Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of influence of spatial distribution error of directional infrared light on temperature field of cryogenic targets

Guo Fu-Cheng Li Cui Li Yan-Zhong

Citation:

Analysis of influence of spatial distribution error of directional infrared light on temperature field of cryogenic targets

Guo Fu-Cheng, Li Cui, Li Yan-Zhong
PDF
HTML
Get Citation
  • For an inertial-confinement-fusion cryogenic target, the fusion ice layer inside the capsule should have a uniformity more than 99% and an inner surface roughness less than 1 μm (root mean square) to avoid Rayleigh-Taylor instabilities. And this highly smooth ice layer required for ignition is generated in the presence of volumetric heat and affected by the thermal environment around the capsule. For the D2 fuel targets, the uniformity of the fusion ice layer inside the capsule is consistent with the uniformity of the surface temperature around the capsule, and the latter can be controlled by directional infrared illumination. A major challenge of directional infrared illumination is the precision of directional infrared spatial distribution. In this paper, a numerical model coupling the directional infrared tracking and temperature field calculation is proposed and validated by experimental results. A three-dimensional physical model of the cryogenic target is used to study the influences of different forms of directional infrared spatial distribution errors on the temperature uniformity of the capsule. The results show that the eccentricity of IR band axis has the worst effect on the temperature uniformity of the capsule, followed by the distance between both IR bands, and the width of the IR band has the least effect on the temperature uniformity of the capsule. Therefore, the eccentricity of IR band axis should be avoided in experiment to ensure the uniformity of the temperature of the capsule, further ensuring the uniformity of the fuel ice layer inside the capsule.
      Corresponding author: Li Cui, xjtucli@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52176021).
    [1]

    张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 物理学报 61 147303Google Scholar

    Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303Google Scholar

    [2]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 物理学报 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [3]

    Horvath A, Rachlew E 2016 Ambio 45 38Google Scholar

    [4]

    Chen W M, Kim H, Yamaguchi H 2014 Energy Policy 74 31Google Scholar

    [5]

    程云鹤, 董洪光, 耿纪超, 何继善 2021 中国工程科学 23 11Google Scholar

    Cheng Y H, Dong H G, Geng J C, He J S 2021 Strategic Study of CAE 23 11Google Scholar

    [6]

    Fang S D, Zhao C H, Ding Z H, Zhang S X, Liao R J 2021 Proc Chin Soc Elect Eng DOI:10.13334/j.0258-8013.pcsee.212121

    [7]

    张占文, 漆小波, 李波 2012 物理学报 61 145204Google Scholar

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204Google Scholar

    [8]

    黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 物理学报 64 215201Google Scholar

    Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201Google Scholar

    [9]

    Nuckolls J, Wood L, Thiessen A 1972 Nature 239 139Google Scholar

    [10]

    Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357Google Scholar

    [11]

    Holmlid L 2014 J. Fusion Energ. 33 348Google Scholar

    [12]

    Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [13]

    Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci, Technol. 49 565Google Scholar

    [14]

    王凯, 谢瑞, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230Google Scholar

    Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230Google Scholar

    [15]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak H L F, Kline J L, Le P S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [16]

    Moll G, Baclet P, Martin M 2006 Fusion Sci. Technal. 49 574Google Scholar

    [17]

    Moll G, Baclet P, Martin M 2007 Fusion Sci. Technal. 51 737Google Scholar

    [18]

    Betti R, Hurricane O A 2016 Nature Physics 12 435Google Scholar

    [19]

    Bittner D N, Collins G W, Sater J D 2003 Fusion Sci Technol 44 749Google Scholar

    [20]

    Moody J D, Kozioziemski B J, Mapoles E R 2008 J. Phys. :Conf. Ser. 112 032064Google Scholar

    [21]

    Kozioziemski B J, London R A, McEachern R L, Bittner D N 2017 Fusion Sci. Technal. 45 262Google Scholar

    [22]

    London R A, McEachern R L, Kozioziemski B J, Bittner D N 2017 Fusion Sci. Technal. 45 245Google Scholar

    [23]

    Cook R C, Anthamatten M, Letts S A 2004 Fusion Science and Technology 45 148Google Scholar

    [24]

    郭富城, 李翠, 厉彦忠 2021 物理学报 70 160703Google Scholar

    Guo F C, Li C, Li Y Z 2021 Acta Phys. Sin. 70 160703Google Scholar

    [25]

    Haan S W, Lindl D J, Callahan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V 2011 Phys. Plasmas 18 051001Google Scholar

    [26]

    林博颖, 苏新明, 简亚彬 2018 航天器环境工程 35 5Google Scholar

    Lin B Y, Su X M, Jian Y B 2018 Spacecraft Environment Engineering 35 5Google Scholar

    [27]

    Li C, Chen P W, Zhao J 2018 Fusion Engineering & Design 127 23Google Scholar

  • 图 1  NIF Rev5 靶型结构尺寸 (a) NIF冷冻靶结构尺寸; (b) 靶丸结构尺寸

    Figure 1.  Schematic of NIF Rev5 cryogenic target: (a) Structure of NIF cryogenic target; (b) structure of capsule.

