Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

One-dimensional structures in nanoconfinement

Chang Jing Chen Ji

Citation:

One-dimensional structures in nanoconfinement

Chang Jing, Chen Ji
PDF
HTML
Get Citation
  • Exploring the structure of low-dimensional materials is a key step towards a complete understanding of condensed matter. In recent years, owing to the fast developing of research tools, novel structures of many elements have been reported, revealing the possibility of new properties. Refining the investigation of one-dimensional atomic chain structures has thus received a great amount of attention in the field of condensed matter physics, materials science and chemistry. In this paper, we review the recent advances in the study of confined structures under nanometer environments. We mainly discuss the most interesting structures revealed and the experimental and theoretical methods adopted in these researches, and we also briefly discuss the properties related to the new structures. We particularly focus on elemental materials, which show the richness of one-dimensional structures in vacuum and in nanoconfinement. By understanding the binding and stability of various structures and their properties, we expect that one-dimensional materials should attract a broad range of interest in new materials discovery and new applications. Moreover, we reveal the challenges in accurate theoretical simulations of one-dimensional materials in nanoconfinement, and we provide an outlook of how to overcome such challenges in the future.
      Corresponding author: Chen Ji, ji.chen@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974024).
    [1]

    Zhu C Q, Gao Y R, Zhu W D, Liu Y, Francisco J S, Zeng X C 2020 J. Phys. Chem. Lett. 11 7449Google Scholar

    [2]

    Georgakilas V, Perman J A, Tucek J, Zboril R 2015 Chem. Rev. 115 4744Google Scholar

    [3]

    De Volder M F L, Tawfick S H, Baughman R H, Hart A 2013 Science 339 535Google Scholar

    [4]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar

    [5]

    Charlier J C, Blase X, Roche S 2007 Rev. Mod. Phys. 79 677Google Scholar

    [6]

    Pitzer K S, Clementi E 1959 J. Am. Chem. Soc. 81 4477Google Scholar

    [7]

    Gibtner T, Hampel F, Gisselbrecht J P, Hirsch A 2002 Chem. Eur. J. 8 408Google Scholar

    [8]

    Chalifoux W A, Tykwinski R R 2010 Nat. Chem. 2 967Google Scholar

    [9]

    Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala1 P, Pichler T 2016 Nat. Mater. 15 634Google Scholar

    [10]

    Yao Z, Liu C J, Li Y, Jing X D, Meng F S, Zheng S P, Zhao X, Li J H, Qiu Z Y, Yuan Y, Wang W X, Bi L, Liu H, Zhang Y P, Liu B B 2016 Chin. Phys. B 25 096105Google Scholar

    [11]

    Fan L L, Yang D R, Li D S 2021 Materials 14 3964Google Scholar

    [12]

    Luo K, Zhao Z S, Ma M D, Zhang S S, Yuan X H, Gao G Y, Zhou X F, He J L, Yu D L, Liu Z G, Xu B, Tian Y J 2016 Chem. Mater. 28 6441Google Scholar

    [13]

    Sung H J, Han W H, Lee I H, Chang K J 2018 Phys. Rev. Lett. 120 157001Google Scholar

    [14]

    Huang W Q, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2020 J. Appl. Phys. 128 215108Google Scholar

    [15]

    Yang T H, Chen C H, Chatterjee A, Li H Y, Lo J T, Wu C T, Chen K H, Chen L C 2003 Chem. Phys. Lett. 379 155Google Scholar

    [16]

    Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L B, Cui Y 2012 Nat. Nanotechnol. 7 310Google Scholar

    [17]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [18]

    Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L B, Nix W D, Cui Y 2011 Nano Lett. 11 2949Google Scholar

    [19]

    Olijnyk H, Sikka S K, Holzapfel W B 1984 Phys. Lett. A 103 137Google Scholar

    [20]

    Khokhlov A F, Mashin A I, Khokhlov D A 1998 JETP Lett. 67 675Google Scholar

    [21]

    Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863Google Scholar

    [22]

