Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photoluminescence characteristics of NaCl: Cu sintered dose tablets under X/γ irradiation

Li Zhe-Xu Li Xin-Huan He San-Jun Zhou Zhi-Qian Liu Li-Yan Yu Wan-Tang Zhao Xiu-Liang

Citation:

Photoluminescence characteristics of NaCl: Cu sintered dose tablets under X/γ irradiation

Li Zhe-Xu, Li Xin-Huan, He San-Jun, Zhou Zhi-Qian, Liu Li-Yan, Yu Wan-Tang, Zhao Xiu-Liang
PDF
HTML
Get Citation
  • In this paper, NaCl: Cu circular dose tablets with a size of 5×1.8mm are prepared by sintering pure NaCl and CuCl powder as raw materials. They are placed in a four-element shell and sealed with plastic film to overcome the moisture absorption of the material. Their photoluminescence characteristics are studied by using an Inlight 200 automatic photoluminescence measurement system. The results show that the X-ray characteristic peaks of NaCl: Cu sintered at 650 ℃ and 400 ℃ appear at 27°, 32°, 45°, 56°, 66°, 75° and 84° respectively. Compared with the data given by XRD standard card of pure NaCl crystal (pdf-#88-2300), those peaks of the sample sintered at 650 ℃ are more consistent with the data given by the standard card. In the scanning electron microscope image, it can be seen that the grains are wholly welded and closely connected, and the characteristic grains in the sintering process have good welding effect. After Cu+ ion doping, the lattice structure of NaCl is slightly deformed. After high-temperature sintering, the mass transfer of Cu+ ions occurs at an atomic level in NaCl, and the particles are combined into a coherent solid structure. For X/γ-rays, the photoluminescence response of NaCl:Cu dose sheet to low-energy rays is higher than that of the same kind of rays with high energy. When using NaCl:Cu dose sheet to calculate the cumulative photoluminescence dose, it is necessary to consider the ray category and ray energy of the radiation source at the radiation site. The photoluminescence curve of NaCl:Cu dose sheet has typical exponential attenuation characteristics. The deflection angle of dose sheet has influence on the measured value: the greatest influence extent is 13.5%. With the increase of deflection angle of dose sheet, the area irradiated by γ-ray decreases, and the response of internal lattices to γ-ray decreases slightly. The uniformity of NaCl: Cu raw material particle sizes has a great influence on the distribution consistency of photoluminescence response of dose tablets. The decrease of sample particle size during tablet pressing can improve the contact surface area between NaCl and CuCl. The increase of contact surface area can improve the diffusion and transfer efficiency of Cu+ ions, increase the number of dose traps in the crystal, and make the overall count higher. When the particle sizes are more uniform, the Cu+ ion transferefficiencies and quantities of different dose tablets are close, the difference in the number of dose traps is reduced, and the photoluminescence sensitivities are closer. The coefficient of variation of the repeatability test experiment is 2.28%. The consistency of the repeated measurement data is good. The lattice structure and lattice defects of the material are not changed in the process of photoluminescence measurement and photoannealing. In a dose range of 1-1000mgy, with the increase of irradiation dose, the photoluminescence response of NaCl: Cu and NaCl dose tablets gradually increase and show a good linear relationship. The photoluminescence response of NaCl: Cu is 2-to-4 times higher than that of NaCl dose tablets. The NaCl: Cu dose tablets prepared by the sintering method can be used as dosimeters for monitoring personal or environmental dose.
      Corresponding author: Zhao Xiu-Liang, zhaoxiul@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.12005098 ), the Scientific Research Project of Hunan Provincial Department of Education (Grant No.19A431 ), and the Graduate Scientific Research Innovation Project of Hunan Provincial Department of Education (Grant No.CX20210945 ).
    [1]

    张纯祥, 林理彬, 梁宝鎏, 唐强, 李德卉, 罗达玲 2004 物理学报 01 291Google Scholar

    Zhang C X, Lin L B, Liang B L, Tang Q, Li D H, Luo D L 2004 Acta Phys. Sin. 01 291Google Scholar

    [2]

    杨新波, 李红军, 徐军, 程艳, 苏良碧, 唐强 2008 物理学报 57 7900Google Scholar

    Yang X B, Li H J, Cheng Y, Su L B, Tang Q 2008 Acta Phys. Sin. 57 7900Google Scholar

    [3]

