Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of defects in potassium-doped tungsten alloy by positron annihilation technique

Zhang Pei-Yuan Deng Ai-Hong Tian Xue-Fen Tang Jun

Citation:

Study of defects in potassium-doped tungsten alloy by positron annihilation technique

Zhang Pei-Yuan, Deng Ai-Hong, Tian Xue-Fen, Tang Jun
PDF
HTML
Get Citation
  • Tungsten alloy is known as a promising plasma-facing material (PFM) in IETR because of high strength, high-temperature stability, low sputtering erosion, low tritium retention, etc. However, tungsten has some disadvantages, such as high ductile-brittle transition temperature, low temperature brittleness, and radiation embrittlement. For the severe environment of PFM, various techniques have been adopted to improve W-based materials, among which the potassium doping is an effective bubble strengthening method, it can bring in nano-sized K bubbles, and enhance the toughness and strength, thermal shock performance, irradiation resistance of the materials. The K bubbles, which can pin grain boundaries (GBs) and dislocations, are the most characteristic defects in W-K alloy and have been widely reported. However, little attention is paid to other defects such as vacancies, GBs and dislocations. In fact, high-density dislocations exist in W-K alloy and vacancies play a considerable role in forming the K bubbles. Thus, positron annihilation technique (including the positron annihilation lifetime spectrum and slow positron beam Doppler broadening spectrum), which is a useful technique for detecting defects in solids, can be used to study these defects in W-K alloy samples. The positron lifetime of potassium bulk is about 376 ps and the positron lifetime of tungsten bulk is about 110 ps. But by simulating positron lifetime of defects in tungsten, it is found that potassium atoms in tungsten lattice do not exhibit the characteristic positron lifetime. Therefore, potassium is not considered in analyzing positron annihilation lifetime spectra of W-K alloy samples with different potassium content (46, 82, 122, 144 ppm). Three-state capture model is established in this paper, the dislocation density and vacancy cluster concentration of these samples are obtained. From the results, the dislocation densities in all samples are very high, but vacancy cluster concentrations are relatively low, and the vacancy cluster concentration in the sample with 82 ppm potassium content is the lowest in all samples. The behavior of potassium atoms in the sintering process is also discussed. Then the slow positron beam Doppler broadening spectra of W-K alloy samples and pure tungsten samples are measured and the obtained data are fitted by VEPFIT. It is noted that the defects in W-K alloy samples are much more than those in pure tungsten sample, and are distributed homogeneously with depth. The positron diffusion length information simultaneously obtained is compared with these values computed by dislocation density and vacancy cluster concentration, confirming the positrons trapped by potassium bubbles and grain boundaries are existent.
      Corresponding author: Deng Ai-Hong, ahdeng@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11675114)
    [1]

    Ueda Y, Coenen J W, De Temmerman G, Doerner R P, Linke J, Philipps V, Tsitrone E 2014 Fusion Eng. Des. 89 901Google Scholar

    [2]

    Kang H K 2004 J. Nucl. Mater. 335 1Google Scholar

    [3]

    Davis J W, Barabash V R, Makhankov A, Plöchl L, Slattery K T 1998 J. Nucl. Mater. 258 308

    [4]

    Ueda Y, Tobita K, Katoh Y 2003 J. Nucl. Mater. 313-316 32Google Scholar

    [5]

    Lisgo S W, Kukushkin A, Pitts R A, Reiter D 2013 J. Nucl. Mater. 438 S580Google Scholar

    [6]

    Wurster S, Baluc N, Battabyal M, Crosby T, Du J, García-Rosales C, Hasegawa A, Hoffmann A, Kimura A, Kurishita H, Kurtz R J, Li H, Noh S, Reiser J, Riesch J, Rieth M, Setyawan W, Walter M, You J H, Pippan R 2013 J. Nucl. Mater. 442 S181Google Scholar

    [7]

    王玲 2018 博士论文 (成都: 四川大学)

    Wang L 2018 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [8]

    Hirai T, Pintsuk G 2007 Fusion Eng. Des. 82 389Google Scholar

    [9]