    Liu M J, Artyukhov V I, Yakobson B I 2017 J. Am. Chem. Soc. 139 2111Google Scholar

    [23]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [24]

    Abou-Rachid H, Hu A G, Timoshevskii V, Song Y F, Lussier L S 2008 Phys. Rev. Lett. 100 196401Google Scholar

    [25]

    Ji W, Timoshevskii V, Guo H, Abou-Rachid H, Lussier L S 2009 Appl. Phys. Lett. 95 021904Google Scholar

    [26]

    Li Y L, Bai H C, Lin F X, Huang Y H 2018 Physica E 103 444Google Scholar

    [27]

    Kramberger C, Thurakitseree T, Koh H, Izumi Y, Kinoshita T, Muro T, Einarsson E, Maruyama S 2013 Carbon 55 196Google Scholar

    [28]

    Hart M, White E R, Chen J, McGilvery C M, Pickard C J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2017 Angew. Chem. Int. Ed. 56 8144Google Scholar

    [29]

    Zhang J Y, Fu C C, Song S X, Du H C, Zhao D, Huang H Y, Zhang L H, Guan J, Zhang Y F, Zhao X L, Ma C S, Jia C L, Tománek D 2020 Nano Lett. 20 1280Google Scholar

    [30]

    Deringer V L, Pickard C J, Proserpio D M. 2020 Angew. Chem. Int. Ed. 59 15880Google Scholar

    [31]

    Hart M, Chen J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2018 Angew. Chem. Int. Ed. 57 11649Google Scholar

    [32]

    Hart M, Chen J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2019 Inorg. Chem. 58 15216Google Scholar

    [33]

    Kitaura R, Kitagawa S, Kubota Y, Kobayashi Tatsuo C, Kindo K, Mita Y, Matsuo A, Kobayashi M, Chang H C, Ozawa T C, Suzuki M, Sakata M, Masaki T 2002 Science 298 2358Google Scholar

    [34]

    Hanami K, Umesaki T, Matsuda K, Miyata Y, Kataura H, Okabe Y, Maniwa Y 2010 J. Phys. Soc. Jpn. 79 023601Google Scholar

    [35]

    Hagiwara M, Ikeda M, Kida T, Matsuda K, Tadera S, Kyakuno H, Yanagi K, Maniwa Y, Okunishi K 2014 J. Phys. Soc. Jpn. 83 113706Google Scholar

    [36]

    Massote D V P, Mazzoni M S C 2014 J. Phys. Chem. C 118 24741Google Scholar

    [37]

    Ji X L, Lee K T, Nazar L F 2009 Nat. Mater. 8 500Google Scholar

    [38]

    Springborg M, Jones R O 1986 Phys. Rev. Lett. 57 1145Google Scholar

    [39]

    Fujimori T, Morelos A, Zhu Z, Muramatsu H, Futamura1 R, Urita K, Terrones M, Hayashi T, Endo M, Hong S Y, ChoI Y C, Tomanek D, Kaneko Katsumi 2013 Nat. Commun. 4 2162Google Scholar

    [40]

    Chancolon J, Archaimbault F, Bonnamy S, Traverse A, Olivi L, Vlaic G 2006 J. Non-Cryst. Solids 352 99Google Scholar

    [41]

    Fujimori T, dos Santos R B, Hayashi T, Endo M, Kaneko K, Tománek D 2013 ACS Nano 7 5607Google Scholar

    [42]

    Grigorian L, Williams K A, Fang S, Sumanasekera G U, Loper A L, Dickey E C, Pennycook S J, Eklund P C 1998 Phys. Rev. Lett. 80 5560Google Scholar

    [43]

    Fan X, Dickey E C, Eklund P C, Williams K A, Grigorian L, Buczko R, Pantelides S T, Pennycook S J 2000 Phys. Rev. Lett. 84 4621Google Scholar

    [44]

    Guan L H, Suenaga K, Shi Z J, Gu Z N, Iijima S 2007 Nano Lett. 7 1532Google Scholar

    [45]

    Komsa H P, Senga R, Suenaga K, Krasheninnikov A V 2017 Nano Lett. 17 3694Google Scholar

  • 图 1  碳元素一维结构示意图 (a) C元素一维卡宾直链; (b) C元素一维螺旋链. 左侧为径向视角, 右侧为接近轴向的视角

    Figure 1.  Schematic diagram of one-dimensional structures of carbon: (a) Carbyne chain; (b) carbon helical chain. Left and right panels are radial and axial view.