    图 2  环形注入定向红外示意图

    Figure 2.  Schematic of directional infrared.

    图 3  计算流程图

    Figure 3.  Flow chart of calculation.

    图 4  真空红外笼加热实验装置示意图

    Figure 4.  Sketch for an umbrella-shaped antenna and the IR heating surface.

    图 5  实验结果与模拟结果对照

    Figure 5.  Comparison of experimental and simulated results.

    图 6  靶丸外表面温度云图

    Figure 6.  The temperature contour of the capsule.

    图 7  不同光带功率密度q下靶丸表面温度云图 (a) q = 0 W·m–2; (b) q = 0.8 W·m–2; (c) q = 1.1 W·m–2; (d) q = 1.4 W·m–2

    Figure 7.  The temperature contours of the capsule under different q: (a) q = 0 W·m–2; (b) q = 0.8 W·m–2; (c) q = 1.1 W·m–2; (d) q = 1.4 W·m–2.

    图 8  不同光带功率密度下靶丸表面温度特性

    Figure 8.  The temperature characteristics of the capsule under a series of q.

    图 9  不同光带宽度下靶丸表面温度云图 (a) d = 0.20 mm; (b) d = 0.25 mm; (c) d = 0.30 mm; (d) d = 0.35 mm; (e) d = 0.40 mm

    Figure 9.  The temperature contours of the capsule under different d: (a) d = 0.20 mm; (b) d = 0.25 mm; (c) d = 0.30 mm; (d) d = 0.35 mm; (e) d = 0.40 mm.

    图 10  不同光带宽度下靶丸表面温度特性变化曲线

    Figure 10.  The temperature characteristics of the capsule under different d.

    图 11  光带间距变化示意图 (a)单侧光带偏移; (b)两侧光带偏移

    Figure 11.  Schematic of the deviation of the IR bands: (a) Single-side IR band drifts; (b) both-sides IR bands drift.

    图 12  不同北侧光带偏移距离下的靶丸表面温度云图 (a) 0 mm; (b) 0.1 mm; (c) 0.2 mm; (d) 0.3 mm; (e) 0.4 mm; (f) 0.5 mm

    Figure 12.  The temperature contours of the capsule at different offsets of the northern IR band: (a) 0 mm; (b) 0.1 mm; (c) 0.2 mm; (d) 0.3 mm; (e) 0.4 mm; (f) 0.5 mm.

    图 13  不同北侧光带偏移距离下的靶丸表面温度特性曲线

    Figure 13.  The temperature characteristics of the capsule at different offsets of the northern IR band.

    图 14  不同光带间距下靶丸表面温度云图 (a) ΔH = 0; (b) ΔH = 0.2 mm; (c) ΔH = 0.4 mm; (d) ΔH = 0.6 mm; (e) ΔH = 0.8 mm; (f) ΔH = 1.0 mm

    Figure 14.  The temperature contours of the capsule under different ΔH: (a) ΔH = 0; (b) ΔH = 0.2 mm; (c) ΔH = 0.4 mm; (d) ΔH = 0.6 mm; (e) ΔH = 0.8 mm; (f) ΔH = 1.0 mm.

    图 15  不同光带间距下靶丸表面温度特性变化曲线

    Figure 15.  The temperature characteristics of the capsule under different ΔH.

    图 16  光轴偏移示意图 (a) 光轴同向偏移; (b) 光轴对向偏移

    Figure 16.  Schematic of IR bands axes offset: (a) The axes of the IR bands shift in the same direction; (b) the axes of the IR bands shift in the opposite direction.

    图 17  不同南北两侧光轴同向偏移量下靶丸表面温度云图 (a) δ = 0; (b) δ = 0.05 mm; (c) δ = 0.10 mm; (d) δ = 0.15 mm; (e) δ = 0.20 mm; (f) δ = 0.25 mm; (g) δ = 0.25 mm 靶丸表面温度云图和柱腔赤道区域定向红外辐照热流云图

    Figure 17.  The temperature contours of the capsule under different δ: (a) δ = 0; (b) δ = 0.05 mm; (c) δ = 0.10 mm; (d) δ = 0.15 mm; (e) δ = 0.20 mm; (f) δ = 0.25 mm; (g) δ = 0.25 mm, adding the radiation heat flux contour in the equatorial region of the hohlraum

    图 18  不同南北两侧光轴同向偏移量下靶丸表面温度特性变化曲线

    Figure 18.  The temperature characteristics of the capsule under different δ.