    Wurster S, Pippan R 2009 Scr. Mater. 60 1083Google Scholar

    [10]

    Uytdenhouwen I, Decréton M, Hirai T, Linke J, Pintsuk G, Van Oost G 2007 J. Nucl. Mater. 363 1099

    [11]

    Briant C L 1993 Metall. Trans. A 24 1073Google Scholar

    [12]

    Horacsek O, Toth C L, Nagy A 1998 Int. J. Refract. Met. Hard Mater. 16 51Google Scholar

    [13]

    Schade P 2010 Int. J. Refract. Met. Hard Mater. 28 648Google Scholar

    [14]

    Schade P 1998 Int. J. Refract. Met. Hard Mater. 16 77Google Scholar

    [15]

    Dias M, Mateus R, Catarino N, Franco N, Nunes D, Correia J B, Carvalho P A, Hanada K, Sârbu C 2013 J. Nucl. Mater. 442 69Google Scholar

    [16]

    Huang B, Tang J, Chen L Q, Yang X L, Lian Y Y, Chen L, Liu X, Cui X D, Gu L, Liu C T 2019 J. Alloys Compd. 782 149Google Scholar

    [17]

    Liu G, Zhang G J, Jiang F, Ding X D, Sun Y J, Sun J, Ma E 2013 Nat. Mater. 12 344Google Scholar

    [18]

    Xie Z M, Liu R, Miao S, Yang X D, Zhang T, Wang X P, Fang Q F, Liu C S, Luo G N, Lian Y Y, Liu X 2015 Sci. Rep. 5 16014Google Scholar

    [19]

    Liu R, Xie Z M, Fang Q F, Zhang T, Wang X P, Hao T, Liu C S, Dai Y 2016 J. Alloys Compd. 657 73Google Scholar

    [20]

    Tuomisto F, Makkonen I 2013 Rev. Mod. Phys. 85 1583Google Scholar

    [21]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science & Technology Press) p8 (in Chinese) [王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第8页]

    [22]

    Staab T E M, Krause-Rehberg R, Vetter B, Kieback B, Lange G, Klimanek P 1999 J. Phys. Condens. Matter 11 1757Google Scholar

    [23]

    Heikinheimo J, Mizohata K, Räisänen J, Ahlgren T, Jalkanen P, Lahtinen A, CatarinoN, Alves E, Tuomisto F 2019 APL Mater. 7 021103Google Scholar

    [24]

    Puska M J, Nieminen R M 1983 J. Phys. F: Met. Phys. 13 333Google Scholar

    [25]

    Puska M J, Seitsonen A P, Nieminen R M 1995 Phys. Rev. B 52 10947Google Scholar

    [26]

    Robles J M C, Ogando E, Plazaola F 2007 J. Phys. Condens. Matter 19 176222Google Scholar

    [27]

    Huang B, Chen L Q, Qiu W B, Yang X L, Shi K, Lian Y Y, Liu X, Tang J 2019 J. Nucl. Mater. 520 6Google Scholar

    [28]

    Jin S, Zhang P, Lu E, Guo L, Wang B, Cao X 2016 Acta Mater. 103 658Google Scholar

    [29]

    Troev T, Popov E, MStaikov P, Nankov N, Yoshiie T 2009 Nucl. Instrum. Meth. B 267 535Google Scholar

    [30]

    Puska M J, Lanki P, Nieminen R M 1989 J. Phys. Condens. Matter 1 6081Google Scholar

    [31]

    Kuriplach J, Melikhova O, Hou M, Van Petegem S, Zhurkin E, Šob M 2007 Phys. Stat. Sol. 4 3461

    [32]

    Würschum R, Seeger A 1996 Philos. Mag. 73 1489Google Scholar

    [33]

    Oberdorfer B, Würschum R 2009 Phys. Rev. B 79 184103Google Scholar

    [34]

    Hautojärvi P, Corbel C 1995 Positron Spectroscopy of Solids (Amsterdam: IOS Press) p491

