Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chemical quenching of positronium in OMC/SBA-15, OMC@SBA-15 and CuO@SBA-15 catalysts

Li Chong-Yang Zhao Bin Zhang Jun-Wei

Citation:

Chemical quenching of positronium in OMC/SBA-15, OMC@SBA-15 and CuO@SBA-15 catalysts

Li Chong-Yang, Zhao Bin, Zhang Jun-Wei
PDF
HTML
Get Citation
  • Owing to highly ordered two-dimensional hexagonal structure, large surface area, variable pore size, high thermal stability and especially the electron delocalization energy determined by its frame structure, SBA-15 catalysts have received more and more researchers’ attention. By using the structure-directing agent of P123 and the silicon source of TEOS, we synthesize ordered mesoporous silica SBA-15. At the same time, ordered mesoporous carbon OMC is succefully synthesized with the template of SBA-15. The small angle X-ray diffraction, high resolution transmission electron microscopy and N2 adsorption-desorption measurements are conducted to verify the highly ordered pore structure and relatively high specific surface area of SBA-15 and OMC, and their average pore radius are about 7.5 nm and 3.3 nm, respectively. Positron lifetime spectrum of SBA-15 catalyst is composed of two longer lifetimes and two shorter lifetimes: two longer lifetimes $ {\tau }_{3} $ and $ {\tau }_{4} $ are the annihilation in micropore and large pore of positronium (Ps), are 7.5 ns and 106 ns. However, there is nearly no longer lifetime component in OMC, which indicates that there might exist the quenching or inhibiting of positronium by carbon material. To verify this guess, we synthesize the catalysts of OMC/SBA-15, OMC@SBA-15 and CuO@SBA-15 by the solid state reaction and the impregnation filling method. With the increasing of OMC and CuO content, both the o-Ps lifetime $ {\tau }_{4} $ and its intensity $ {I}_{4} $ of these three compounds decrease. The annihilation rate of o-Ps lifetime varying with OMC and CuO content can be better fitted by one or two straight lines, The values of reaction rate constant K in OMC/SBA-15, OMC@SBA-15 and CuO@SBA-15 are $(2.39\pm $$ 0.44)\times {10}^{7}~{\mathrm{s}}^{-1}$/$(6.65\pm 0.94)\times {10}^{6}~{\mathrm{s}}^{-1}$, $(2.28\pm 0.19)\times {10}^{7}~{\mathrm{s}}^{-1}$, and $(8.76\pm 0.47)\times {10}^{6}~{\mathrm{s}}^{-1},$ respectively. Therefore, our results indicate that there are quenching effect and inhibition effect among the carbon, the CuO and the positronium, which lead $ {\tau }_{4} $ and $ {I}_{4} $to decrease, and positronium is also a probe for detecting the pore structure of porous material.
      Corresponding author: Li Chong-Yang, lichongyang@ncwu.edu.cn ; Zhao Bin, zhaobin@zut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China for Youth Fund (Grant Nos. 11805295, 11905063).
    [1]

    Veisi H, Ozturk T, Karmakar B, Tamoradi T, Hemmati S 2020 Carbohydr. Polym. 235 115966Google Scholar

    [2]

    Veisi H, Tamoradi T, Karmakar B, Hemmati S 2020 J. Phys. Chem. Solids 138 109256Google Scholar

    [3]

    Tamoradi T, Daraie M, Heravi M M, Karmakar B 2020 New J. Chem. 44 11049Google Scholar

    [4]

    Tamoradi T, Daraie M, Heravi M M 2020 Appl. Organomet Chem. 34 5538Google Scholar

    [5]

    Rehman F, Volpe P L O, Airoldi C 2014 J. Environ. Manage. 133 135Google Scholar

    [6]

    Xu Y, Hu E, Xu D, Guo Q 2021 Sep. Purif. Technol. 274 119081Google Scholar

    [7]

    Cao T, Wang C, Zhou Z, Liu L, Xu S, Song H, Lin W, Xu Z 2021 Appl. Surf. Sci. 552 149487Google Scholar

    [8]

    El-Denglawey A, Mubarak M F, Selim H 2021 Arab. J. Sci. Eng. 47 455Google Scholar

    [9]

    Yu N Y, Wu K, Tao L 2021 Chemosphere 276 130112Google Scholar

    [10]

    Kumaravel S, Thiripuranthagan S, Vembuli T, Erusappan E, Durai M, Sureshkumar T, Durai M 2021 Optik 235 166599Google Scholar