    图 2  磷元素一维同素异形体链结构示意图. 其中第一行括号中D代表纳米管的直径, 不同一维限域磷结构稳定存在于相应的区间[28]

    Figure 2.  Structures of one-dimensional phosphorus. The D values in the bracket of the first row indicate the widths of carbon nanotube where the corresponding confined one-dimensional phosphorus are stable[28].

    图 3  碳纳米管中一维P((a)—(c))和As((d)—(f))链结构高分辨率透射电子显微镜图像及其相应的结构示意图[32]. 每幅图显示了实验图像(左)、模拟图像(中)以及相应原子模型(右). 结构包括P4/As4结构((a)和(d))、锯齿梯形结构((b)和(e)), 以及锯齿单链结构((c)和(f))

    Figure 3.  High resolution transmission electron microscopy (HRTEM) imaging and structure models for one-dimensional phosphorus ((a)–(c)) and arsenic ((d)–(f)) in carbon nanotube[32]. In each panel, from left to right is experimental image, simulated image and structure model, respectively. The structures include the tetrahedral molecular structure ((a), (d)), the zigzag ladder structure ((b), (e)) and the single zigzag chain structure ((c), (f)).

    图 4  O元素(a)和S元素(b)的典型一维同素异形体链结构示意图[34] (a) 从上到下分别是长方体笼型O8链、交叉梯形结构和锯齿梯形结构; (b) 从上往下依次是单链结构、双链结构和锯齿单链结构

    Figure 4.  One-dimensional allotropes of oxygen (a) and sulfur (b) [34]: (a) It shows a O8 chain, an alternating ladder structure and a zigzag ladder structure from top to bottom; (b) It shows a single chain, a double chain and a zigzag chain structure from top to bottom.

    图 5  (a) 单臂碳纳米管中一维直线型硫链的高分辨透射电子显微镜图像[39]; (b) 单臂碳纳米管中锯齿型硫链结构的高分辨透射电子显微镜图像[39]; (c) 双臂碳纳米管中的一维线性链的高分辨透射电子显微镜图像[39]; (d) 图(a)—(c)中结构对应的X射线衍射谱[39]

    Figure 5.  (a) HRTEM images of one-dimensional linear sulfur chain in single-wall carbon nanotube (CNT) [39]; (b) HRTEM images of the zigzag sulfur chain in single-wall CNT[39]; (c) HRTEM images of linear sulfur chain in double-wall CNT[39]; (d) X-ray diffraction curves of structures in panels (a)–(c)[39].

    图 6  用单壁碳纳米管封装的碘原子链的高分辨电子显微镜图像[44] (a) 直径(1.05 ± 0.05) nm单壁碳纳米管中的单螺旋碘链结构; (b) 直径(1.30 ± 0.05) nm单壁碳纳米管中的双螺旋碘链结构; (c) 直径(1.40 ± 0.05) nm单壁碳纳米管中的三螺旋碘链结构图

    Figure 6.  HRTEM images of one-dimensional iodine chain in single-wall CNT[44]: (a) Single helical iodine structure in CNT with diameter of (1.05 ± 0.05) nm; (b) double helical iodine structure in CNT with diameter of (1.35 ± 0.05) nm; (c) triple helical iodine structure in CNT with diameter of (1.45 ± 0.05) nm.