    [35]

    Corbel C, Pierre F, Saarinew K, Hautojarvi P, Moser P 1992 Phys. Rev. B 45 3386Google Scholar

    [36]

    Vehanen A, Lynn K G, Schultz P J, Cartier E, Güntherodt H J, Parkin D M 1984 Phys. Rev. B 29 2371Google Scholar

    [37]

    Staab T E M, Krause-Rehberg R, Kieback B 1999 J. Mater. Sci. 34 3833Google Scholar

    [38]

    Schultz P J, Lynn K G 1988 Rev. Mod. Phys. 60 701Google Scholar

    [39]

    Puska M J, Nieminen R M 1994 Rev. Mod. Phys. 66 841Google Scholar

    [40]

    Veen A van, Schut H, Vries J de, Hakvoort R A, Ijpma M R 1991 AIP Conf. Proc. 218 171

    [41]

    Esteban G A, Perujo A, Sedano L A, Douglas K 2001 J. Nucl. Mater. 295 49Google Scholar

    [42]

    Li Y, Deng A H, Zhou Y L, Zhou B, Wang K, Hou Q, Shi L Q, Qin X B, Wang B Y 2012 Chin. Phys. Lett. 29 047801Google Scholar

  • 图 1  钨晶格中空位及含钾空位的正电子寿命

    Figure 1.  Positron lifetime of vacancies and potassium-containing vacancies in tungsten lattice.

    图 2  正电子湮没区域分布 (a) 9 × 9 × 9的BCC钨晶格超胞中存在一个空位; (b) W-GB-1超胞中只有晶界一种缺陷; (c) W-GB-1超胞中晶界处存在一个空位; (d) W-GB-1超胞中晶界处存在一个钾原子

    Figure 2.  Distribution of positron annihilation region: (a) 9 × 9 × 9 BCC tungsten lattice supercell with a vacancy; (b) W-GB-1 supercell; (c) W-GB-1 supercell with a vacancy at the GBs; (d) W-GB-1 supercell with a potassium at the GBs.

    图 3  不同钾含量的钨钾合金样品和纯钨的 S-E 分布及拟合曲线

    Figure 3.  S-E distribution and fitting curves of PMW and W-K samples with different potassium content.

    图 4  不同钾含量的钨钾合金及纯钨样品的S-W分布

    Figure 4.  S-W distribution of PMW and W-K samples with different potassium content.

    表 1  正电子湮没寿命计算中建立的晶界和位错模型

    Table 1.  Grain boundary (GB) and dislocation line (DL) model for positron annihilation lifetime calculation

    编号ΣGB planeGB typeRotation axisAngle/(°)
    W-GB-15 $ \langle 210 \rangle $ twistz (001)53.15
    W-GB-213 $ \langle 510 \rangle $ twistz (001)22.61
    W-GB-35$ \{0\bar1 5\} $tiltx (100)22.61
    W-GB-413$ \{0\bar15\} $tiltx (100)53.15
    编号Slip plane(z)Burgers vector[b]Dislocation line[y]Dislocation typeb-y Angle/(°)
    W-DL-1$ (\bar101) $(111)/2$ (\bar 12\bar 1) $EDGE90
    W-DL-2 $ (\bar101) $(111)/2(111)SCREW0
    W-DL-3$ (\bar101) $(111)/2(010)MIX54.73
    DownLoad: CSV

    表 2  晶界和位错包含空位或钾原子时的正电子湮没寿命值

    Table 2.  Positron annihilation lifetime of grain boundary and dislocation with vacancies or potassium atoms.

    编号Intact/psVac.1/psVac.9/psK1/psK9/ps
    W-GB-1116.6198.2297.4110.6108.4
    W-GB-2117.9198.0297.2116.4111.7
    W-GB-3135.2204.8304.4142.3144.1
    W-GB-4142.2198.0317.3141.0144.6
    W-DL-1133.9160.3309.7133.9134.2
    W-DL-2106.5194.7324.0104.7105.8
    W-DL-3123.4158.0315.4123.4123.4
    DownLoad: CSV

    表 3  不同钾含量的钨钾合金样品的双组分正电子寿命值

    Table 3.  Two-component positron lifetime of W-K samples with different potassium content.

