Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Superparamagnetism of potassium-doped tris(diphenacyl) iron

Zhu Hong-Gang Fu Ming-An Ren Chuang Gao Yun Huang Zhong-Bing

Citation:

Superparamagnetism of potassium-doped tris(diphenacyl) iron

Zhu Hong-Gang, Fu Ming-An, Ren Chuang, Gao Yun, Huang Zhong-Bing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Synthesis and exploration of intriguing physical properties of alkali-metal-doped aromatic hydrocarbons have been the important research topics in the fields of physics, chemistry and materials science. In this work, a powder sample of potassium-doped tris(diphenacyl) iron molecular crystal is prepared by the high-vacuum annealing method. The X-ray diffraction results show that the crystal structure of the synthesized sample is different from that of pristine tris(diphenacyl)iron. The direct current (DC) magnetic susceptibilitiy shows a pronounced hump structure near 8.0 K, which is distinct from the paramagnetism of pristine material in the whole temperature range of 1.8–300 K. The alternating current (AC) magnetic susceptibility shows that the hump has a significant frequency dependence, which can safely rule out the possibility of antiferromagnetism. The combination of the Vogel-Fulcher law, the Néel-Brown model and the critical slowing down model reveals that the hump originates from superparamagnetism with a blocking temperature (TB) of about 8.0 K. According to the results of Raman spectroscopy, it can be confirmed that the 4s electrons of potassium in the doped material are transferred to the benzene ring of tris(diphenacyl)iron, causing the characteristic Raman modes to be red-shifted and the local magnetic moment to form. Our work is of great significance in exploring alkali-metal-doped aromatic hydrocarbons, and provides a new route for searching organic magnetic materials.
      Corresponding author: Gao Yun, gaoyun@hubu.edu.cn ; Huang Zhong-Bing, huangzb@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674087, 11574076)
    [1]

    高云, 王仁树, 邬小林, 程佳, 邓天郭, 闫循旺, 黄忠兵 2016 物理学报 65 077402Google Scholar

    Gao Y, Wang R S, Wu X L, Cheng J, Deng T G, Yan X W, Huang Z B 2016 Acta Phys. Sin. 65 077402Google Scholar

    [2]

    轩书科 2017 物理学报 66 237401Google Scholar

    Xuan S K 2017 Acta Phys. Sin. 66 237401Google Scholar

    [3]

    Zhang J L, Whitehead G F S, Manning T D, Stewart D, Hiley C I, Pitcher M J, Jansat S, Prassides K, Rosseinsky M J 2018 J. Am. Chem. Soc. 140 18162Google Scholar

    [4]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76Google Scholar

    [5]

    Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2012 Nature Commun. 2 507

    [6]

    Xue M Q, Cao T B, Wang D M, Wu Y, Yang H X, Dong X L, He J B, Li F W, Chen G F 2012 Sci. Rep. 2 389Google Scholar

    [7]

    Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523Google Scholar

    [8]

    Takabayashi Y, Menelaou M, Tamura H, Takemori N, Koretsune T, Štefančič A, Klupp G, Buurma C A J, Nomura Y, Arita R, Arčon D, Rosseinsky M J, Prassides K 2017 Nature Chem. 9 635Google Scholar

    [9]

    Štefančič A, Klupp G, Knaflič T, Yufit D S, Tavčar G, Potočnik A, Beeby A, Arčon D 2017 J. Phys. Chem. C 127 14864

    [10]

    Phan Q T N, Heguri S, Tamura H, Nakano T, Nozue Y, Tanigaki K 2016 Phys. Rev. B 93 075130Google Scholar

    [11]

    Fu M A, Wang R S, Yang H, Zhang P Y, Zhang C F, Chen X J, Gao Y, Huang Z B 2021 Carbon 173 587Google Scholar

    [12]

    Wang R S, Gao Y, Huang Z B, Chen X J 2017 arXiv: 1703.06641v1

    [13]

    Liu W H, Lin H, Kang R Z, Zhang Y, Zhu X Y, Wen H H 2017 Phys. Rev. B 96 224501Google Scholar

    [14]

    Wang R S, Cheng J, Wu X L, Yang H, Chen X J, Gao Y, Huang Z B 2018 J. Chem. Phys. 149 144502Google Scholar

    [15]

    Wang R S, Yang H, Cheng J, Wu X L, Fu M A, Chen X J, Gao Y, Huang Z B. 2019 J. Phys. Chem. C 123 19105Google Scholar

