Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Aubry-André-Harper momentum-state chain in curved spacetime

Mao Yi-Yi Dai Han-Ning

Citation:

Aubry-André-Harper momentum-state chain in curved spacetime

Mao Yi-Yi, Dai Han-Ning
PDF
Get Citation
  • Anderson localization is a profound phenomenon in condensed matter physics, representing a fundamental transition of eigenstates induced by disorder. The one-dimensional Aubry-André-Harper (AAH) model, an iconic quasiperiodic lattice model, is one of the simplest models that demonstrate the Anderson localization transition. Recently, with the growing interest in quantum lattice models in curved spacetime (CST), the AAH model in CST has been proposed as a way to explore the interplay between Anderson localization and CST physics. While a few CST lattice models have been realized in optical waveguide systems to date, significant challenges remain in the experimental preparation and measurement of states, primarily due to the difficulty of dynamically modulating lattices in such systems. In this study, we propose an experimental scheme using a momentum-state lattice (MSL) in an ultracold atom system to realize the AAH model in CST and study the Anderson localization in this context. Thanks to the individual controllability of the coupling between each pair of adjacent momentum states, the coupling amplitude in the MSL can be encoded as a power-law position-dependent form $J_n \propto n^{\sigma}$, facilitating effective simulation of CST. Numerical calculation results of the MSL Hamiltonian show an emergence of the phase separation in a 34-site AAH chain in CST, where wave packet dynamics exhibit localized behavior on one side of the critical site and extended behavior on the other. The phase separation critical site is observed by extracting turning points of the evolving fractal dimension and the wave packet width derived from evolution dynamic simulations. Furthermore, by modulating the spacetime curvature parameter $\sigma$, we propose a method for eigenstates preparation of the AAH chain in CST, and perform numerical simulations in the MSL. Through calculating the fractal dimension of eigenstates prepared following the aforementioned method, we analyze the localization properties of eigenstates under various quasiperiodic modulation phases, confirming the coexistence of localized phase, swing phase, and extended phase in the energy spectrum. Unlike traditional localized and extended phases, eigenstates in the swing phase of the AAH model in CST exhibit different localization properties under different modulation phases, indicating the prescence of a swing mobility edge. Our results provide a feasible experimental approach to study Anderson localization in CST and introduce a new platform for realizing quantum lattice models in curved spacetime.
  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287

    [3]

    Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355

    [4]

    Mott N F 2001 Adv. Phys. 50 865

    [5]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891

    [6]

    Kondov S S, McGehee W R, Zirbel J J, DeMarco B 2011 Science 334 66

    [7]

    Jendrzejewski F, Bernard A, Müller K, Cheinet P, Josse V, Piraud M, Pezzé L, Sanchez-Palencia L, Aspect A, Bouyer P 2012 Nat. Phys. 8 398

    [8]

    Semeghini G, Landini M, Castilho P, Roy S, Spagnolli G, Trenkwalder A, Fattori M, Inguscio M, Modugno G 2015 Nat. Phys. 11 554

    [9]

    Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N, Silberberg Y 2008 Phys. Rev. Lett. 100 013906

    [10]

    Sperling T, Bührer W, Aegerter C M, Maret G 2013 Nat. Photonics 7 48

    [11]

    Wiersma D S 2013 Nat. Photonics 7 188

    [12]

    Wiersma D S 2021 Nat. Rev. Mater. 6 226

    [13]

    Abrahams E, Anderson P W, Licciardello D C, Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673

    [14]

    Das Sarma S, Kobayashi A, Prange R E 1986 Phys. Rev. Lett. 56 1280

    [15]

    Das Sarma S, He S, Xie X C 1990 Phys. Rev. B 41 5544

    [16]

    Biddle J, Das Sarma S 2010 Phys. Rev. Lett. 104 070601

    [17]

    Ganeshan S, Pixley J H, Das Sarma S 2015 Phys. Rev. Lett. 114 146601

    [18]

    Yao H, Khoudli A, Bresque L, Sanchez-Palencia L 2019 Phys. Rev. Lett. 123 070405

    [19]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 18

    [20]

    Deng X, Ray S, Sinha S, Shlyapnikov G V, Santos L 2019 Phys. Rev. Lett. 123 025301