    钾含量/ppm编号${\tau _{{\rm{1, }}\exp }}$/ps${I_{1, \exp }}$/%${\tau _{{\rm{2, }}\exp }}$/ps${I_{2, \exp }}$/%平均寿命${\tau _{{\rm{av}}}}$/ps捕获率$\kappa $/ns–1计算体寿命$\tau _{\rm{1}}^{{\rm{cal}}}$/ps
    46A1123.474.62296.225.38167.31.199997.2
    82B1123.375.68305.124.32167.51.175297.4
    122C1140.172.42332.627.58193.21.139597.7
    144D1143.277.07328.322.93185.60.9028100.1
    DownLoad: CSV

    表 4  不同钾含量的钨钾合金样品中位错和空位团簇

    Table 4.  Dislocation and vacancy clusters in W-K samples with potassium content.

    钾含量/ppm编号位错捕获率${\kappa _1}$/ps–1空位团簇捕获率${\kappa _2}$/ps–1位错密度${C_{{\rm{dis}}}}$/1010 cm2空位团簇浓度${C_{{\rm{cl}}}}$/10–7
    46A10.009120.005050.82891.515
    82B10.008950.004740.81361.424
    122C10.033590.015113.05344.538
    144D10.044000.014893.99914.470
    DownLoad: CSV

    表 5  不同钾含量的钨合金样品的S参数拟合

    Table 5.  Fitted values of S parameters of W-K samples with different potassium content.

    钾含量/ppm编号第一层厚度/nm第一层S1第二层S2
    46A2100.45210.4424
    82B2110.45200.4406
    122C2130.45210.4455
    0PMW100.40500.3880
    DownLoad: CSV

    表 6  不同钾含量的钨合金样品中正电子扩散长度

    Table 6.  Positron diffusion length in tungsten alloy samples with different potassium content.

    钾含量/ppm编号寿命谱$L_{{\rm{ +, eff}}}^{{\rm{cal}}}$/nm编号第一层$L_{ +, {\rm{eff}}}^1$/nm第二层$L_{ +, {\rm{eff}}}^2$/nm
    46A177.59A22.73 ± 0.8959.75 ± 9.96
    82B178.39B24.98 ± 1.0658.61 ± 7.86
    122C149.22C21.65 ± 1.5637.44 ± 7.72
    0PMW6.50 ± 0.29109.32 ± 5.46
    DownLoad: CSV
  • [1]

    Ueda Y, Coenen J W, De Temmerman G, Doerner R P, Linke J, Philipps V, Tsitrone E 2014 Fusion Eng. Des. 89 901Google Scholar

    [2]

    Kang H K 2004 J. Nucl. Mater. 335 1Google Scholar

    [3]

    Davis J W, Barabash V R, Makhankov A, Plöchl L, Slattery K T 1998 J. Nucl. Mater. 258 308

    [4]

    Ueda Y, Tobita K, Katoh Y 2003 J. Nucl. Mater. 313-316 32Google Scholar

    [5]

    Lisgo S W, Kukushkin A, Pitts R A, Reiter D 2013 J. Nucl. Mater. 438 S580Google Scholar

    [6]

    Wurster S, Baluc N, Battabyal M, Crosby T, Du J, García-Rosales C, Hasegawa A, Hoffmann A, Kimura A, Kurishita H, Kurtz R J, Li H, Noh S, Reiser J, Riesch J, Rieth M, Setyawan W, Walter M, You J H, Pippan R 2013 J. Nucl. Mater. 442 S181Google Scholar

    [7]

    王玲 2018 博士论文 (成都: 四川大学)

    Wang L 2018 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [8]

    Hirai T, Pintsuk G 2007 Fusion Eng. Des. 82 389Google Scholar

    [9]

    Wurster S, Pippan R 2009 Scr. Mater. 60 1083Google Scholar

    [10]