    图 19  不同南北两侧光轴对向偏移量下靶丸表面温度云图 (a) δ = 0; (b) δ = 0.05 mm; (c) δ = 0.10 mm; (d) δ = 0.15 mm; (e) δ = 0.20 mm; (f) δ = 0.25 mm; (g) δ = 0.25 mm, 靶丸表面温度云图和柱腔赤道区域定向红外辐照热流云图

    Figure 19.  The temperature contours of the capsule under different δ: (a) δ = 0; (b) δ = 0.05 mm; (c) δ = 0.10 mm; (d) δ = 0.15 mm; (e) δ = 0.20 mm; (f) δ = 0.25 mm; (g) δ = 0.25 mm, adding the radiation heat flux contour in the equatorial region of the hohlraum.

    图 20  不同南北两侧光轴对向偏移量下靶丸表面温度特性变化曲线

    Figure 20.  The temperature characteristics of the capsule under different δ.

    图 21  不同定向红外空间分布误差形式对靶丸温度场均匀性的影响

    Figure 21.  Influence of different forms of directional IR spatial distribution errors on the temperature uniformity of the capsule.

    表 1  不同材料在18 K环境下的物性参数

    Table 1.  Physical properties of different materials at 18 K.

    材料
    靶壳 He@1 kPa 气态D2 固态D2
    密度 ρ/(kg·m–3) 2710 19320 1100 0.3 0.025 260
    热容 cp/(J·kg–1·K–1) 8.37 14.66 57.49 5292.6 5193.7 5000
    导热系数 λ/(W·m–1·K–1) 27 1173.44 0.057 0.021 0.024 0.29
    动力黏度 μ/(10–6 kg·m–1·s–1) 1.31 3.42
    注: 本文不考虑气体对定向红外的影响, 因此氦气和氘气的吸收系数和散射系数均为0.
    DownLoad: CSV
  • [1]

    张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 物理学报 61 147303Google Scholar

    Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303Google Scholar

    [2]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 物理学报 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [3]

    Horvath A, Rachlew E 2016 Ambio 45 38Google Scholar

    [4]

    Chen W M, Kim H, Yamaguchi H 2014 Energy Policy 74 31Google Scholar

    [5]

    程云鹤, 董洪光, 耿纪超, 何继善 2021 中国工程科学 23 11Google Scholar

    Cheng Y H, Dong H G, Geng J C, He J S 2021 Strategic Study of CAE 23 11Google Scholar

    [6]

    Fang S D, Zhao C H, Ding Z H, Zhang S X, Liao R J 2021 Proc Chin Soc Elect Eng DOI:10.13334/j.0258-8013.pcsee.212121

    [7]

    张占文, 漆小波, 李波 2012 物理学报 61 145204Google Scholar

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204Google Scholar

    [8]

    黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 物理学报 64 215201Google Scholar

    Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201Google Scholar

    [9]

    Nuckolls J, Wood L, Thiessen A 1972 Nature 239 139Google Scholar

    [10]

    Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357Google Scholar

    [11]

    Holmlid L 2014 J. Fusion Energ. 33 348Google Scholar

    [12]

    Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [13]

    Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci, Technol. 49 565Google Scholar

    [14]

    王凯, 谢瑞, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230Google Scholar

    Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230Google Scholar

    [15]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak H L F, Kline J L, Le P S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [16]

    Moll G, Baclet P, Martin M 2006 Fusion Sci. Technal. 49 574Google Scholar

    [17]

    Moll G, Baclet P, Martin M 2007 Fusion Sci. Technal. 51 737Google Scholar

    [18]

    Betti R, Hurricane O A 2016 Nature Physics 12 435Google Scholar

    [19]

    Bittner D N, Collins G W, Sater J D 2003 Fusion Sci Technol 44 749Google Scholar

    [20]

    Moody J D, Kozioziemski B J, Mapoles E R 2008 J. Phys. :Conf. Ser. 112 032064Google Scholar

    [21]

    Kozioziemski B J, London R A, McEachern R L, Bittner D N 2017 Fusion Sci. Technal. 45 262Google Scholar

    [22]

    London R A, McEachern R L, Kozioziemski B J, Bittner D N 2017 Fusion Sci. Technal. 45 245Google Scholar

    [23]

    Cook R C, Anthamatten M, Letts S A 2004 Fusion Science and Technology 45 148Google Scholar

    [24]

    郭富城, 李翠, 厉彦忠 2021 物理学报 70 160703Google Scholar

    Guo F C, Li C, Li Y Z 2021 Acta Phys. Sin. 70 160703Google Scholar

    [25]

    Haan S W, Lindl D J, Callahan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V 2011 Phys. Plasmas 18 051001Google Scholar

    [26]