    胡克艳, 李红军, 徐军, 杨秋红, 苏良碧, 唐强 2012 物理学报 61 482Google Scholar

    Hu K Y, Li H J, Xu J, Yang Q H, Su L B, Tang Q 2012 Acta Phys. Sin. 61 482Google Scholar

    [4]

    吴丽, 王倩, 李国栋, 窦巧娅, 吉旭 2016 物理学报 65 306Google Scholar

    Wu L, Wang Q, Li G D, Dou Q Y, Ji X 2016 Acta Phys. Sin. 65 306Google Scholar

    [5]

    Elashmawy M, 2018 Nucl. Instrum. Meth. B. 423 49Google Scholar

    [6]

    Hernández J A, Camarillo E G,  Muñoz G, Flores C J, Cabrera E B,  Jaque F,  Romero J J, Garcı́a S J,  Murrieta H S 2001 Opt. Mater. 17 491Google Scholar

    [7]

    Cruz-Zaragoza E, Barboza-Flores M, Chernov V, Meléndrez R, Ramos B S, Negrón-Mendoza A, Hernández J M, Murrieta H 2006 Radiat. Prot. Dosim. 119 102Google Scholar

    [8]

    Cruz-Zaragoza E,  Ortiz A,  Furetta C,  Flores J C,   Hernández A J,  Murrieta S H 2011 Appl. Radiat. Isot. 69 334Google Scholar

    [9]

    Bhujbal P M, Dhoble S J 2012 J. Biomed. Mater. Res. B 100 2148

    [10]

    Nagaoka Y, Adachi S 2014 J. Lumin. 145 797Google Scholar

    [11]

    Bernal R, Cruz-Vázquez C,  Brown F, Tostado-García W, Pérez-Salas R, Castaño V M 2014 Electron. Mater. Lett. 10 863Google Scholar

    [12]

    Gaikwad S U, Patil R R, Kulkarni M S, Bhatt B C, Moharil S V 2016 Am. J. Phys. 84 020510Google Scholar

    [13]

    Gaikwad S U,  Patil R R,  Kulkarni M S,  Dudhe C M,  Moharil S V 2020 Radiat. Prot. Dosim. 192 1Google Scholar

    [14]

    McKeever S W S 1985 Nucl, Instrum. Meth. A. 241 620Google Scholar

    [15]

    李燕飞, 陈建新, 周迎春 2006 个人与环境监测用X, γ辐射热释光剂量测量装置检定规程 (北京: 中国质检出版社) 第12页

    Li Y F, Chen J X, Zhou Y C 2003 Verification Regulation of X/γ-ray Thermoluminescence Dosimeter for Personal and Environmental Monitoring (Beijing: China Quality Inspection press) p12 (in Chinese)

    [16]

    郭志军, 王川, 曾进忠 2014 个人和环境监测用热释光剂量测量系统 (北京: 中国标准出版社) 第21页

    Guo Z J, Wang C, Zeng J Z 2014 Thermoluminescence Dosimetry System for Personal and Environmental Monitoring (Beijing: China Standards Press) p21 (in Chinese)

    [17]

    Krishnakumar D N, Perumal R N 2020 J. Mater. Sci-mater. El. 5 4294Google Scholar

    [18]

    韩斌, 冯天成, 陈伟, 李德红, 吴迪, 寿金翔 2017 核电子学与探测技术 37 1253

    Han B, Feng T D, Chen W, Li D H, Wu D, Shou J X 2017 Nucl. Electron. Detect. Technol. 37 1253 (in Chinese)

    [19]

    赵修良, 陈斌, 何淑雅, 刘丽艳, 孙娜, 贺三军 2018 核电子学与探测技术 38 521Google Scholar

    Zhao X L, Chen B, He S Y, Liu L Y, Su N, He S J 2018 Nucl. Electron. Detect. Technol. 38 521Google Scholar

    [20]

    Mehrabi M, Zahedifar M, Saeidi-Sogh Z,  Ramazani-Moghaddam-Arani A, Sadeghi E, Harooni S 2017 Nucl. Instrum. Meth. A 846 87Google Scholar

  • 图 1  不同烧结温度的NaCl:Cu(2 h, 0.5%)粉末的XRD图样

    Figure 1.  XRD patterns of NaCl: Cu (2 h, 0.5%) powder at different sintering temperatures.