  • [1]

    Zhu C Q, Gao Y R, Zhu W D, Liu Y, Francisco J S, Zeng X C 2020 J. Phys. Chem. Lett. 11 7449Google Scholar

    [2]

    Georgakilas V, Perman J A, Tucek J, Zboril R 2015 Chem. Rev. 115 4744Google Scholar

    [3]

    De Volder M F L, Tawfick S H, Baughman R H, Hart A 2013 Science 339 535Google Scholar

    [4]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar

    [5]

    Charlier J C, Blase X, Roche S 2007 Rev. Mod. Phys. 79 677Google Scholar

    [6]

    Pitzer K S, Clementi E 1959 J. Am. Chem. Soc. 81 4477Google Scholar

    [7]

    Gibtner T, Hampel F, Gisselbrecht J P, Hirsch A 2002 Chem. Eur. J. 8 408Google Scholar

    [8]

    Chalifoux W A, Tykwinski R R 2010 Nat. Chem. 2 967Google Scholar

    [9]

    Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala1 P, Pichler T 2016 Nat. Mater. 15 634Google Scholar

    [10]

    Yao Z, Liu C J, Li Y, Jing X D, Meng F S, Zheng S P, Zhao X, Li J H, Qiu Z Y, Yuan Y, Wang W X, Bi L, Liu H, Zhang Y P, Liu B B 2016 Chin. Phys. B 25 096105Google Scholar

    [11]

    Fan L L, Yang D R, Li D S 2021 Materials 14 3964Google Scholar

    [12]

    Luo K, Zhao Z S, Ma M D, Zhang S S, Yuan X H, Gao G Y, Zhou X F, He J L, Yu D L, Liu Z G, Xu B, Tian Y J 2016 Chem. Mater. 28 6441Google Scholar

    [13]

    Sung H J, Han W H, Lee I H, Chang K J 2018 Phys. Rev. Lett. 120 157001Google Scholar

    [14]

    Huang W Q, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2020 J. Appl. Phys. 128 215108Google Scholar

    [15]

    Yang T H, Chen C H, Chatterjee A, Li H Y, Lo J T, Wu C T, Chen K H, Chen L C 2003 Chem. Phys. Lett. 379 155Google Scholar

    [16]

    Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L B, Cui Y 2012 Nat. Nanotechnol. 7 310Google Scholar

    [17]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [18]

    Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L B, Nix W D, Cui Y 2011 Nano Lett. 11 2949Google Scholar

    [19]

    Olijnyk H, Sikka S K, Holzapfel W B 1984 Phys. Lett. A 103 137Google Scholar

    [20]

    Khokhlov A F, Mashin A I, Khokhlov D A 1998 JETP Lett. 67 675Google Scholar

    [21]

    Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863Google Scholar

    [22]

    Liu M J, Artyukhov V I, Yakobson B I 2017 J. Am. Chem. Soc. 139 2111Google Scholar

    [23]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [24]

    Abou-Rachid H, Hu A G, Timoshevskii V, Song Y F, Lussier L S 2008 Phys. Rev. Lett. 100 196401Google Scholar

    [25]

    Ji W, Timoshevskii V, Guo H, Abou-Rachid H, Lussier L S 2009 Appl. Phys. Lett. 95 021904Google Scholar

    [26]

    Li Y L, Bai H C, Lin F X, Huang Y H 2018 Physica E 103 444Google Scholar

    [27]

    Kramberger C, Thurakitseree T, Koh H, Izumi Y, Kinoshita T, Muro T, Einarsson E, Maruyama S 2013 Carbon 55 196Google Scholar

    [28]

    Hart M, White E R, Chen J, McGilvery C M, Pickard C J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2017 Angew. Chem. Int. Ed. 56 8144Google Scholar

    [29]

    Zhang J Y, Fu C C, Song S X, Du H C, Zhao D, Huang H Y, Zhang L H, Guan J, Zhang Y F, Zhao X L, Ma C S, Jia C L, Tománek D 2020 Nano Lett. 20 1280Google Scholar

    [30]

    Deringer V L, Pickard C J, Proserpio D M. 2020 Angew. Chem. Int. Ed. 59 15880Google Scholar

    [31]

    Hart M, Chen J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2018 Angew. Chem. Int. Ed. 57 11649Google Scholar