    [11]

    Chang Q, Yang S, Xue C, Li N, Wang Y, Li Y, Wang H, Yang J, Hu S 2019 Nanoscale 11 7247Google Scholar

    [12]

    Yang H C, Lin H Y, Chien Y S, Wu J C S, Wu H H 2009 Catal. Lett. 131 381Google Scholar

    [13]

    He J H, Xie T P, Luo T H, Xu Q, Ye F, An J B, Yang J, Wang J K 2021 Ecotox. Environ. Safe. 216 112189Google Scholar

    [14]

    Poonia E, Duhan S, Kumar K, Kumar A, Jakhar S, Tomer V K 2018 J. Porous Ma. 26 553Google Scholar

    [15]

    Sharma S K, Sudarshan K, Sen D, Pujari P K 2019 J. Solid State Chem. 274 10Google Scholar

    [16]

    Jean Y C, Mallon P E, Schrader D M 2003 Principles and Applications of Positron & Positronium Chemistry (Singapore: World Scientific Publishing)

    [17]

    Sing K S, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J 1985 Pure Appl. Chem. 57 603Google Scholar

    [18]

    Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar

    [19]

    Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar

    [20]

    Hyodo T, Nakayama T, Saito H, Saito F, Wada K 2009 Phys. Status Solidi (c) 6 2497Google Scholar

    [21]

    Varisov A Z, Grafutin V I, Zaluzhnyi A G, Ilyukhina O V, Myasishcheva G G, Prokop'ev E P, Timoshenkov S P, Funtikov Y V 2008 J. Surf. Ingestig. 2 959Google Scholar

    [22]

    Kim T W, Ryoo R, Gierszal K P, Jaroniec M, Solovyov L A, Sakamoto Y, Terasaki O 2005 J. Mater. Chem. 15 1560Google Scholar

    [23]

    Zhang H J, Chen Z Q, Wang S J, Kawasuso A, Morishita N 2010 Phys. Rev. B 82 035439Google Scholar

    [24]

    Sagara A, Yabe H, Chen X, Vereecken P M, Uedono A 2020 Microporous Mesoporous Mater. 295 109964Google Scholar

    [25]

    Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky Galen D 1998 Science 279 548Google Scholar

    [26]

    Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O 2000 J. Am. Chem. Soc. 122 10712Google Scholar

    [27]

    Brunauer S, Emmett P H, Teller E 1938 J. Am. Chem. Soc. 60 309Google Scholar

    [28]

    Barrett E P, Joyner L G, Halenda P P 1951 J. Am. Chem. Soc. 73 373Google Scholar

    [29]

    Davis M E 2002 Nature 417 813Google Scholar

    [30]

    Paulin P R, Ambrosino G 1968 J. Phys. France 29 263Google Scholar

    [31]

    Dull T L, Frieze W E, Gidley D W, 2001 J. Phys. Chem. B 105 4657Google Scholar

    [32]

    Goworek T, Jasinska B, Wawryszczuk J 1998 Chem. Phys. 230 305Google Scholar

    [33]

    Zhang H J, Chen Z Q, Wang S J 2012 J. Chem. Phys. 136 034701Google Scholar

    [34]

    Saito H, Hyodo T 1999 Phys. Rev. B 60 11070Google Scholar

    [35]

    Li C Y, Zhao B, Zhou B, Qi N, Chen Z Q, Zhou W 2017 Phys. Chem. Chem. Phys. 19 7659Google Scholar

    [36]

    Sudarshan K, Patil P N, Goswami A, Pillai K T, Pujari P K 2009 Phys. Status Solidi (c) 6 2552Google Scholar

  • 图 1  有序介孔碳和其模板二氧化硅的小角X射线衍射谱图

    Figure 1.  Small angle X-ray diffraction measurement of synthesized ordered mesoporous carbon and its template silica.

    图 2  有序介孔碳和其模板二氧化硅的扫描电子显微镜照片及介孔碳的电子衍射谱

    Figure 2.  Scanning electron microscopy and electron diffraction spectroscopy measurement of synthesized ordered mesoporous carbon and its template silica.

    图 3  有序介孔碳和其模板二氧化硅的高分辨透射电子显微镜图

    Figure 3.  High resolution transmission electron microscopy measurement of synthesized ordered mesoporous carbon and its template silica.