    图 2  (a) 15 kV高压, 放大880倍条件下NaCl:Cu样品的SEM图像; (b) 30 kV高压, 放大38800倍条件下NaCl:Cu样品的SEM图像

    Figure 2.  (a) SEM image of NaCl: Cu sample under 15 kV high voltage and 880 magnification; (b) SEM image of NaCl: Cu sample at 30 kV high voltage and 38800 magnification.

    图 3  (a) 未过筛NaCl:Cu粉末烧结的剂量片光释光响应; (b) 100目过筛NaCl:Cu粉末烧结的剂量片光释光响应

    Figure 3.  (a) The OSL response of sintered dose tablets of unfiltered NaCl: Cu powder; (b) OSL response of sintered dose tablets of 100 mesh screened NaCl: Cu powder.

    图 4  (a) NaCl:Cu剂量片光释光本底测试; (b) NaCl:Cu剂量片光释光衰退特性测试

    Figure 4.  (a) OSL background test of NaCl: Cu dose tablets; (b) measurement of OSL decay characteristics of NaCl: Cu dose tablets.

    图 5  NaCl:Cu剂量片光释光能量响应测试

    Figure 5.  Measurement of OSL energy response of NaCl: Cu dose tablets.

    图 6  剂量元件角度响应

    Figure 6.  Angular response of dose element.

    图 7  NaCl:Cu剂量片及NaCl剂量片光释光剂量线性响应

    Figure 7.  Linear response of OSL dose of NaCl: Cu dose tablets and NaCl dose tablets.

    表 1  重复性实验测量数据

    Table 1.  Measurement data of repeatability experiment.

    测量次数1组响应2组响应3组响应4组响应平均响应
    11914517132153971726917235.75
    21866715736173541904117699.5
    31639518879174371897517921.5
    41757618664174851853118064
    51811118978190091780218475
    DownLoad: CSV
  • [1]

    张纯祥, 林理彬, 梁宝鎏, 唐强, 李德卉, 罗达玲 2004 物理学报 01 291Google Scholar

    Zhang C X, Lin L B, Liang B L, Tang Q, Li D H, Luo D L 2004 Acta Phys. Sin. 01 291Google Scholar

    [2]

    杨新波, 李红军, 徐军, 程艳, 苏良碧, 唐强 2008 物理学报 57 7900Google Scholar

    Yang X B, Li H J, Cheng Y, Su L B, Tang Q 2008 Acta Phys. Sin. 57 7900Google Scholar

    [3]

    胡克艳, 李红军, 徐军, 杨秋红, 苏良碧, 唐强 2012 物理学报 61 482Google Scholar

    Hu K Y, Li H J, Xu J, Yang Q H, Su L B, Tang Q 2012 Acta Phys. Sin. 61 482Google Scholar

    [4]

    吴丽, 王倩, 李国栋, 窦巧娅, 吉旭 2016 物理学报 65 306Google Scholar

    Wu L, Wang Q, Li G D, Dou Q Y, Ji X 2016 Acta Phys. Sin. 65 306Google Scholar

    [5]

    Elashmawy M, 2018 Nucl. Instrum. Meth. B. 423 49Google Scholar

    [6]

    Hernández J A, Camarillo E G,  Muñoz G, Flores C J, Cabrera E B,  Jaque F,  Romero J J, Garcı́a S J,  Murrieta H S 2001 Opt. Mater. 17 491Google Scholar

    [7]

    Cruz-Zaragoza E, Barboza-Flores M, Chernov V, Meléndrez R, Ramos B S, Negrón-Mendoza A, Hernández J M, Murrieta H 2006 Radiat. Prot. Dosim. 119 102Google Scholar

    [8]

    Cruz-Zaragoza E,  Ortiz A,  Furetta C,  Flores J C,   Hernández A J,  Murrieta S H 2011 Appl. Radiat. Isot. 69 334Google Scholar

    [9]

    Bhujbal P M, Dhoble S J 2012 J. Biomed. Mater. Res. B 100 2148

    [10]

    Nagaoka Y, Adachi S 2014 J. Lumin. 145 797Google Scholar

    [11]

    Bernal R, Cruz-Vázquez C,  Brown F, Tostado-García W, Pérez-Salas R, Castaño V M 2014 Electron. Mater. Lett. 10 863Google Scholar

    [12]

    Gaikwad S U, Patil R R, Kulkarni M S, Bhatt B C, Moharil S V 2016 Am. J. Phys. 84 020510Google Scholar

    [13]