    林博颖, 苏新明, 简亚彬 2018 航天器环境工程 35 5Google Scholar

    Lin B Y, Su X M, Jian Y B 2018 Spacecraft Environment Engineering 35 5Google Scholar

    [27]

    Li C, Chen P W, Zhao J 2018 Fusion Engineering & Design 127 23Google Scholar

  • [1] Shan Chong, Kong Ling-Bao, Cui Yong, Ji Lai-Lin, Zhao Xiao-Hui, Li Fu-Jian, Rao Da-Xing, Zhao Yuan-An, Sui Zhan, Shao Jian-Da. Investigation of low-temporal coherence light self-focusing effect by spatial resolved method. Acta Physica Sinica, 2024, 73(9): 090601. doi: 10.7498/aps.73.20240138
    [2] Yu Jia-Cheng, Zhong Jia-Yong, An Wei-Ming, Ping Yong-Li. Potential distribution behind target in intense and short pulsed laser-driven magnetic reconnection. Acta Physica Sinica, 2021, 70(6): 065201. doi: 10.7498/aps.70.20201339
    [3] Zou Xiong, Qi Xiao-Bo, Zhang Tao-Xian, Gao Zhang-Fan, Huang Wei-Xing. Numerical simulation of filling and evacuating process of impurity gas in target capsule of inertial confinement fusion. Acta Physica Sinica, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [4] Guo Fu-Cheng, Li Cui, Li Yan-Zhong. Influence of directional infrared irradiations on the temperature field in ICF cryotargets. Acta Physica Sinica, 2021, 70(16): 160703. doi: 10.7498/aps.70.20210029
    [5] Zuo Juan-Li, Yang Hong, Wei Bing-Qian, Hou Jing-Ming, Zhang Kai. Numerical simulation of gas-liquid two-phase flow in gas lift system. Acta Physica Sinica, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [6] Liu Jing, Zhang Hai-Bo. Charging characteristics and micromechanism of space electrons irradiated polymers. Acta Physica Sinica, 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [7] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [8] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [9] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [10] Ouyang Jian-Ming, Ma Yan-Yun, Shao Fu-Qiu, Zou De-Bin, Liu Jian-Xun. Numerical simulation of temporal and spatial distribution of X-ray ionization with high-altitude nuclear explosion. Acta Physica Sinica, 2012, 61(24): 242801. doi: 10.7498/aps.61.242801
    [11] Bi Peng, Lei Hai-Le, Liu Yuan-Qiong, Li Jun, Yang Xiang-Dong. Redistribution of solid-deuterium induced by infrared irradation. Acta Physica Sinica, 2012, 61(6): 062802. doi: 10.7498/aps.61.062802
    [12] Wang Xiao-Fang, Wang Jing-Yu. Analysis of high-resolution X-ray imaging of an inertial-confinement-fusion target by using a Fresnel zone plate. Acta Physica Sinica, 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [13] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [14] Lü Jun, Zhao Zheng-Yu, Zhang Yuan-Nong, Zhou Chen. Influence of nonlinearity on focused acoustic field of array in atmosphere. Acta Physica Sinica, 2010, 59(12): 8662-8668. doi: 10.7498/aps.59.8662
    [15] Hua Jin-Rong, Zu Xiao-Tao, Li Li, Xiang Xia, Chen Meng, Jiang Xiao-Dong, Yuan Xiao-Dong, Zheng Wan-Guo. Numerical simulation of light intensity distribution in the vicinity of three-dimensional Hertzian conical scratch on fused silica subsurface. Acta Physica Sinica, 2010, 59(4): 2519-2524. doi: 10.7498/aps.59.2519
    [16] Bi Peng, Liu Yuan-Qiong, Tang Yong-Jian, Yang Xiang-Dong, Lei Hai-Le. Infrared absorption of liquid-hydrogen planar cryotargets. Acta Physica Sinica, 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [17] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [18] Qian Xian-Mei, Zhu Wen-Yue, Rao Rui-Zhong. Phase screen distribution for simulating laser propagation along an inhomogeneous atmospheric path. Acta Physica Sinica, 2009, 58(9): 6633-6639. doi: 10.7498/aps.58.6633
    [19] Wang Kuang-Fei, Guo Jing-Jie, Mi Guo-Fa, Li Bang-Sheng, Fu Heng-Zhi. Numerical simulation of microstructure evolution during directional solidification of Ti-45at.%Al alloy. Acta Physica Sinica, 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [20] Ding Bo-Jiang, Kuang Guang-Li, Liu Yue-Xiu, Shen Wei-Ci, Yu Jia-Wen, Shi Yao-Jiang. . Acta Physica Sinica, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
Metrics
  • Abstract views:  2519
  • PDF Downloads:  27
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2021
  • Accepted Date:  27 February 2022
  • Available Online:  04 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回