    图 4  有序介孔碳、其模板二氧化硅及CuO质量分数分别为1%, 1.5%, 2%的CuO@SBA-15复合材料的N2吸附/脱附等温线及相应的孔径分布(STP代表标准状况)

    Figure 4.  N2 adsorption and desorption measurement of synthesized ordered mesoporous carbon, its template silica and CuO@SBA-15 composite materials with the CuO weight content of 1%, 1.5%, 2% (STP, standard temperature and pressure)

    图 5  二氧化硅模板和有序介孔碳经归一化峰处理后的正电子湮没寿命谱图, 其中每道时间值为50.3 ps

    Figure 5.  Positron annihilation lifetime spectrum of the normalized peak of synthesized ordered mesoporous carbon and its template silica, the time value of each channel (time/ch) is 50.3 ps.

    图 6  不同CuO质量分数的CuO@SBA-15复合材料中o-Ps寿命$ {\tau }_{3} $, $ {\tau }_{4} $及其强度$ {I}_{3} $, $ {I}_{4} $的变化

    Figure 6.  Variation of $ {\tau }_{3} $, $ {\tau }_{4} $, $ {I}_{3} $, $ {I}_{4} $ with the weight content of CuO in CuO@SBA-15 components.

    图 7  不同CuO质量分数的CuO@SBA-15复合材料中$ S $参数的变化

    Figure 7.  Variation of $ S $ parameter with the weight content of CuO in CuO@SBA-15 components.

    图 8  不同CuO质量分数的CuO@SBA-15复合材料中$ {\lambda }_{4} $($ 1/{\tau }_{4} $)的变化

    Figure 8.  Variation of $ {\lambda }_{4} $($ 1/{\tau }_{4}) $ with the weight content of CuO in CuO@SBA-15 components.

    图 9  不同OMC质量分数的OMC/ SBA-15, OMC@SBA-15复合材料中o-Ps寿命$ {\tau }_{3} $, $ {\tau }_{4} $, ${\tau }_{3}'$, ${\tau }_{4}'$的变化, 其中$ {\tau }_{3} $, $ {\tau }_{4} $为浸渍填充法制备OMC@SBA-15复合材料的测试结果, ${\tau }_{3}'$, ${\tau }_{4}'$为固相混合法制备OMC/SBA-15复合材料的测试结果

    Figure 9.  Variation of $ {\tau }_{3} $, $ {\tau }_{4} $, ${\tau }_{3}'$, ${\tau }_{4}'$ parameter with the weight content of OMC in OMC/SBA-15 and OMC@SBA-15 components. $ {\tau }_{3} $, $ {\tau }_{4} $ for the results of OMC@SBA-15 component synthesized by impregnation method, ${\tau }_{3}'$, ${\tau }_{4}'$ for that of OMC/SBA-15 component synthesized by solid state method.

    图 10  不同OMC质量分数的OMC/SBA-15, OMC@SBA-15复合材料中o-Ps寿命强度$ {I}_{3} $, $ {I}_{4} $, ${I}_{3}'$, ${I}_{4}'$的变化, 其中$ {I}_{3} $, $ {I}_{4} $为浸渍填充法制备OMC@SBA-15复合材料的测试结果, ${I}_{3}'$, ${I}_{4}'$为固相混合法制备OMC/SBA-15复合材料的测试结果

    Figure 10.  Variation of the intensity of o-Ps lifetime $ {I}_{3} $, $ {I}_{4} $, ${I}_{3}'$, ${I}_{4}'$ parameter with the weight content of OMC in OMC/SBA-15 and OMC@SBA-15 components. $ {I}_{3} $, $ {I}_{4} $ for the results of OMC@SBA-15 component synthesized by impregnation method, ${I}_{3}'$, ${I}_{4}'$ for that of OMC/SBA-15 component synthesized by solid state method.

    图 11  不同OMC质量分数的OMC/SBA-15, OMC@SBA-15复合材料中$ {\lambda }_{4} $($ 1/{\tau }_{4} $), ${\lambda }_{4}'\,(1/{\tau }_{4}')$的变化, 其中$ {\lambda }_{4} $($ 1/{\tau }_{4} $)为浸渍填充法制备OMC@SBA-15复合材料的测试结果, 而${{\lambda }_{4}'\, (1/{\tau }_{4}')}$为固相混合法制备OMC/SBA-15复合材料的测试结果

    Figure 11.  Variation of the intensity of o-Ps lifetime ${\lambda }_{4}\,(1/{\tau }_{4})$, ${\lambda }_{4}'\, (1/{\tau }_{4}')$ parameter with the weight content of OMC in OMC/SBA-15 and OMC@SBA-15 components. ${\lambda }_{4}\,(1/{\tau }_{4})$ or the results of OMC@SBA-15 component synthesized by impregnation method, ${\lambda }_{4}'\, (1/{\tau }_{4}')$ for that of OMC/SBA-15 component synthesized by solid state method.