    Gaikwad S U,  Patil R R,  Kulkarni M S,  Dudhe C M,  Moharil S V 2020 Radiat. Prot. Dosim. 192 1Google Scholar

    [14]

    McKeever S W S 1985 Nucl, Instrum. Meth. A. 241 620Google Scholar

    [15]

    李燕飞, 陈建新, 周迎春 2006 个人与环境监测用X, γ辐射热释光剂量测量装置检定规程 (北京: 中国质检出版社) 第12页

    Li Y F, Chen J X, Zhou Y C 2003 Verification Regulation of X/γ-ray Thermoluminescence Dosimeter for Personal and Environmental Monitoring (Beijing: China Quality Inspection press) p12 (in Chinese)

    [16]

    郭志军, 王川, 曾进忠 2014 个人和环境监测用热释光剂量测量系统 (北京: 中国标准出版社) 第21页

    Guo Z J, Wang C, Zeng J Z 2014 Thermoluminescence Dosimetry System for Personal and Environmental Monitoring (Beijing: China Standards Press) p21 (in Chinese)

    [17]

    Krishnakumar D N, Perumal R N 2020 J. Mater. Sci-mater. El. 5 4294Google Scholar

    [18]

    韩斌, 冯天成, 陈伟, 李德红, 吴迪, 寿金翔 2017 核电子学与探测技术 37 1253

    Han B, Feng T D, Chen W, Li D H, Wu D, Shou J X 2017 Nucl. Electron. Detect. Technol. 37 1253 (in Chinese)

    [19]

    赵修良, 陈斌, 何淑雅, 刘丽艳, 孙娜, 贺三军 2018 核电子学与探测技术 38 521Google Scholar

    Zhao X L, Chen B, He S Y, Liu L Y, Su N, He S J 2018 Nucl. Electron. Detect. Technol. 38 521Google Scholar

    [20]

    Mehrabi M, Zahedifar M, Saeidi-Sogh Z,  Ramazani-Moghaddam-Arani A, Sadeghi E, Harooni S 2017 Nucl. Instrum. Meth. A 846 87Google Scholar

