Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fixed points and dynamic topological phenomena in quench dynamics

Deng Tian-Shu Yi Wei

Citation:

Fixed points and dynamic topological phenomena in quench dynamics

Deng Tian-Shu, Yi Wei
PDF
HTML
Get Citation
  • In this review, we discuss the recent progress on the study of dynamic topological phenomena in quench dynamics. In particular, we focus on dynamic quantum phase transition and dynamic topological invariant, both of which are hinged upon the existence of fixed points in the dynamics. Further, the existence of these fixed points are topologically protected, in the sense that their existence are closely related to static topological invariants of pre- and post-quench Hamiltonians. We also discuss under what condition these dynamic topological phenomena are robust in non-unitary quench dynamics governed by non-Hermitian Hamiltonians. So far, dynamic topological phenomena have been experimentally observed in synthetic systems such as cold atomic gases, superconducting qubits, and linear optics. These studies extend our understanding of topological matter to the non-equilibrium regime.
      Corresponding author: Yi Wei, wyiz@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 15522545).
    [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [4]

    Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D S, Sengstock K, Weitenberg C 2016 Science 352 1091Google Scholar

    [5]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [6]

    Song B, Zhang L, He C, Poon T F J, Haiiyev E, Zhang S, Liu X J, Jo G B 2018 Sci. Adv. 4 4748Google Scholar

    [7]

    Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H 2015 Nat. Commun. 6 6710Google Scholar

    [8]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar

    [9]

    Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C, Xue P 2017 Nat. Phys. 13 1117Google Scholar

    [10]

    Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A 2015 Phys. Rev. Lett. 115 040402Google Scholar

    [11]

    Zhan X, Xiao L, Bian Z, Wang K, Qiu X, Sanders B C, Yi W, Xue P 2017 Phys. Rev. Lett. 119 130501Google Scholar

    [12]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [13]

    Chen Y, Zhai H 2018 Phys. Rev. B 98 245130

    [14]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [15]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [16]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [17]

    Caio M D, Cooper N R, Bhaseen M J 2015 Phys. Rev. Lett. 115 236403Google Scholar

    [18]

    D’Alessio L, Rigol M 2015 Nat. Commun. 6 8336Google Scholar

    [19]

    Wang C, Zhang P, Chen X, Yu J, Zhai H 2017 Phys. Rev. Lett. 118 185701Google Scholar

    [20]

    Yang C, Li L, Chen S 2018 Phys. Rev. B 97 060304Google Scholar

    [21]

    Gong Z, Ueda M 2018 Phys. Rev. Lett. 121 250601

    [22]

    Zhang L, Zhang L, Niu S, Liu X J 2018 Science Bulletin 63 1385Google Scholar

    [23]

    Zhang L, Zhang L, Liu X J 2018 arXiv: 1807.10782 [cond-mat.quant-gas]

    [24]

    Fläschner N, Vogel D, Tarnowski M, Rem B S, Lühmann D S, Heyl M, Budich J C, Mathey L, Sengstock K, Weitenberg C 2018 Nat. Phys. 14 265Google Scholar

    [25]

    Tarnowski M, Nur-Unal F, Flaschner N, Rem B S, Eckard A, Sengstock K, Weitenberg C 2017 arXiv:1709.01046 [cond-mat.quant-gas]

    [26]

    Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y J, Liu X J, Chen S, Pan J W 2018 Phys. Rev. Lett. 121 250403

    [27]

    Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N, Fan H 2018 arXiv:1806.09269 [cond-mat.stat-mech]

    [28]

    Wang K, Qiu X, Xiao L, Zhan X, Bina Z, Yi W, Xue P 2019 Phys. Rev. Lett. 122 020501

    [29]

    Tian T, Ke K, Zhang L, Lin L, Shi Z, Huang P, Lee C, Du J 2018 arXiv:1807.04483 [quant-ph]

    [30]

    Xu X Y, Wang Q Q, Heyl M, Budich J C, Pan W W, Chen Z, Jan M, Sun K, Xu J S, Han Y J, Li C F, Guo G C 2018 arXiv:1808.03930 [quant-ph]

    [31]

    Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Yi W, Xue P 2018 arXiv:1808.06446 [quant-ph]

    [32]

    Heyl M, Polkovnikov A, Kehrein S 2013 Phys. Rev. Lett. 110 135704Google Scholar

    [33]

    Heyl M 2015 Phys. Rev. Lett. 115 140602Google Scholar

    [34]

    Heyl M 2018 Rep. Prog. Phys. 81 054001Google Scholar

    [35]

