Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-purity longitudinal needle-shaped magnetization fields produced in uniaxial crystals

Xu Lin-Xi Zhu Rong-Qi Zhu Zhu-Qing Gong Li-Ping Gu Bing

Citation:

High-purity longitudinal needle-shaped magnetization fields produced in uniaxial crystals

Xu Lin-Xi, Zhu Rong-Qi, Zhu Zhu-Qing, Gong Li-Ping, Gu Bing
PDF
HTML
Get Citation
  • Based on the Richard-Wolf vector diffraction theory and the inverse Faraday effect, a method of generating a high-purity longitudinal needle-shaped magnetization field in the uniaxial crystal is proposed. In this method, the inverse radiation of the electric dipole in the uniaxial crystal is used to construct an optimal entry pupil light field through regulating the multi-parameter of the number of electric dipole pairs N and their array, and then the magnetization field of the desired target is obtained by forward tightly focusing. The simulation results show that when N = 1, the focal length of the magnetic field generated in the uniaxial crystal increases by 1.4 times and the lateral resolution increases by 5% compared with the counterparts in an isotropic medium. It can be further seen that when N = 2 and N = 3, with the increase of the number of electric dipole pairs, the focal length of the needle magnetic field generated in the uniaxial crystal increases by 10%, and the lateral resolution increases by 18%. The purity of the needle magnetic field gradually increases to 1 as the magnetization field profile surface value changes from 0.1 to 1. Especially when N = 2 and the contour surface value is 0.1, the magnetic field purity is as high as 95%. The results provide a feasible scheme for generating a longitudinal magnetization field with higher purity and longer focal length in an anisotropic medium, and also present the theoretical guidance for selecting optimal pupil beams in practical applications such as all-optical magnetic recording, atom capture and lithography.
      Corresponding author: Zhu Zhu-Qing, zhuqingzhu@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174196, 12104288).
    [1]

    Majors P D, Minard K R, Ackerman E J, Holtom G R, Hopkins D F, Parkinson C I, Weber T J, Wind R A 2002 Rev. Sci. Instrum. 73 4329Google Scholar

    [2]

    Atutov S N, Calabrese R, Guidi V, Mai B, Rudavets A G, Scansani E, Tomassetti L, Biancalana V, Burchianti A, Marinelli C, Mariotti E, Moi L, Veronesi S 2003 Phys. Rev. A 67 053401Google Scholar

    [3]

    Phelan C F, Hennessy T, Busch T 2013 Opt. Express 21 27093Google Scholar

    [4]

    Grinolds M S, Warner M, De Greve K, Dovzhenko Y, Thiel L, Walsworth R L, Hong S, Maletinsky P, Yacoby A 2014 Nat. Nanotechnol. 9 279Google Scholar

    [5]

    van der Ziel J P, Pershan P S, Malmstrom L D 1965 Phys. Rev. Lett. 15 190Google Scholar

    [6]

    Weller D, Moser A 1999 IEEE Trans. Magn. 35 6Google Scholar

    [7]

    Albrecht M, Rettner C T, Moser A, Best M E, Terris B D 2002 Appl. Phys. Lett. 81 2875Google Scholar

    [8]

    Helseth L E 2011 Opt. Lett. 36 987Google Scholar

    [9]

    Yan W, Nie Z, Liu X, Lan G, Zhang X, Wang Y, Song Y 2018 Opt. Express. 26 16824Google Scholar

    [10]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [11]

    Zhang Y, Bai J 2008 Phys. Lett. A 372 6294Google Scholar

    [12]

    Jiang Y, Li X, Gu M 2013 Opt. Lett. 38 2957Google Scholar

    [13]

    Wang S, Cao Y, Li X 2017 Opt. Lett. 42 5050Google Scholar

    [14]

    Luo J, Zhang H, Wang S, Shi L, Zhu Z, Gu B, Wang X, Li X 2019 Opt. Lett. 44 727Google Scholar

    [15]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655Google Scholar

    [16]

    Astakhov G V, Kimel A V, Schott G M, Tsvetkov A A, Kirilyuk A, Yakovlev D R, Karczewski G, Ossau W, Schmidt G, Molenkamp L W, Rasing T 2005 Appl. Phys. Lett. 86 152506Google Scholar

    [17]

    Iihama S, Xu Y, Deb M, Malinowski G, Hehn M, Gorchon J, Fullerton E E, Mangin S 2018 Adv. Mater. 30 e1804004Google Scholar

    [18]

    Balanis A 2005 Antenna Theory Analysis and Design (Wiley-Interscience)

    [19]

    Chen W, Zhan Q 2009 Opt. Lett. 34 2444Google Scholar

    [20]

    Chen W, Zhan Q 2010 J. Opt. 12 045707Google Scholar

    [21]

    Chen W, Zhan Q 2011 Opt. Commun. 284 52Google Scholar

    [22]

    Wang J, Chen W, Zhan Q 2012 J. Opt. 14 055004Google Scholar

    [23]