  • [1] Yang Jun, Zhao Xiu-Liang, Chen Rui-Da, Hou Jia-Bin, Hou Yu-Miao, He San-Jun, Zhou Chao, Liu Li-Yan. Thermoluminescence peak temperature shift characteristics of NaCl, NaCl:Al, and NaCl:Ca. Acta Physica Sinica, 2024, 73(13): 137801. doi: 10.7498/aps.73.20240231
    [2] Xiao Jun-Ru, Liu Zhong-Wu, Lou Hua-Shan, Zhan Hui-Xiong. Coercivity enhancement of waste Nd-Fe-B magnets by Pr70Cu30 grain boundary diffusion process. Acta Physica Sinica, 2018, 67(6): 067502. doi: 10.7498/aps.67.20172551
    [3] Guo Jing-Yuan, Tang Qiang, Tang Hua-Ming, Zhang Chun-Xiang, Luo Da-Ling, Liu Xiao-Wei. Thermoluminescence and optical stimulated luminescence trap parameters of LiMgPO4: Tm, Tb. Acta Physica Sinica, 2017, 66(10): 107802. doi: 10.7498/aps.66.107802
    [4] Wu Li, Wang Qian, Li Guo-Dong, Dou Qiao-Ya, Ji Xu. Thermoluminescence and optically stimulated luminescence characteristics of Al2O3:C films annealed at different tempeartures. Acta Physica Sinica, 2016, 65(3): 037802. doi: 10.7498/aps.65.037802
    [5] Luo Da-Ling, Tang Qiang, Guo Jing-Yuan, Zhang Chun-Xiang. Isoelectronic traps and thermoluminescence characteristics in MSO4:Eu2+ (M =Mg, Ca, Sr, Ba). Acta Physica Sinica, 2015, 64(8): 087805. doi: 10.7498/aps.64.087805
    [6] Wu Fang, Wang Wei. Thermoelectric properties of the Bi2Te3 nanocrystalline bulk alloy pressed by the high-pressure sintering. Acta Physica Sinica, 2015, 64(4): 047201. doi: 10.7498/aps.64.047201
    [7] Liu Xiao-Bo, Shi Hong-Yu, Chen Bo, Jiang Yan-Sheng, Xu Zhuo, Zhang An-Xue. Studies on the mechanism of refractive index gradient surface. Acta Physica Sinica, 2014, 63(21): 214201. doi: 10.7498/aps.63.214201
    [8] Hu Ke-Yan, Li Hong-Jun, Xu Jun, Yang Qiu-Hong, Su Liang-Bi, Tang Qiang. Thermoluminescence and optically stimulated luminescence characteristics of -Al2O3:C crystal powder of different particle size. Acta Physica Sinica, 2012, 61(15): 157802. doi: 10.7498/aps.61.157802
    [9] Mu Zhong-Fei, Wang Yin-Hai, Hu Yi-Hua, Wu Hao-Yi, Deng Liu-Yong, Xie Wei, Fu Chu-Jun, Liao Chen-Xing. The afterglow and thermoluminescence properties of Y3Al5O12∶ Ce3+. Acta Physica Sinica, 2011, 60(1): 013201. doi: 10.7498/aps.60.013201
    [10] Сабирзянов А А, Попель П С, Mi Guang-Bao, Li Pei-Jie, Охапкин А В, Константинова Н Ю. Relationship between liquid structure and property Ⅰ— Kinematic viscosity of magnesium melt and its relationship with the microstructure. Acta Physica Sinica, 2011, 60(4): 046601. doi: 10.7498/aps.60.046601
    [11] Zhang Bin, Zhang Hao-Jia, Yang Qiu-Hong, Lu Shen-Zhou. The fluorescence and thermoluminescence characteristics of α-Al2O3 transparent ceramics. Acta Physica Sinica, 2010, 59(2): 1333-1337. doi: 10.7498/aps.59.1333
    [12] Yang Xin-Bo, Li Hong-Jun, Xu Jun, Cheng Yan, Su Liang-Bi, Tang Qiang. Thermoluminescence and optically stimulated luminescence characteristics of α-Al2O3:C crystal. Acta Physica Sinica, 2008, 57(12): 7900-7905. doi: 10.7498/aps.57.7900
    [13] Tang Qiang, Zhang Chun-Xiang, Leung P. L., Mike Li, Luo Da-Ling. Optically stimulated luminescence in SrSO4: Eu phosphors. Acta Physica Sinica, 2005, 54(1): 64-69. doi: 10.7498/aps.54.64
    [14] Zhang Chun-Xiang, Lin Li-Bin, P. L. Leung, Tang Qiang, Mike Li, Luo Da-Ling. Thermoluminescence and optical stimulated luminescence of undoped α-Al2O3 single crystal. Acta Physica Sinica, 2004, 53(1): 291-295. doi: 10.7498/aps.53.291
    [15] Zhang Chun-Xiang, Tang Qiang, Luo Da-Ling. . Acta Physica Sinica, 2002, 51(12): 2881-2886. doi: 10.7498/aps.51.2881
    [16] LIU BO, SHI CHAO-SHU, ZHOU DONG-FANG, QI ZE-MING, HU GUAN-QIN, TANG HONG-GAO. INFLUENCE OF Gd3+ AND Y3+-DOPING ON LOW TEMPERATURE THERMOLUMINESCENCE OF Pb WO_4. Acta Physica Sinica, 2001, 50(8): 1627-1631. doi: 10.7498/aps.50.1627
    [17] XU KE-XI, ZHOU SHI-PING, BAO JIA-SHAN. NONLINEAR OPTICAL RESPONSE OF EPITAXIAL YBa2Cu3O7-δ FILMS. Acta Physica Sinica, 1998, 47(2): 307-315. doi: 10.7498/aps.47.307
    [18] Yang Miao, Si Jin-Hai, Wang Yu-Xiao, Li Chun-Fei. . Acta Physica Sinica, 1995, 44(3): 419-426. doi: 10.7498/aps.44.419
    [19] YANG GUANG-CAN. THE NONLINEAR THEORY OF INTERACTION BETWEEN LIGHT AND MATTER DESCRIBED BY q-DEFOR- MED OSCILLATOR MODEL. Acta Physica Sinica, 1994, 43(4): 521-529. doi: 10.7498/aps.43.521
    [20] NEW MATERIALS LABORATORY. ON THE HYSTERESIS LOOPS OF LIQUID-PHASE-SINTERED SmCo5, PERMANENT MAGNET AT VARIOUS TEMPERATURES. Acta Physica Sinica, 1976, 25(6): 536-540. doi: 10.7498/aps.25.536
Metrics
  • Abstract views:  5148
  • PDF Downloads:  49
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2022
  • Accepted Date:  09 February 2022
  • Available Online:  22 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回