    [32]

    Hart M, Chen J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2019 Inorg. Chem. 58 15216Google Scholar

    [33]

    Kitaura R, Kitagawa S, Kubota Y, Kobayashi Tatsuo C, Kindo K, Mita Y, Matsuo A, Kobayashi M, Chang H C, Ozawa T C, Suzuki M, Sakata M, Masaki T 2002 Science 298 2358Google Scholar

    [34]

    Hanami K, Umesaki T, Matsuda K, Miyata Y, Kataura H, Okabe Y, Maniwa Y 2010 J. Phys. Soc. Jpn. 79 023601Google Scholar

    [35]

    Hagiwara M, Ikeda M, Kida T, Matsuda K, Tadera S, Kyakuno H, Yanagi K, Maniwa Y, Okunishi K 2014 J. Phys. Soc. Jpn. 83 113706Google Scholar

    [36]

    Massote D V P, Mazzoni M S C 2014 J. Phys. Chem. C 118 24741Google Scholar

    [37]

    Ji X L, Lee K T, Nazar L F 2009 Nat. Mater. 8 500Google Scholar

    [38]

    Springborg M, Jones R O 1986 Phys. Rev. Lett. 57 1145Google Scholar

    [39]

    Fujimori T, Morelos A, Zhu Z, Muramatsu H, Futamura1 R, Urita K, Terrones M, Hayashi T, Endo M, Hong S Y, ChoI Y C, Tomanek D, Kaneko Katsumi 2013 Nat. Commun. 4 2162Google Scholar

    [40]

    Chancolon J, Archaimbault F, Bonnamy S, Traverse A, Olivi L, Vlaic G 2006 J. Non-Cryst. Solids 352 99Google Scholar

    [41]

    Fujimori T, dos Santos R B, Hayashi T, Endo M, Kaneko K, Tománek D 2013 ACS Nano 7 5607Google Scholar

    [42]

    Grigorian L, Williams K A, Fang S, Sumanasekera G U, Loper A L, Dickey E C, Pennycook S J, Eklund P C 1998 Phys. Rev. Lett. 80 5560Google Scholar

    [43]

    Fan X, Dickey E C, Eklund P C, Williams K A, Grigorian L, Buczko R, Pantelides S T, Pennycook S J 2000 Phys. Rev. Lett. 84 4621Google Scholar

    [44]

    Guan L H, Suenaga K, Shi Z J, Gu Z N, Iijima S 2007 Nano Lett. 7 1532Google Scholar

    [45]

    Komsa H P, Senga R, Suenaga K, Krasheninnikov A V 2017 Nano Lett. 17 3694Google Scholar