    Budich J C, Heyl M 2016 Phys. Rev. B 93 085416Google Scholar

    [36]

    Huang Z, Balatsky A V 2016 Phys. Rev. Lett. 117 086802Google Scholar

    [37]

    Vajna S, Dora B 2015 Phys. Rev. B 91 155127Google Scholar

    [38]

    Zhou L W, Wang Q H, Wang H L 2018 Phys. Rev. A 98 022129Google Scholar

    [39]

    Gu J, Sun K 2016 Phys. Rev. B 94 12511Google Scholar

    [40]

    Qiu X, Deng T S, Guo G C, Yi W 2018 Phys. Rev. A 98 021601Google Scholar

    [41]

    Qiu X, Deng T S, Hu Y, Xue P, Yi W 2018 arXiv:1806.10268[cond-mat.quant-gas]

    [42]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [43]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401Google Scholar

    [44]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [45]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [46]

    Zhu B, Lu R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar

    [47]

    Garrison J, Wright E 1988 Phys. Lett. A 128 177Google Scholar

    [48]

    Brody D C 2014 J. Phys. A: Math. Theor. 47 035305Google Scholar

    [49]

    Li J, Harter A K, Liu J, de Melo L, Joglekar Y N, Luo L 2016 arXiv:1608.05061[cond-mat.quant-gas]

    [50]

    Kohei K, Yuto A, Hosho K, Masahito U 2018 Phys. Rev. B 98 085116Google Scholar

  • 图 1  Bloch球上的动力学演化 (a) 态矢量在Bloch球上绕$ {h}^f $运动; (b) 动力学不动点对应于$ {h}^i\cdot {h}^f=\pm 1 $; (c) 临界点对应于$ {h} ^i\cdot {h}^f=0 $. 实线代表$ {h}^i $(绿色)与$ {h}^f $(红色), 虚线代表态矢量; 假设初态处于$ H_k $基态上, 即$ t=0 $时态矢量与$ {h}^i $方向相反

    Figure 1.  Visualizing dynamics on the Bloch sphere: (a) State vector revolving around the $ {h}^f $ axis; (b) illustration of fixed points when $ {h}^i\cdot {h}^f=\pm 1 $; (c) illustration of critical points with $ {h} ^i\cdot {h}^f=0 $.

    图 2  淬火前后哈密顿量具有不同拓扑数时的典型斯格明子结构. 黑色箭头为自旋在平面内方向, 背景颜色对应自旋在与平面垂直方向上的分量大小, 蓝色对应向内, 黄色对应向外. 竖直虚线为不动点位置, 红色实线表示不同动量$ k $点的周期

    Figure 2.  Momentum-time skyrmions when pre- and post-quench Hamiltonians possess different winding numbers.

    图 3  非厄米SSH模型及其拓扑相图 (a) 非厄米SSH模型. 在厄米SSH模型的基础上, 每个格点上均有增益或损耗; (b) 体系拓扑相图. 实线为拓扑边界, 虚线为宇称-时间对称与对称破缺区域的边界. $ v $, $ w $为SSH模型的跃迁系数, $ u $为增益损耗系数, $ \nu $为绕数

    Figure 3.  Non-Hermitian SSH model and its topological phase diagram: (a) Non-Hermitian SSH model; (b) topological phase diagram.

    图 4  非厄密SSH模型淬火中的典型动力学自由能$ g(t) $与动力学拓扑序参量$ \nu^D(t) $ (a) 动力学自由能$ g(t) $; (b) 动力学拓扑序参量$ \nu^D(t) $. 在非厄米淬火过程中存在两个临界时间尺度及两个动力学拓扑序参量

    Figure 4.  Dynamic free energy $ g(t) $ and dynamic topological order parameter $ \nu^D(t) $ in the quench dynamics of non-Hermitian SSH model: (a) Dynamic free energy $ g(t) $; (b) dynamic topological order parameter $ \nu^D(t) $.

  • [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [4]

    Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D S, Sengstock K, Weitenberg C 2016 Science 352 1091Google Scholar

    [5]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [6]

    Song B, Zhang L, He C, Poon T F J, Haiiyev E, Zhang S, Liu X J, Jo G B 2018 Sci. Adv. 4 4748Google Scholar

    [7]

    Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H 2015 Nat. Commun. 6 6710Google Scholar

    [8]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar

    [9]

    Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C, Xue P 2017 Nat. Phys. 13 1117Google Scholar

    [10]

    Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A 2015 Phys. Rev. Lett. 115 040402Google Scholar

    [11]

