉, 张凯, 任杰, 刘艳芬. 快中子照相模拟分析与实验验证. 物理学报, 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [8] 章法强, 祁建敏, 张建华, 李林波, 陈定阳, 谢红卫, 杨建伦, 陈进川. 一种基于成像板的能量卡阈式快中子图像测量方法. 物理学报, 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [9] 郑伟范, 张继业, 王明文, 唐东明. 具有加权顾前势的交通流模型. 物理学报, 2014, 63(22): 228901. doi: 10.7498/aps.63.228901
    [10] 冯松, 刘荣, 鹿心鑫, 羊奕伟, 王玫, 蒋励, 秦建国. 离线测量钍快中子裂变反应率方法. 物理学报, 2014, 63(16): 162501. doi: 10.7498/aps.63.162501
    [11] 王丹, 郝彬彬. 一类高聚类系数的加权无标度网络及其同步能力分析. 物理学报, 2013, 62(22): 220506. doi: 10.7498/aps.62.220506
    [12] 王丹, 金小峥. 可调聚类系数加权无标度网络建模及其拥塞问题研究. 物理学报, 2012, 61(22): 228901. doi: 10.7498/aps.61.228901
    [13] 吕翎, 孟乐, 郭丽, 邹家蕊, 杨明. 激光时空混沌模型的加权网络投影同步. 物理学报, 2011, 60(3): 030506. doi: 10.7498/aps.60.030506
    [14] 张洁, 王少峰. 电荷屏蔽对快中子俘获过程的影响. 物理学报, 2010, 59(2): 1391-1395. doi: 10.7498/aps.59.1391
    [15] 章法强, 杨建伦, 李正宏, 叶凡, 徐荣昆. 厚闪烁体内次级中子对快中子图像质量的影响研究. 物理学报, 2009, 58(2): 1316-1320. doi: 10.7498/aps.58.1316
    [16] 章法强, 杨建伦, 李正宏, 钟耀华, 叶 凡, 秦 义, 陈法新, 应纯同, 刘广均. 高灵敏度的快中子照相系统. 物理学报, 2007, 56(1): 583-588. doi: 10.7498/aps.56.583
    [17] 潘灶烽, 汪小帆. 一种可大范围调节聚类系数的加权无标度网络模型. 物理学报, 2006, 55(8): 4058-4064. doi: 10.7498/aps.55.4058
    [18] 杨 帅, 李养贤, 马巧云, 徐学文, 牛萍娟, 李永章, 牛胜利, 李洪涛. FTIR研究快中子辐照直拉硅中的VO2. 物理学报, 2005, 54(5): 2256-2260. doi: 10.7498/aps.54.2256
    [19] 李养贤, 杨 帅, 陈贵峰, 马巧云, 牛萍娟, 陈东风, 李洪涛, 王宝义. 快中子辐照直拉硅中受主和施主的研究. 物理学报, 2005, 54(4): 1783-1787. doi: 10.7498/aps.54.1783
    [20] 雷家荣, 袁永刚, 赵 林, 赵敏智, 崔高显. 快中子堆n,γ混合场中γ光子注量的测量研究. 物理学报, 2003, 52(1): 53-57. doi: 10.7498/aps.52.53
计量
  • 文章访问数:  239
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-31
  • 修回日期:  2024-11-24
  • 上网日期:  2024-12-04

/

返回文章
返回