    [21]

    Danieli C, Bodyfelt J D, Flach S 2015 Phys. Rev. B 91 235134

    [22]

    Li X, Li X, Das Sarma S 2017 Phys. Rev. B 96 085119

    [23]

    Wang Y, Xia X, Zhang L, Yao H, Chen S, You J, Zhou Q, Liu X J 2020 Phys. Rev. Lett. 125 196604

    [24]

    Lüschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Das Sarma S, Bloch I 2018 Phys. Rev. Lett. 120 160404

    [25]

    An F A, Padavić K, Meier E J, Hegde S, Ganeshan S, Pixley J H, Vishveshwara S, Gadway B 2021 Phys. Rev. Lett. 126 040603

    [26]

    Wang Y, Zhang J H, Li Y, Wu J, Liu W, Mei F, Hu Y, Xiao L, Ma J, Chin C, Jia S 2022 Phys. Rev. Lett. 129 103401

    [27]

    HAWKING S W 1974 Nature 248 30

    [28]

    Unruh W G 1976 Phys. Rev. D 14 870

    [29]

    Unruh W G 1981 Phys. Rev. Lett. 46 1351

    [30]

    Hu J, Feng L, Zhang Z, Chin C 2019 Nat. Phys. 15 785

    [31]

    Muñoz de Nova J R, Golubkov K, Kolobov V I, Steinhauer J 2019 Nature 569 688

    [32]

    Drori J, Rosenberg Y, Bermudez D, Silberberg Y, Leonhardt U 2019 Phys. Rev. Lett. 122 010404

    [33]

    Almeida C R, Jacquet M J 2023 Eur. Phys. J. H 48 15

    [34]

    Kedem Y, Bergholtz E J, Wilczek F 2020 Phys. Rev. Res. 2 043285

    [35]

    Morice C, Moghaddam A G, Chernyavsky D, van Wezel J, van den Brink J 2021 Phys. Rev. Res. 3 L022022

    [36]

    Sheng C, Huang C, Yang R, Gong Y, Zhu S, Liu H 2021 Phys. Rev. A 103 033703

    [37]

    Mertens L, Moghaddam A G, Chernyavsky D, Morice C, van den Brink J, van Wezel J 2022 Phys. Rev. Res. 4 043084

    [38]

    Könye V, Morice C, Chernyavsky D, Moghaddam A G, van den Brink J, van Wezel J 2022 Phys. Rev. Res. 4 033237

    [39]

    Li S Z, Yu X J, Zhu S L, Li Z 2023 Phys. Rev. B 108 094209

    [40]

    Wang Y, Sheng C, Lu Y H, Gao J, Chang Y J, Pang X L, Yang T H, Zhu S N, Liu H, Jin X M 2020 Natl. Sci. Rev. 7 1476

    [41]

    He R, Zhao Y, Sheng C, Duan J, Wei Y, Sun C, Lu L, Gong Y X, Zhu S, Liu H 2024 Phys. Rev. Res. 6 013233

    [42]

    Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895

    [43]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842

    [44]

    Parshin D A, Schober H R 1999 Phys. Rev. Lett. 83 4590

    [45]

    Zhou X C, Wang Y, Poon T F J, Zhou Q, Liu X J 2023 Phys. Rev. Lett. 131 176401

    [46]

    Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 929

    [47]

    Li H, Dong Z, Longhi S, Liang Q, Xie D, Yan B 2022 Phys. Rev. Lett. 129 220403

    [48]

    Yuan T, Zeng C, Mao Y Y, Wu F F, Xie Y J, Zhang W Z, Dai H N, Chen Y A, Pan J W 2023 Phys. Rev. Res. 5 L032005

    [49]

    Zeng C, Shi Y R, Mao Y Y, Wu F F, Xie Y J, Yuan T, Zhang W, Dai H N, Chen Y A, Pan J W 2024 Phys. Rev. Lett. 132 063401

    [50]

    Gadway B 2015 Phys. Rev. A 92 043606

    [51]