    Uytdenhouwen I, Decréton M, Hirai T, Linke J, Pintsuk G, Van Oost G 2007 J. Nucl. Mater. 363 1099

    [11]

    Briant C L 1993 Metall. Trans. A 24 1073Google Scholar

    [12]

    Horacsek O, Toth C L, Nagy A 1998 Int. J. Refract. Met. Hard Mater. 16 51Google Scholar

    [13]

    Schade P 2010 Int. J. Refract. Met. Hard Mater. 28 648Google Scholar

    [14]

    Schade P 1998 Int. J. Refract. Met. Hard Mater. 16 77Google Scholar

    [15]

    Dias M, Mateus R, Catarino N, Franco N, Nunes D, Correia J B, Carvalho P A, Hanada K, Sârbu C 2013 J. Nucl. Mater. 442 69Google Scholar

    [16]

    Huang B, Tang J, Chen L Q, Yang X L, Lian Y Y, Chen L, Liu X, Cui X D, Gu L, Liu C T 2019 J. Alloys Compd. 782 149Google Scholar

    [17]

    Liu G, Zhang G J, Jiang F, Ding X D, Sun Y J, Sun J, Ma E 2013 Nat. Mater. 12 344Google Scholar

    [18]

    Xie Z M, Liu R, Miao S, Yang X D, Zhang T, Wang X P, Fang Q F, Liu C S, Luo G N, Lian Y Y, Liu X 2015 Sci. Rep. 5 16014Google Scholar

    [19]

    Liu R, Xie Z M, Fang Q F, Zhang T, Wang X P, Hao T, Liu C S, Dai Y 2016 J. Alloys Compd. 657 73Google Scholar

    [20]

    Tuomisto F, Makkonen I 2013 Rev. Mod. Phys. 85 1583Google Scholar

    [21]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science & Technology Press) p8 (in Chinese) [王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第8页]

    [22]

    Staab T E M, Krause-Rehberg R, Vetter B, Kieback B, Lange G, Klimanek P 1999 J. Phys. Condens. Matter 11 1757Google Scholar

    [23]

    Heikinheimo J, Mizohata K, Räisänen J, Ahlgren T, Jalkanen P, Lahtinen A, CatarinoN, Alves E, Tuomisto F 2019 APL Mater. 7 021103Google Scholar

    [24]

    Puska M J, Nieminen R M 1983 J. Phys. F: Met. Phys. 13 333Google Scholar

    [25]

    Puska M J, Seitsonen A P, Nieminen R M 1995 Phys. Rev. B 52 10947Google Scholar

    [26]

    Robles J M C, Ogando E, Plazaola F 2007 J. Phys. Condens. Matter 19 176222Google Scholar

    [27]

    Huang B, Chen L Q, Qiu W B, Yang X L, Shi K, Lian Y Y, Liu X, Tang J 2019 J. Nucl. Mater. 520 6Google Scholar

    [28]

    Jin S, Zhang P, Lu E, Guo L, Wang B, Cao X 2016 Acta Mater. 103 658Google Scholar

    [29]

    Troev T, Popov E, MStaikov P, Nankov N, Yoshiie T 2009 Nucl. Instrum. Meth. B 267 535Google Scholar

    [30]

    Puska M J, Lanki P, Nieminen R M 1989 J. Phys. Condens. Matter 1 6081Google Scholar

    [31]

    Kuriplach J, Melikhova O, Hou M, Van Petegem S, Zhurkin E, Šob M 2007 Phys. Stat. Sol. 4 3461

    [32]

    Würschum R, Seeger A 1996 Philos. Mag. 73 1489Google Scholar

    [33]

    Oberdorfer B, Würschum R 2009 Phys. Rev. B 79 184103Google Scholar

    [34]

    Hautojärvi P, Corbel C 1995 Positron Spectroscopy of Solids (Amsterdam: IOS Press) p491

    [35]

    Corbel C, Pierre F, Saarinew K, Hautojarvi P, Moser P 1992 Phys. Rev. B 45 3386Google Scholar