    Zhan X, Xiao L, Bian Z, Wang K, Qiu X, Sanders B C, Yi W, Xue P 2017 Phys. Rev. Lett. 119 130501Google Scholar

    [12]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [13]

    Chen Y, Zhai H 2018 Phys. Rev. B 98 245130

    [14]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [15]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [16]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [17]

    Caio M D, Cooper N R, Bhaseen M J 2015 Phys. Rev. Lett. 115 236403Google Scholar

    [18]

    D’Alessio L, Rigol M 2015 Nat. Commun. 6 8336Google Scholar

    [19]

    Wang C, Zhang P, Chen X, Yu J, Zhai H 2017 Phys. Rev. Lett. 118 185701Google Scholar

    [20]

    Yang C, Li L, Chen S 2018 Phys. Rev. B 97 060304Google Scholar

    [21]

    Gong Z, Ueda M 2018 Phys. Rev. Lett. 121 250601

    [22]

    Zhang L, Zhang L, Niu S, Liu X J 2018 Science Bulletin 63 1385Google Scholar

    [23]

    Zhang L, Zhang L, Liu X J 2018 arXiv: 1807.10782 [cond-mat.quant-gas]

    [24]

    Fläschner N, Vogel D, Tarnowski M, Rem B S, Lühmann D S, Heyl M, Budich J C, Mathey L, Sengstock K, Weitenberg C 2018 Nat. Phys. 14 265Google Scholar

    [25]

    Tarnowski M, Nur-Unal F, Flaschner N, Rem B S, Eckard A, Sengstock K, Weitenberg C 2017 arXiv:1709.01046 [cond-mat.quant-gas]

    [26]

    Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y J, Liu X J, Chen S, Pan J W 2018 Phys. Rev. Lett. 121 250403

    [27]

    Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N, Fan H 2018 arXiv:1806.09269 [cond-mat.stat-mech]

    [28]

    Wang K, Qiu X, Xiao L, Zhan X, Bina Z, Yi W, Xue P 2019 Phys. Rev. Lett. 122 020501

    [29]

    Tian T, Ke K, Zhang L, Lin L, Shi Z, Huang P, Lee C, Du J 2018 arXiv:1807.04483 [quant-ph]

    [30]

    Xu X Y, Wang Q Q, Heyl M, Budich J C, Pan W W, Chen Z, Jan M, Sun K, Xu J S, Han Y J, Li C F, Guo G C 2018 arXiv:1808.03930 [quant-ph]

    [31]

    Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Yi W, Xue P 2018 arXiv:1808.06446 [quant-ph]

    [32]

    Heyl M, Polkovnikov A, Kehrein S 2013 Phys. Rev. Lett. 110 135704Google Scholar

    [33]

    Heyl M 2015 Phys. Rev. Lett. 115 140602Google Scholar

    [34]

    Heyl M 2018 Rep. Prog. Phys. 81 054001Google Scholar

    [35]

    Budich J C, Heyl M 2016 Phys. Rev. B 93 085416Google Scholar

    [36]

    Huang Z, Balatsky A V 2016 Phys. Rev. Lett. 117 086802Google Scholar

    [37]

    Vajna S, Dora B 2015 Phys. Rev. B 91 155127Google Scholar

    [38]

    Zhou L W, Wang Q H, Wang H L 2018 Phys. Rev. A 98 022129Google Scholar

    [39]

    Gu J, Sun K 2016 Phys. Rev. B 94 12511Google Scholar

    [40]

    Qiu X, Deng T S, Guo G C, Yi W 2018 Phys. Rev. A 98 021601Google Scholar

    [41]

    Qiu X, Deng T S, Hu Y, Xue P, Yi W 2018 arXiv:1806.10268[cond-mat.quant-gas]

    [42]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [43]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401Google Scholar

    [44]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [45]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [46]

    Zhu B, Lu R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar

    [47]

    Garrison J, Wright E 1988 Phys. Lett. A 128 177Google Scholar

    [48]

    Brody D C 2014 J. Phys. A: Math. Theor. 47 035305Google Scholar

    [49]

    Li J, Harter A K, Liu J, de Melo L, Joglekar Y N, Luo L 2016 arXiv:1608.05061[cond-mat.quant-gas]

    [50]