    [16]

    Wang R S, Chen L C, Yang H, Fu M A, Cheng J, Wu X L, Gao Y, Huang Z B, Chen X J 2019 Phys. Chem. Chem. Phys. 21 25976Google Scholar

    [17]

    Rostamnejadi A, Salamati H, Kameli P, Ahmadvand H 2009 J. Magn. Magn. Mater. 321 3126Google Scholar

    [18]

    Venkateswarlu B, Krishnan R H, Chelvane J A, Babu P D, Kumar N H 2019 J. Alloy. Compd. 777 373Google Scholar

    [19]

    Shtrikman S, Wohlfarth E P 1918 Phys. Lett. 85A 467

    [20]

    Goya G F, Berquό T S, Fonseca F C 2003 J. Appl. Phys. 94 3520Google Scholar

    [21]

    Dormann J L, Fiorani D, Cherkaoui R, Tronc E, Lucari F, DʹOrazio F, Spinu L, Noguès M, Kachkchi H, Jolivet J P 1999 J. Magn. Magn. Mater. 203 23Google Scholar

    [22]

    Sharma S K, Kumar R, Kumar S, Kumar V V S, Knobel M, Reddy V R, Banerjee A, Singh M 2007 Solid State Commun. 141 203Google Scholar

    [23]

    Jonason K, Mattsson J, Nordblad P 1996 Phys. Rev. B 53 6507Google Scholar

    [24]

    Nam D N H, Jonason K, Nordblad P, Khiem N V, Phuc N X 1999 Phys. Rev. B 59 4189Google Scholar

    [25]

    Typek J, Guskos N, Zolnierkiewicz G, Lendzion-Bielun Z, Pachla A, Narkiewicz U 2018 Eur. Phys. J. Appl. Phys. 83 10402Google Scholar

    [26]

    潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 物理学报 60 108501Google Scholar

    Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501Google Scholar

    [27]

    Carvell J, Ayieta E, Gavrin A, Cheng R H, Shah V R, Sokol P 2010 J. Appl. Phys. 107 103913Google Scholar

    [28]

    Nekoei A R, Vakili M, Hakimi-Tabar M, TayyariS F, Afzali R, Kjaergaard H G 2014 Spectrochim. Acta A 128 272Google Scholar

  • 图 1  DPF的分子结构

    Figure 1.  The molecular structure of DPF.

    图 2  各阶段实验样品外观图

    Figure 2.  Appearance of experimental samples at each stage.

    图 3  纯DPF在外磁场20 Oe下的ZFC和FC直流磁化率测试曲线

    Figure 3.  ZFC and FC DC susceptibility curves of pure DPF under an external magnetic field of 20 Oe.

    图 4  掺杂样品K3DPF-A的PPMS磁性测试结果 (a) K3DPF-A在外磁场20 Oe下的ZFC和FC直流磁化率测试曲线, 插图为M-H曲线; (b) K3DPF-A在不同磁场下的ZFC曲线; (c) K3DPF-A交流磁化率曲线的实部; (d) K3DPF-A交流磁化率曲线的虚部

    Figure 4.  The PPMS magnetic results of the doped sample K3DPF-A: (a) The ZFC and FC DC susceptibility curves of K3DPF-A under an external magnetic field of 20 Oe. The inset is the M-H curve. (b) ZFC curves of K3DPF-A under different magnetic fields. (c) The real part and (d) the imaginary part of AC magnetic susceptibility for K3DPF-A.

    图 5  掺杂样品K3DPF-B的PPMS磁性测试结果 (a) K3DPF-B在外磁场20 Oe下的ZFC和FC直流磁化率测试曲线; (b) K3DPF-B在1.8 K与300 K下的M-H曲线

    Figure 5.  The PPMS magnetic results of the doped sample K3DPF-B: (a) The ZFC and FC DC susceptibility curves of K3DPF-B under an external magnetic field of 20 Oe; (b) M-H curves of K3DPF-B at 1.8 and 300 K.

    图 6  暴露20 h后的掺杂样品K3DPF-B在外磁场20 Oe下的ZFC和FC直流磁化率测试曲线

    Figure 6.  ZFC and FC DC susceptibility curves of the doped sample K3DPF-B after exposure for 20 h under an external magnetic field of 20 Oe.

    图 7  弛豫时间τ与温度Tf的依赖关系

    Figure 7.  The dependence of relaxation time τ on temperature Tf.