    [36]

    Vehanen A, Lynn K G, Schultz P J, Cartier E, Güntherodt H J, Parkin D M 1984 Phys. Rev. B 29 2371Google Scholar

    [37]

    Staab T E M, Krause-Rehberg R, Kieback B 1999 J. Mater. Sci. 34 3833Google Scholar

    [38]

    Schultz P J, Lynn K G 1988 Rev. Mod. Phys. 60 701Google Scholar

    [39]

    Puska M J, Nieminen R M 1994 Rev. Mod. Phys. 66 841Google Scholar

    [40]

    Veen A van, Schut H, Vries J de, Hakvoort R A, Ijpma M R 1991 AIP Conf. Proc. 218 171

    [41]

    Esteban G A, Perujo A, Sedano L A, Douglas K 2001 J. Nucl. Mater. 295 49Google Scholar

    [42]

    Li Y, Deng A H, Zhou Y L, Zhou B, Wang K, Hou Q, Shi L Q, Qin X B, Wang B Y 2012 Chin. Phys. Lett. 29 047801Google Scholar

  • [1] Ye Feng-Jiao, Zhang Peng, Zhang Hong-Qiang, Kuang Peng, Yu Run-Sheng, Wang Bao-Yi, Cao Xing-Zhong. Research progress of coincidence Doppler broadening of positron annihilation measurement technology in materials. Acta Physica Sinica, 2024, 73(7): 077801. doi: 10.7498/aps.73.20231487
    [2] Yin Hao, Song Tong, Peng Xiong-Gang, Zhang Peng, Yu Run-Sheng, Chen Zhe, Cao Xing-Zhong, Wang Bao-Yi. Small angle X-ray scattering and positron annihilation spectroscopy of polyethyleneimine functionalized ordered mesoporous silica SBA-15 microstructure. Acta Physica Sinica, 2023, 72(11): 114101. doi: 10.7498/aps.72.20230265
    [3] Li Chong-Yang, Zhao Bin, Zhang Jun-Wei. Chemical quenching of positronium in OMC/SBA-15, OMC@SBA-15 and CuO@SBA-15 catalysts. Acta Physica Sinica, 2022, 71(6): 067805. doi: 10.7498/aps.71.20211814
    [4] Zhu Hong-Gang, Fu Ming-An, Ren Chuang, Gao Yun, Huang Zhong-Bing. Superparamagnetism of potassium-doped tris(diphenacyl) iron. Acta Physica Sinica, 2022, 71(8): 087501. doi: 10.7498/aps.71.20212128
    [5] He Wei-Di, Zhang Pei-Yuan, Liu Xiang, Tian Xue-Fen, Fu Xin-Ge, Deng Ai-Hong. Defects in H/He neutral beam irradiated potassium doped tungsten alloy by positron annihilation technique. Acta Physica Sinica, 2021, 70(16): 167803. doi: 10.7498/aps.70.20210438
    [6] Zhu Te, Cao Xing-Zhong. Research progress of hydrogen/helium effects in metal materials by positron annihilation spectroscopy. Acta Physica Sinica, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [7] Cao Xing-Zhong, Song Li-Gang, Jin Shuo-Xue, Zhang Ren-Gang, Wang Bao-Yi, Wei Long. Advances in applications of positron annihilation spectroscopy to investigating semiconductor microstructures. Acta Physica Sinica, 2017, 66(2): 027801. doi: 10.7498/aps.66.027801
    [8] Gao Yun, Wang Ren-Shu, Wu Xiao-Lin, Cheng Jia, Deng Tian-Guo, Yan Xun-Wang, Huang Zhong-Bing. Searching superconductivity in potassium-doped p-terphenyl. Acta Physica Sinica, 2016, 65(7): 077402. doi: 10.7498/aps.65.077402
    [9] Zhang Yan-Hui, Li Yan-Long, Gu Yue, Chao Yue-Sheng. Investigation of positron annihilation in Fe52Co34Hf7B6Cu1 amorphous alloy treated by intermediate frequency magnetic pulse. Acta Physica Sinica, 2012, 61(16): 167502. doi: 10.7498/aps.61.167502