    Kohei K, Yuto A, Hosho K, Masahito U 2018 Phys. Rev. B 98 085116Google Scholar

  • [1] Mao Yi-Yi, Dai Han-Ning. Aubry-André-Harper momentum-state chain in curved spacetime. Acta Physica Sinica, 2025, 74(2): . doi: 10.7498/aps.74.20241592
    [2] Zeng Chao, Mao Yi-Yi, Wu Ji-Zhou, Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry. Acta Physica Sinica, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [3] Yin Xiang-Guo, Yu Hai-Ru, Hao Ya-Jiang, Zhang Yun-Bo. Properties of ground state and quench dynamics of one-dimensional contact repulsive single-spin flipped Fermi gases. Acta Physica Sinica, 2024, 73(2): 020302. doi: 10.7498/aps.73.20231425
    [4] Cai De-Huan, Qu Su-Ping. Dynamic topological phenomena in periodically driven Raman lattice. Acta Physica Sinica, 2024, 73(14): 140301. doi: 10.7498/aps.73.20240535
    [5] Tan Hui, Cao Rui, Li Yong-Qiang. Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory. Acta Physica Sinica, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [6] Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Nonlinear topological pumping in momentum space lattice of ultracold atoms. Acta Physica Sinica, 2023, 72(16): 160302. doi: 10.7498/aps.72.20230740
    [7] Li Qing-Xin, Huang Yan, Chen Yi-Wei, Zhu Yu-Jian, Zhu Wang, Song Jun-Wei, An Dong-Dong, Gan Qi-Kang, Wang Kai-Yuan, Wang Hao-Lin, Mai Zhi-Hong, Xi Chuan-Ying, Zhang Jing-Lei, Yu Ge-Liang, Wang Lei. Even-denominator fractional quantum Hall state in bilayer graphene. Acta Physica Sinica, 2022, 71(18): 187202. doi: 10.7498/aps.71.20220905
    [8] Sun Kong-Hao, Yi Wei. Dynamics of non-Hermitian local topological marker. Acta Physica Sinica, 2021, 70(23): 230309. doi: 10.7498/aps.70.20211576
    [9] Jiang Cong-Ying, Sun Fei, Feng Zi-Li, Liu Shi-Bing, Shi You-Guo, Zhao Ji-Min. Time-resolved ultrafast dynamics in triple degenerate topological semimetal molybdenum phosphide. Acta Physica Sinica, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [10] Li Jian. Theory of topological superconductivity based on Yu-Shiba-Rusinov states. Acta Physica Sinica, 2020, 69(11): 117401. doi: 10.7498/aps.69.20200831
    [11] Xiang Tian, Cheng Liang, Qi Jing-Bo. Ultrafast charge and spin dynamics on topological insulators. Acta Physica Sinica, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [12] Ren Zhi-Hong, Li Yan, Li Yan-Na, Li Wei-Dong. Development on quantum metrology with quantum Fisher information. Acta Physica Sinica, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [13] Yang Chao, Chen Shu. Topological invariant in quench dynamics. Acta Physica Sinica, 2019, 68(22): 220304. doi: 10.7498/aps.68.20191410
    [14] Su Yao-Heng, Chen Ai-Min, Wang Hong-Lei, Xiang Chun-Huan. Quantum entanglement and critical exponents in one-dimensional spin-1 bond-alternating XXZ chains. Acta Physica Sinica, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [15] Chen Ju, Zhang Yi. Exact invariants and adiabatic invariants for nonholonomic systems in non-Chetaev's type based on El-Nabulsi dynamical models. Acta Physica Sinica, 2015, 64(3): 034502. doi: 10.7498/aps.64.034502
    [16] Chen Yan-Li, Peng Xiang-Yang, Yang Hong, Chang Sheng-Li, Zhang Kai-Wang, Zhong Jian-Xin. Stacking effects in topological insulator Bi2Se3:a first-principles study. Acta Physica Sinica, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [17] Che Jun-Ling, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Evolution of ultracold 70S Cs Rydberg atom. Acta Physica Sinica, 2012, 61(4): 043205. doi: 10.7498/aps.61.043205
    [18] Sun Yu-Hang, Li Fu-Li. Resonant tunneling and photon emission of an ultracold two-level atom passing through multi single-mode cavity fields. Acta Physica Sinica, 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [19] Sheng Yang, Ning Xi-Jing. Dynamic simulations for cage-shaping of carbon atom in vapour-phase. Acta Physica Sinica, 2004, 53(4): 1039-1043. doi: 10.7498/aps.53.1039
    [20] Xiong Jin, Niu Zhong-Qi, Zhang Zhi-Ming. . Acta Physica Sinica, 2002, 51(10): 2245-2244. doi: 10.7498/aps.51.2245
Metrics
  • Abstract views:  8883
  • PDF Downloads:  210
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2018
  • Accepted Date:  27 December 2018
  • Available Online:  01 February 2019
  • Published Online:  20 February 2019

/

返回文章
返回