    图 12  不同OMC质量分数的OMC/SBA-15, OMC@SBA-15复合材料中$ S $${S}{'}$参数的变化, 其中$ S $为浸渍填充法制备OMC@SBA-15复合材料的测试结果, 而${S}{'}$为固相混合法制备OMC/SBA-15复合材料的测试结果

    Figure 12.  Variation of the intensity of o-Ps lifetime $ S $, ${S}{'}$ parameter with the weight content of OMC in OMC/SBA-15 and OMC@SBA-15 components. $ S $ or the results of OMC@SBA-15 synthesized by impregnation method, ${S}{'}$ for that of OMC/SBA-15 synthesized by solid state method.

  • [1]

    Veisi H, Ozturk T, Karmakar B, Tamoradi T, Hemmati S 2020 Carbohydr. Polym. 235 115966Google Scholar

    [2]

    Veisi H, Tamoradi T, Karmakar B, Hemmati S 2020 J. Phys. Chem. Solids 138 109256Google Scholar

    [3]

    Tamoradi T, Daraie M, Heravi M M, Karmakar B 2020 New J. Chem. 44 11049Google Scholar

    [4]

    Tamoradi T, Daraie M, Heravi M M 2020 Appl. Organomet Chem. 34 5538Google Scholar

    [5]

    Rehman F, Volpe P L O, Airoldi C 2014 J. Environ. Manage. 133 135Google Scholar

    [6]

    Xu Y, Hu E, Xu D, Guo Q 2021 Sep. Purif. Technol. 274 119081Google Scholar

    [7]

    Cao T, Wang C, Zhou Z, Liu L, Xu S, Song H, Lin W, Xu Z 2021 Appl. Surf. Sci. 552 149487Google Scholar

    [8]

    El-Denglawey A, Mubarak M F, Selim H 2021 Arab. J. Sci. Eng. 47 455Google Scholar

    [9]

    Yu N Y, Wu K, Tao L 2021 Chemosphere 276 130112Google Scholar

    [10]

    Kumaravel S, Thiripuranthagan S, Vembuli T, Erusappan E, Durai M, Sureshkumar T, Durai M 2021 Optik 235 166599Google Scholar

    [11]

    Chang Q, Yang S, Xue C, Li N, Wang Y, Li Y, Wang H, Yang J, Hu S 2019 Nanoscale 11 7247Google Scholar

    [12]

    Yang H C, Lin H Y, Chien Y S, Wu J C S, Wu H H 2009 Catal. Lett. 131 381Google Scholar

    [13]

    He J H, Xie T P, Luo T H, Xu Q, Ye F, An J B, Yang J, Wang J K 2021 Ecotox. Environ. Safe. 216 112189Google Scholar

    [14]

    Poonia E, Duhan S, Kumar K, Kumar A, Jakhar S, Tomer V K 2018 J. Porous Ma. 26 553Google Scholar

    [15]

    Sharma S K, Sudarshan K, Sen D, Pujari P K 2019 J. Solid State Chem. 274 10Google Scholar

    [16]

    Jean Y C, Mallon P E, Schrader D M 2003 Principles and Applications of Positron & Positronium Chemistry (Singapore: World Scientific Publishing)

    [17]

    Sing K S, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J 1985 Pure Appl. Chem. 57 603Google Scholar

    [18]

    Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar

    [19]

    Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar

    [20]

    Hyodo T, Nakayama T, Saito H, Saito F, Wada K 2009 Phys. Status Solidi (c) 6 2497Google Scholar

    [21]

    Varisov A Z, Grafutin V I, Zaluzhnyi A G, Ilyukhina O V, Myasishcheva G G, Prokop'ev E P, Timoshenkov S P, Funtikov Y V 2008 J. Surf. Ingestig. 2 959Google Scholar

    [22]

    Kim T W, Ryoo R, Gierszal K P, Jaroniec M, Solovyov L A, Sakamoto Y, Terasaki O 2005 J. Mater. Chem. 15 1560Google Scholar