  • [1] Qi Kai, Zhu Xing-Guang, Wang Jun, Xia Guo-Dong. Heat transfer characteristics of solid-liquid interface on nanostructure surface under external electric field. Acta Physica Sinica, 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin. Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures. Acta Physica Sinica, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [3] Li Wen, Ma Xiao-Jing, Xu Jin-Liang, Wang Yan, Lei Jun-Peng. Effects of base angle and wettability of nanostructures on droplet wetting behaviors. Acta Physica Sinica, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [4] Hu Meng-Dan, Zhang Qing-Yu, Sun Dong-Ke, Zhu Ming-Fang. Three-dimensional lattice Boltzmann modeling of droplet condensation on superhydrophobic nanostructured surfaces. Acta Physica Sinica, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [5] Wang Dan, He Yong-Ning, Ye Ming, Cui Wan-Zhao. Secondary electron emission characteristics of gold nanostructures. Acta Physica Sinica, 2018, 67(8): 087902. doi: 10.7498/aps.67.20180079
    [6] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [7] Chen Xiu-Guo, Yuan Kui, Du Wei-Chao, Chen Jun, Jiang Hao, Zhang Chuan-Wei, Liu Shi-Yuan. Large-scale nanostructure metrology using Mueller matrix imaging ellipsometry. Acta Physica Sinica, 2016, 65(7): 070703. doi: 10.7498/aps.65.070703
    [8] Hua Yu-Chao, Cao Bing-Yang. A model for phonon thermal conductivity of multi-constrained nanostructures. Acta Physica Sinica, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [9] Liu Tian-Qing, Sun Wei, Li Xiang-Qin, Sun Xiang-Yu, Ai Hong-Ru. A theoretical study on coalescence-induced jumping of partially wetted condensed droplets on nano-textured surfaces. Acta Physica Sinica, 2014, 63(8): 086801. doi: 10.7498/aps.63.086801
    [10] Gao Xiang, Chen Xiao-Bo, Li Jun, Li Jia-Ming. Optimum valence bond scheme for its applications to the prediction of nano-structures and the study of matter properties. Acta Physica Sinica, 2013, 62(9): 093601. doi: 10.7498/aps.62.093601
    [11] Han Yu-Yan, Cao Liang, Xu Fa-Qiang, Chen Tie-Xin, Zheng Zhi-Yuan, Wan Li, Liu Ling-Yun. Preparation and investigation of the formation mechanism of organic single crystal nanostructures of PTCDA. Acta Physica Sinica, 2012, 61(7): 078103. doi: 10.7498/aps.61.078103
    [12] Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui, Zhang Fan, Luo Jun. Synthesis and characterization of Sb2Te3 nanostructures. Acta Physica Sinica, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [13] Cheng Du-Qing, Guan Qing-Feng, Zhu Jian, Qiu Dong-Hua, Cheng Xiu-Wei, Wang Xue-Tao. Mechanism of surface nanocrystallization in pure nickel induced by high-current pulsed electron beam. Acta Physica Sinica, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [14] Jia Xi, Liu Ai-Ping, Liu Yang-Yi, Tang Wei-Hua, Wang Jun-Wei. Synthesis and growth mechanism study of SnO2 micro/nanomaterials. Acta Physica Sinica, 2009, 58(4): 2572-2577. doi: 10.7498/aps.58.2572
    [15] Wu Xiang, Cai Wei, Qu Feng-Yu. Tailoring the morphology and wettability of ZnO one-dimensional nanostructures. Acta Physica Sinica, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [16] Li Ai-Hua, Zhang Kai-Wang, Meng Li-Jun, Li Jun, Liu Wen-Liang, Zhong Jian-Xin. Novel silicon nanostructures based on graphene ribbons. Acta Physica Sinica, 2008, 57(7): 4356-4363. doi: 10.7498/aps.57.4356
    [17] Ma Hai-Lin, Su Qing, Lan Wei, Liu Xue-Qin. Influence of oxygen pressure on the structure and photoluminescence of β-Ga2O3 nano-material prepared by thermal evaporation. Acta Physica Sinica, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [18] Yang Hong-Guan, Shi Yi, Lü Jin, Pu Lin, Zhang Rong, Zheng You-Dou. Hole storage characteristics in Ge/Si hetero-nanocrystal-based memories. Acta Physica Sinica, 2004, 53(4): 1211-1216. doi: 10.7498/aps.53.1211
    [19] Zhang Hong-Tao, Xu Chong-Yang, Zhou Xue-Cheng, Wang Chang-An, Zhao Bo-Fang, Zhou Xue-Mei, Zeng Xiang-Bin. . Acta Physica Sinica, 2002, 51(2): 304-309. doi: 10.7498/aps.51.304
    [20] DU YOU-WEI, CHEN PENG, ZHU JIAN-MIN, XING DING-YU. GIANT TUNNELING MAGNETORESISTANCE IN NANOSTRUCTURED ZnxFe3-xO4-α-Fe2O3 POLYCRYSTALLINE MATERIAL. Acta Physica Sinica, 2001, 50(11): 2275-2277. doi: 10.7498/aps.50.2275
Metrics
  • Abstract views:  6972
  • PDF Downloads:  324
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2022
  • Accepted Date:  25 February 2022
  • Available Online:  09 March 2022
  • Published Online:  20 June 2022

/

返回文章
返回