    Xiao T, Xie D, Gou W, Chen T, Deng T S, Yi W, Yan B 2020 Eur. Phys. J. D 74 152

    [52]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290

  • [1] Liu Zhao. Fractionalized topological states in moiré superlattices. Acta Physica Sinica, doi: 10.7498/aps.73.20241029
    [2] Zeng Chao, Mao Yi-Yi, Wu Ji-Zhou, Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry. Acta Physica Sinica, doi: 10.7498/aps.73.20231566
    [3] Cai De-Huan, Qu Su-Ping. Dynamic topological phenomena in periodically driven Raman lattice. Acta Physica Sinica, doi: 10.7498/aps.73.20240535
    [4] Tan Hui, Cao Rui, Li Yong-Qiang. Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory. Acta Physica Sinica, doi: 10.7498/aps.72.20230701
    [5] Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Nonlinear topological pumping in momentum space lattice of ultracold atoms. Acta Physica Sinica, doi: 10.7498/aps.72.20230740
    [6] Bai Jing, Xie Ting. Ultracold atom-atom collisions by renormalized Numerov method. Acta Physica Sinica, doi: 10.7498/aps.71.20211308
    [7] Surveying ultracold atom-atom binary collisions by utilizing renormalized Numerov method. Acta Physica Sinica, doi: 10.7498/aps.70.20211308
    [8] Wen Kai, Wang Liang-Wei, Zhou Fang, Chen Liang-Chao, Wang Peng-Jun, Meng Zeng-Ming, Zhang Jing. Experimental realization of Mott insulator of ultracold 87Rb atoms in two-dimensional optical lattice. Acta Physica Sinica, doi: 10.7498/aps.69.20200513
    [9] Lu Bo, Han Cheng-Yin, Zhuang Min, Ke Yong-Guan, Huang Jia-Hao, Lee Chao-Hong. Non-Gaussian entangled states and quantum metrology with ultracold atomic ensemble. Acta Physica Sinica, doi: 10.7498/aps.68.20190147
    [10] Zhao Xing-Dong, Zhang Ying-Ying, Liu Wu-Ming. Magnetic excitation of ultra-cold atoms trapped in optical lattice. Acta Physica Sinica, doi: 10.7498/aps.68.20190153
    [11] Deng Tian-Shu, Yi Wei. Fixed points and dynamic topological phenomena in quench dynamics. Acta Physica Sinica, doi: 10.7498/aps.68.20181928
    [12] Ren Zhi-Hong, Li Yan, Li Yan-Na, Li Wei-Dong. Development on quantum metrology with quantum Fisher information. Acta Physica Sinica, doi: 10.7498/aps.68.20181965
    [13] Lü Teng-Bo, Zhang Pei, Wu Rui-Tao, Wang Xiao-Li. Rotation effect on spin current in curved space-time. Acta Physica Sinica, doi: 10.7498/aps.68.20182260
    [14] Zhao Yang-Yang, Song Yun. Anderson localization effect on Mott phase in 1T-TaS2. Acta Physica Sinica, doi: 10.7498/aps.66.057101
    [15] Wang Yong, Zhang Hao, Chen Jie, Wang Li-Mei, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. State transfer of ultracold nS Rydberg atoms. Acta Physica Sinica, doi: 10.7498/aps.62.093201
    [16] Xu Zhi-Jun, Liu Xia-Yin. Density correlation effect of incoherent ultracold atoms in an optical lattice. Acta Physica Sinica, doi: 10.7498/aps.60.120305
    [17] Sun Yu-Hang, Li Fu-Li. Resonant tunneling and photon emission of an ultracold two-level atom passing through multi single-mode cavity fields. Acta Physica Sinica, doi: 10.7498/aps.55.1153
    [18] Li Shuang-Jiu. Thermal equilibrium of a fluid system on Einstein turntable and its space-time duality. Acta Physica Sinica, doi: 10.7498/aps.53.3252
    [19] Xiong Jin, Niu Zhong-Qi, Zhang Zhi-Ming. . Acta Physica Sinica, doi: 10.7498/aps.51.2245
    [20] WEI GUO-ZHU. LOCAL APPROXIMATION APPROACH TO THE GROUND STATE OF THE SYMMETRIC ANDERSON LATTICE. Acta Physica Sinica, doi: 10.7498/aps.36.1433
Metrics
  • Abstract views:  97
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Available Online:  04 December 2024

/

返回文章
返回