    [23]

    Zhang H J, Chen Z Q, Wang S J, Kawasuso A, Morishita N 2010 Phys. Rev. B 82 035439Google Scholar

    [24]

    Sagara A, Yabe H, Chen X, Vereecken P M, Uedono A 2020 Microporous Mesoporous Mater. 295 109964Google Scholar

    [25]

    Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky Galen D 1998 Science 279 548Google Scholar

    [26]

    Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O 2000 J. Am. Chem. Soc. 122 10712Google Scholar

    [27]

    Brunauer S, Emmett P H, Teller E 1938 J. Am. Chem. Soc. 60 309Google Scholar

    [28]

    Barrett E P, Joyner L G, Halenda P P 1951 J. Am. Chem. Soc. 73 373Google Scholar

    [29]

    Davis M E 2002 Nature 417 813Google Scholar

    [30]

    Paulin P R, Ambrosino G 1968 J. Phys. France 29 263Google Scholar

    [31]

    Dull T L, Frieze W E, Gidley D W, 2001 J. Phys. Chem. B 105 4657Google Scholar

    [32]

    Goworek T, Jasinska B, Wawryszczuk J 1998 Chem. Phys. 230 305Google Scholar

    [33]

    Zhang H J, Chen Z Q, Wang S J 2012 J. Chem. Phys. 136 034701Google Scholar

    [34]

    Saito H, Hyodo T 1999 Phys. Rev. B 60 11070Google Scholar

    [35]

    Li C Y, Zhao B, Zhou B, Qi N, Chen Z Q, Zhou W 2017 Phys. Chem. Chem. Phys. 19 7659Google Scholar

    [36]

    Sudarshan K, Patil P N, Goswami A, Pillai K T, Pujari P K 2009 Phys. Status Solidi (c) 6 2552Google Scholar