    [10] Zhang Li-Juan, Wang Li-Hai, Liu Jian-Dang, Li Qiang, Cheng Bin, Zhang Jie, An Ran, Zhao Ming-Lei, Ye Bang-Jiao. Positron annihilation spectrum study in non-ferroelectric piezoelectricity SrTiO3-Bi12TiO20 (ST-BT) composite ceramics. Acta Physica Sinica, 2012, 61(23): 237805. doi: 10.7498/aps.61.237805
    [11] Chao Yue-Sheng, Guo Hong, Gao Xiang-Yu, Luo Li-Ping, Zhu Han-Xian. Investigation on annealed Fe43Co43Hf7B6Cu1 amorphous alloy by positron annihilation spectroscopy. Acta Physica Sinica, 2011, 60(1): 017504. doi: 10.7498/aps.60.017504
    [12] Qi Ning, Wang Yuan-Wei, Wang Dong, Wang Dan-Dan, Chen Zhi-Quan. Positron annihilation study of the microstructure of Co doped ZnO nanocrystals. Acta Physica Sinica, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [13] Xu Hong-Xia, Hao Ying-Ping, Han Rong-Dian, Weng Hui-Min, Du Huai-Jiang, Ye Bang-Jiao. Positron annihilation spectroscopy study on the Fe3O4 nanoparticle. Acta Physica Sinica, 2011, 60(6): 067803. doi: 10.7498/aps.60.067803
    [14] Kang Ting-Xia, Bi Ao-Xiang, Zhu Jun. Solid state dispersions of MoO3 into porous γ-Al2 O3. Acta Physica Sinica, 2011, 60(6): 067805. doi: 10.7498/aps.60.067805
    [15] Zhou Kai, Li Hui, Wang Zhu. Defects in proton-irradiated Zn-doped GaSb studied by positron annihilation and photoluminescence. Acta Physica Sinica, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [16] Hao Yan-Ming, Yan Da-Li, Fu Bin, Wang Li-Qun, Hao Xiao-Peng, Wang Bao-Yi. The structure, magnetic properties, and positron annihilation spectra of Tb2AlFe16-xMnx compounds. Acta Physica Sinica, 2009, 58(9): 6494-6499. doi: 10.7498/aps.58.6494
    [17] Wu Shi-Liang, Chen Ye-Qing, Wu Yi-Chu, Wang Shao-Jie, Wen Xi-Yu, Zhai Tong-Guang. Positron annihilation study of hot band of a continuous cast AA 2037 Al alloy after annealing. Acta Physica Sinica, 2006, 55(11): 6129-6135. doi: 10.7498/aps.55.6129
    [18] Zhu Jun, Wang Li-Li, Ma Li, Wang Shao-Jie. Solid state diffusion of NaCl into NaY zeolite studied by positron annihilation. Acta Physica Sinica, 2003, 52(11): 2929-2933. doi: 10.7498/aps.52.2929
    [19] HUA JING-SONG, JIN FU-QIAN, TAN HUA. A THEORETICAL METHOD TO OBTAIN THE SECOND ORDER PARTIAL DERIVATIVE OF SHEAR MODU LUS WITH RESPECT TO PRESSURE. Acta Physica Sinica, 2000, 49(12): 2443-2447. doi: 10.7498/aps.49.2443
    [20] HE YONG-SHU, HUANG MAO-RONG, WAN XIN-ZHU, MA RU-ZHANG, YU EN-HUA. POSITRON ANNIHILATION STUDY OF DEFECTS IN MARTENSITIC TRANSFORMATION OF Fe-Ni ALLOYS. Acta Physica Sinica, 1986, 35(11): 1528-1531. doi: 10.7498/aps.35.1528
Metrics
  • Abstract views:  7452
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  25 November 2019
  • Accepted Date:  03 February 2020
  • Published Online:  05 May 2020

/

返回文章
返回