    图 8  纯DPF和275 ℃退火下钾掺杂DPF的XRD图谱

    Figure 8.  The XRD patterns of pristine and potassium-doped tris(diphenacyl)iron annealed at 275 ℃.

    图 9  纯DPF(顶部)和钾掺杂DPF(底部)的室温拉曼散射光谱

    Figure 9.  Raman spectra of the pristine DPF (upper) and potassium-doped samples (bottom) collected at room temperature.

    表 1  纯DPF和钾掺杂DPF相应的拉曼模式频率的峰位及对比

    Table 1.  Comparison of Raman modes of pure DPF and potassium-doped tris(diphenacyl)iron.

    numberAssignment$ \omega /{\text{c}}{{\text{m}}^{ - 1}} $(DPF)$ \omega /{\text{c}}{{\text{m}}^{ - 1}} $ (K3DPF)$ \omega /{\text{c}}{{\text{m}}^{ - 1}} $ (Cu-DBM)$ \omega /{\text{c}}{{\text{m}}^{ - 1}} $ (CAC)$ \omega /{\text{c}}{{\text{m}}^{ - 1}} $(KCAC)
    1υ(s)Fe(—O)2561.0522.1567.0
    2υ(s)C—C—C1000.61000.41002.0996.4987.2
    3υ(s)C—C—C1299.51275.71290.01295.11289.6
    4υ(s)C—C—C1320.91309.21317.01328.91322.0
    5υ(s)C—C—C1491.61488.11492.01491.71483.1
    6υ(s)C =O1599.51592.81596.01606.11588.1
    DownLoad: CSV
  • [1]

    高云, 王仁树, 邬小林, 程佳, 邓天郭, 闫循旺, 黄忠兵 2016 物理学报 65 077402Google Scholar

    Gao Y, Wang R S, Wu X L, Cheng J, Deng T G, Yan X W, Huang Z B 2016 Acta Phys. Sin. 65 077402Google Scholar

    [2]

    轩书科 2017 物理学报 66 237401Google Scholar

    Xuan S K 2017 Acta Phys. Sin. 66 237401Google Scholar

    [3]

    Zhang J L, Whitehead G F S, Manning T D, Stewart D, Hiley C I, Pitcher M J, Jansat S, Prassides K, Rosseinsky M J 2018 J. Am. Chem. Soc. 140 18162Google Scholar

    [4]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76Google Scholar

    [5]

    Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2012 Nature Commun. 2 507

    [6]

    Xue M Q, Cao T B, Wang D M, Wu Y, Yang H X, Dong X L, He J B, Li F W, Chen G F 2012 Sci. Rep. 2 389Google Scholar

    [7]

    Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523Google Scholar

    [8]

    Takabayashi Y, Menelaou M, Tamura H, Takemori N, Koretsune T, Štefančič A, Klupp G, Buurma C A J, Nomura Y, Arita R, Arčon D, Rosseinsky M J, Prassides K 2017 Nature Chem. 9 635Google Scholar

    [9]

    Štefančič A, Klupp G, Knaflič T, Yufit D S, Tavčar G, Potočnik A, Beeby A, Arčon D 2017 J. Phys. Chem. C 127 14864

    [10]

    Phan Q T N, Heguri S, Tamura H, Nakano T, Nozue Y, Tanigaki K 2016 Phys. Rev. B 93 075130Google Scholar

    [11]

    Fu M A, Wang R S, Yang H, Zhang P Y, Zhang C F, Chen X J, Gao Y, Huang Z B 2021 Carbon 173 587Google Scholar

    [12]

    Wang R S, Gao Y, Huang Z B, Chen X J 2017 arXiv: 1703.06641v1

    [13]

    Liu W H, Lin H, Kang R Z, Zhang Y, Zhu X Y, Wen H H 2017 Phys. Rev. B 96 224501Google Scholar

    [14]

    Wang R S, Cheng J, Wu X L, Yang H, Chen X J, Gao Y, Huang Z B 2018 J. Chem. Phys. 149 144502Google Scholar

    [15]

    Wang R S, Yang H, Cheng J, Wu X L, Fu M A, Chen X J, Gao Y, Huang Z B. 2019 J. Phys. Chem. C 123 19105Google Scholar

    [16]

    Wang R S, Chen L C, Yang H, Fu M A, Cheng J, Wu X L, Gao Y, Huang Z B, Chen X J 2019 Phys. Chem. Chem. Phys. 21 25976Google Scholar

    [17]