  • [1] Ye Feng-Jiao, Zhang Peng, Zhang Hong-Qiang, Kuang Peng, Yu Run-Sheng, Wang Bao-Yi, Cao Xing-Zhong. Research progress of coincidence Doppler broadening of positron annihilation measurement technology in materials. Acta Physica Sinica, 2024, 73(7): 077801. doi: 10.7498/aps.73.20231487
    [2] Yin Hao, Song Tong, Peng Xiong-Gang, Zhang Peng, Yu Run-Sheng, Chen Zhe, Cao Xing-Zhong, Wang Bao-Yi. Small angle X-ray scattering and positron annihilation spectroscopy of polyethyleneimine functionalized ordered mesoporous silica SBA-15 microstructure. Acta Physica Sinica, 2023, 72(11): 114101. doi: 10.7498/aps.72.20230265
    [3] Li Chong-Yang, Li Meng-De, Wang Mei, Li Tao, Liu Jian-Dang, Ye Bang-Jiao, Chen Zhi-Quan. Spin conversion of positronium of ZIFs nanocrystalline. Acta Physica Sinica, 2022, 71(15): 157801. doi: 10.7498/aps.71.20220305
    [4] He Wei-Di, Zhang Pei-Yuan, Liu Xiang, Tian Xue-Fen, Fu Xin-Ge, Deng Ai-Hong. Defects in H/He neutral beam irradiated potassium doped tungsten alloy by positron annihilation technique. Acta Physica Sinica, 2021, 70(16): 167803. doi: 10.7498/aps.70.20210438
    [5] Zhu Te, Cao Xing-Zhong. Research progress of hydrogen/helium effects in metal materials by positron annihilation spectroscopy. Acta Physica Sinica, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [6] Zhang Pei-Yuan, Deng Ai-Hong, Tian Xue-Fen, Tang Jun. Study of defects in potassium-doped tungsten alloy by positron annihilation technique. Acta Physica Sinica, 2020, 69(9): 096103. doi: 10.7498/aps.69.20191792
    [7] Cao Xing-Zhong, Song Li-Gang, Jin Shuo-Xue, Zhang Ren-Gang, Wang Bao-Yi, Wei Long. Advances in applications of positron annihilation spectroscopy to investigating semiconductor microstructures. Acta Physica Sinica, 2017, 66(2): 027801. doi: 10.7498/aps.66.027801
    [8] Zhang Li-Juan, Wang Li-Hai, Liu Jian-Dang, Li Qiang, Cheng Bin, Zhang Jie, An Ran, Zhao Ming-Lei, Ye Bang-Jiao. Positron annihilation spectrum study in non-ferroelectric piezoelectricity SrTiO3-Bi12TiO20 (ST-BT) composite ceramics. Acta Physica Sinica, 2012, 61(23): 237805. doi: 10.7498/aps.61.237805
    [9] Qi Ning, Wang Yuan-Wei, Wang Dong, Wang Dan-Dan, Chen Zhi-Quan. Positron annihilation study of the microstructure of Co doped ZnO nanocrystals. Acta Physica Sinica, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [10] Xu Hong-Xia, Hao Ying-Ping, Han Rong-Dian, Weng Hui-Min, Du Huai-Jiang, Ye Bang-Jiao. Positron annihilation spectroscopy study on the Fe3O4 nanoparticle. Acta Physica Sinica, 2011, 60(6): 067803. doi: 10.7498/aps.60.067803
    [11] Kang Ting-Xia, Bi Ao-Xiang, Zhu Jun. Solid state dispersions of MoO3 into porous γ-Al2 O3. Acta Physica Sinica, 2011, 60(6): 067805. doi: 10.7498/aps.60.067805
    [12] Zhou Kai, Li Hui, Wang Zhu. Defects in proton-irradiated Zn-doped GaSb studied by positron annihilation and photoluminescence. Acta Physica Sinica, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [13] Li Zhuo-Xin, Wang Dan-Ni, Wang Bao-Yi, Xue De-Sheng, Wei Long, Qin Xiu-Bo. Study of annihilation behavior of positronium in porous silicon in different atmospheres. Acta Physica Sinica, 2010, 59(9): 6647-6652. doi: 10.7498/aps.59.6647
    [14] Wang Qiao-Zhan, Yu Run-Sheng, Qin Xiu-Bo, Li Yu-Xiao, Wang Bao-Yi, Jia Quan-Jie. Pore structure determination of mesoporous SiO2 thin films by slow positron annihilation spectroscopy. Acta Physica Sinica, 2009, 58(12): 8478-8483. doi: 10.7498/aps.58.8478
    [15] Hao Yan-Ming, Yan Da-Li, Fu Bin, Wang Li-Qun, Hao Xiao-Peng, Wang Bao-Yi. The structure, magnetic properties, and positron annihilation spectra of Tb2AlFe16-xMnx compounds. Acta Physica Sinica, 2009, 58(9): 6494-6499. doi: 10.7498/aps.58.6494
    [16] Zhu Jun, Wang Li-Li, Ma Li, Wang Shao-Jie. Solid state diffusion of NaCl into NaY zeolite studied by positron annihilation. Acta Physica Sinica, 2003, 52(11): 2929-2933. doi: 10.7498/aps.52.2929
    [17] HE YUAN-JIN, MA XING-KUN, GUI ZHI-LUN, LI LONG-TU. POINT DEFECT STUDIES ON PEROVSKITE STRUCTURED PIEZOELECTRIC CERAMICS USING POSITRON ANNIHILATION. Acta Physica Sinica, 1998, 47(1): 146-153. doi: 10.7498/aps.47.146
    [18] MA LI, CHEN ZHI-QUAN, WANG SHAO-JIE, PENG ZHI-LIN, LUO XI-HUI. SECONDARY PORE STRUCTURE OF USY ZEOLITES STUDIED BY POSITRON ANNIHILATE TECHNIQUE. Acta Physica Sinica, 1997, 46(11): 2267-2273. doi: 10.7498/aps.46.2267
    [19] WANG BO, PENG ZHI-LIN, WU WAN, LI SHI-QING, WANG SHAO-JIE, LIU HAO, XIE HONG-QUAN. INVESTIGATIONS OF THE STRUCTURAL AND CONDUCTIVE PROPERTIES OF CONDUCTING POLYMER PEU BY POSITRON ANNIHILATION. Acta Physica Sinica, 1996, 45(1): 153-160. doi: 10.7498/aps.45.153
    [20] YANG HONG-NING, LIN BU-ZHENG, FANG JUN-XIN. A STUDY ON THE RELAXATION MECHANISM OF THE QUASI-POSITRONIUM. Acta Physica Sinica, 1986, 35(6): 697-703. doi: 10.7498/aps.35.697
Metrics
  • Abstract views:  4531
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2021
  • Accepted Date:  29 November 2021
  • Available Online:  26 January 2022
  • Published Online:  20 March 2022

/

返回文章
返回