    Rostamnejadi A, Salamati H, Kameli P, Ahmadvand H 2009 J. Magn. Magn. Mater. 321 3126Google Scholar

    [18]

    Venkateswarlu B, Krishnan R H, Chelvane J A, Babu P D, Kumar N H 2019 J. Alloy. Compd. 777 373Google Scholar

    [19]

    Shtrikman S, Wohlfarth E P 1918 Phys. Lett. 85A 467

    [20]

    Goya G F, Berquό T S, Fonseca F C 2003 J. Appl. Phys. 94 3520Google Scholar

    [21]

    Dormann J L, Fiorani D, Cherkaoui R, Tronc E, Lucari F, DʹOrazio F, Spinu L, Noguès M, Kachkchi H, Jolivet J P 1999 J. Magn. Magn. Mater. 203 23Google Scholar

    [22]

    Sharma S K, Kumar R, Kumar S, Kumar V V S, Knobel M, Reddy V R, Banerjee A, Singh M 2007 Solid State Commun. 141 203Google Scholar

    [23]

    Jonason K, Mattsson J, Nordblad P 1996 Phys. Rev. B 53 6507Google Scholar

    [24]

    Nam D N H, Jonason K, Nordblad P, Khiem N V, Phuc N X 1999 Phys. Rev. B 59 4189Google Scholar

    [25]

    Typek J, Guskos N, Zolnierkiewicz G, Lendzion-Bielun Z, Pachla A, Narkiewicz U 2018 Eur. Phys. J. Appl. Phys. 83 10402Google Scholar

    [26]

    潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 物理学报 60 108501Google Scholar

    Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501Google Scholar

    [27]

    Carvell J, Ayieta E, Gavrin A, Cheng R H, Shah V R, Sokol P 2010 J. Appl. Phys. 107 103913Google Scholar

    [28]

    Nekoei A R, Vakili M, Hakimi-Tabar M, TayyariS F, Afzali R, Kjaergaard H G 2014 Spectrochim. Acta A 128 272Google Scholar

  • [1] He Wei-Di, Zhang Pei-Yuan, Liu Xiang, Tian Xue-Fen, Fu Xin-Ge, Deng Ai-Hong. Defects in H/He neutral beam irradiated potassium doped tungsten alloy by positron annihilation technique. Acta Physica Sinica, 2021, 70(16): 167803. doi: 10.7498/aps.70.20210438
    [2] Zhang Pei-Yuan, Deng Ai-Hong, Tian Xue-Fen, Tang Jun. Study of defects in potassium-doped tungsten alloy by positron annihilation technique. Acta Physica Sinica, 2020, 69(9): 096103. doi: 10.7498/aps.69.20191792
    [3] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun, Zhao Ming-Jie. Improved performance of Al/n+Ge Ohmic contact andGe n+/p diode by two-step annealing method. Acta Physica Sinica, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [4] Pan Qun-Feng, Zhang Ze-Yu, Wang Hui-Zhen, Lin Xian, Jin Zuan-Ming, Cheng Zhen-Xiang, Ma Guo-Hong. Demagnetization dynamics of C-doped FePt film. Acta Physica Sinica, 2016, 65(12): 127802. doi: 10.7498/aps.65.127802
    [5] Gao Yun, Wang Ren-Shu, Wu Xiao-Lin, Cheng Jia, Deng Tian-Guo, Yan Xun-Wang, Huang Zhong-Bing. Searching superconductivity in potassium-doped p-terphenyl. Acta Physica Sinica, 2016, 65(7): 077402. doi: 10.7498/aps.65.077402
    [6] Li Sheng-Kun, Tang Jun, Mao Hong-Qing, Wang Ming-Huan, Chen Guo-Bin, Zhai Chao, Zhang Xiao-Ming, Shi Yun-Bo, Liu Jun. Effect of magnetic capacitance in the Fe3O4 nanopartides and polydimethylsiloxane composite material. Acta Physica Sinica, 2014, 63(5): 057501. doi: 10.7498/aps.63.057501
    [7] Pan Feng, Ding Bin-Feng, Fa Tao, Cheng Feng-Feng, Zhou Sheng-Qiang, Yao Shu-De. Superparamagnetic nanoparticles formed in Fe-implanted ZnO. Acta Physica Sinica, 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [8] Peng Xian-De, Zhu Tao, Wang Fang-Wei. High temperature annealing treatment on Co doped ZnO bulks. Acta Physica Sinica, 2009, 58(5): 3274-3279. doi: 10.7498/aps.58.3274
    [9] Liu Yan-Fen, Liu Jing-Hui, Jia Cheng. Retarded modes of lateral ferromagnetic/ferromagnetic superlattice. Acta Physica Sinica, 2008, 57(3): 1897-1901. doi: 10.7498/aps.57.1897
    [10] Wu Wei-Cai, Zhou Yin-Hua, Wen Shan-Peng, Han Liang, Tian Wen-Jing. Effect of solvent on the performance of poly(2-methoxy-5-(2-ethyl-hexyloxy)-p-phenylene vinylene): N, N′-bis(1-ethylpropyl)-3,4,9,10-perylene bis(tetracarboxyl diimide) solar cells. Acta Physica Sinica, 2007, 56(8): 5003-5008. doi: 10.7498/aps.56.5003
    [11] Li Fa-Shen, Wang Tao, Wang Ying. Method for fabricating Fe3O4 nanoparticles using H2O2 and its comparison with coprecipitation method. Acta Physica Sinica, 2005, 54(7): 3100-3105. doi: 10.7498/aps.54.3100
    [12] Guo Li-Ping, Cheng Zhi-Xu, Han Fu-Tian, Liu Yi, Zhao Zhi-Xiang. Simulated annealing method for powder diffraction pattern decomposition. Acta Physica Sinica, 2003, 52(11): 2842-2848. doi: 10.7498/aps.52.2842
    [13] TONG LIU-NIU, HE XIAN-MEI, LU MU. EFFECT OF ANNEALING ON THE MAGNETIC PROPERTIES OF Ni80Co20 THIN FILMS WITH IMPURITY LAYERS. Acta Physica Sinica, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
    [14] ZHU DE-RUI, WANG REN, TAN JIAN-HUA, MO DANG. A STUDY ON THE GAIN COEFFICIENT OF TWO WAVE COUPLING IN DOPED KNSBN CRYSTALS. Acta Physica Sinica, 1992, 41(9): 1440-1447. doi: 10.7498/aps.41.1440
    [15] ZHONG LI-JUN, TAO RUI-BAO. SYMMETRY THEORY OF THE MAGNETIC PHASE TRANSITION OF FeRh ALLOY. Acta Physica Sinica, 1992, 41(12): 2003-2007. doi: 10.7498/aps.41.2003
    [16] ZHAO QING-LAN, HUANG YI-SEN. X-RAY TOPOGRAPHIC CONTRAST OF INCLUSIONS IN CRYSTAL OF POTASSIUM ACID PHTHALATE. Acta Physica Sinica, 1989, 38(7): 1134-1139. doi: 10.7498/aps.38.1134
    [17] ZHAO QING-LAN. THE SECTION TOPOGRAPHY OF SYNCHROTRON RADIATION (SST) ON THE CRYSTAL OF POTASSIUM ACID PHTHALATE (KAP). Acta Physica Sinica, 1988, 37(8): 1345-1349. doi: 10.7498/aps.37.1345
    [18] ZHAO QING-LAN, CHEN JIN-ZHANG, HUANG YI-SEN. THE EFFECT OF THE MICROSCOPIC STRUCTURE ON FORMATION OF CHARACTERISTIC LAYERED INCLUSIONS IN THE SINGLE CRYSTAL OF POTASSIUM ACID PHTHALATE (KAP). Acta Physica Sinica, 1983, 32(3): 294-300. doi: 10.7498/aps.32.294
    [19] HE CUN-HENG, ZHENG QI-TAI, SHEN FU-LING, DOU SHI-QI, LIN GUANG-DA. THE CRYSTAL STRUCTURE OF METHOXY-FORMYL-TRICHLOROACETYL-METHYLENE-PHOSPHORUS (YLID-IV). Acta Physica Sinica, 1982, 31(6): 825-831. doi: 10.7498/aps.31.825
    [20] QIAN JIN-ZI, GU YUAN-XIN, ZHENG CHAO-DE, ZHENG QI-TAI. DETERMINATION OF 3, 4-METHYLENEDIOXY-BENZOYL PICOLINE CRYSTAL STRUCTURE. Acta Physica Sinica, 1981, 30(3): 418-423. doi: 10.7498/aps.30.418
Metrics
  • Abstract views:  5038
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2021
  • Accepted Date:  20 December 2021
  • Available Online:  26 January 2022
  • Published Online:  20 April 2022

/

返回文章
返回