    李瑾, 冯晓毅, 王明军 2017 装备环境工程 14 18Google Scholar

    Li J, Feng X Y, Wang M J 2017 Equip. Environ. Eng. 14 18Google Scholar

    [24]

    Stallinga S 2001 J. Opt. Soc. Am. A 18 2846Google Scholar

    [25]

    Volkov P V, Novikov M A 2002 Crystallogr. Rep. 47 824Google Scholar

    [26]

    Aiello A, Lindlein N, Marquardt C, Leuchs G 2009 Phys. Rev. Lett. 103 100401Google Scholar

    [27]

    周志龙, 王朝玉, 兰国强, 柴志军, 聂仲泉, 孔德贵 2021 黑龙江大学自然科学学报 38 109Google Scholar

    Zhou Z L, Wang Z Y, Lan G Q, Chai Z J, Nie Z Q, Kong D G 2021 J. Nat. Sci. Heilongjiang Univ. 38 109Google Scholar

  • 图 1  单轴晶体中的电偶极子阵列反向辐射构建入瞳光场示意图

    Figure 1.  Schematic diagram of the incoming pupil light field constructed by the inverse radiation of electric dipole array in the uniaxial crystal.

    图 2  辐射场在分界面处的折射情况示意图

    Figure 2.  Schematic diagram of the refraction of radiation field at the interface.

    图 3  (a1)—(c1) 各向同性介质和(a2)—(c2) 单轴晶体中获得的磁化场强度分布图 (a1), (a2) x-z面; (b1), (b2) y-z面; (c1), (c2) x-y

    Figure 3.  The magnetization field intensity distributions obtained in the (a1)–(c1) isotropic medium and (a2)–(c2) uniaxial crystal: (a1), (a2) x-z plane; (b1), (b2) y-z plane; (c1), (c2) x-y plane.

    图 4  不同介质中的磁化场沿 (a) x轴和 (b) z轴的归一化强度分布(红实线为各向同性介质, 黑虚线为单轴晶体介质)

    Figure 4.  Normalized intensity distribution of magnetization field along the (a) x axis and (b) z axis in different media (Red lines refer isotropic media, black dotted lines are uniaxial crystal media).

    图 5  针形磁化场强度分布图 (a1) N = 2和(a2) N = 3时所需的入瞳光场; (b1) N = 2和(b2) N = 3时x-z面总磁化强度分布; (c1) N = 2和(c2) N = 3时x-z面纵向磁化场分量强度分布; 针形磁化场沿 (d1) x轴和 (d2) z轴的归一化强度分布(红实线和黑虚线分别为N = 2条件下的总场和纵向磁化场分量, 黑实线和蓝点线分别为N = 3条件下的总场和纵向磁化场分量)

    Figure 5.  Intensity distributions of the needle magnetic field: required entrance pupil light field when (a1) N = 2 and (a2) N = 3; total magnetization on the x-z plane when (b1) N = 2 and (b2) N = 3; longitudinal magnetization field component strength distribution of the x-z plane when (c1) N = 2 and (c2) N = 3; the normalized intensity distribution of the needle-shaped magnetization field along the (d1) x axis and (d2) z axis (The red solid line and the black dotted line are the total field and longitudinal magnetization field component under the condition of N = 2, respectively; the black solid line and the blue dotted line are the total field and the longitudinal magnetization field component under the condition of N = 3).

    图 6  磁化取向纯度对轮廓表面的依赖关系 (a) 轮廓表面值示意图; (b) 取向纯度与轮廓表面值变化曲线图

    Figure 6.  Dependence of the magnetic orientation purity on the contour surface: (a) Schematic diagram of contour surface values; (b) change curve of orientation purity and contour surface value.

    表 1  电偶极子对数N的仿真参数

    Table 1.  Simulation parameters for electric dipole logarithms N .

    电偶极子对数N${A_n}$${d_n}$${\beta _n}$
    N = 2${A_1} = 1.00$${d_1} = {\text{3}}{\text{.00}}\lambda $${\beta _1} = {\text{5}}{\text{.00\pi }}$
    ${A_2} = {\text{1}}{\text{.04}}$${d_2} = {\text{4}}{\text{.99}}\lambda $${\beta _2} = {\text{5.01\pi } }$
    N = 3
    ${A_1} = {\text{0}}{\text{.99}}$${d_1} = {\text{3}}{\text{.06}}\lambda $${\beta _1} = {\text{5}}{\text{.00\pi }}$
    ${A_2} = {\text{1}}{\text{.01}}$${d_2} = {\text{1}}{\text{.00}}\lambda $${\beta _2} = {\text{4}}{\text{.97\pi }}$
    ${A_{\text{3}}} = {\text{1}}{\text{.00}}$${d_3} = {\text{1}}{\text{.01}}\lambda $${\beta _{\text{3}}} = {\text{5}}{\text{.00\pi }}$
    DownLoad: CSV
  • [1]

    Majors P D, Minard K R, Ackerman E J, Holtom G R, Hopkins D F, Parkinson C I, Weber T J, Wind R A 2002 Rev. Sci. Instrum. 73 4329Google Scholar

    [2]

    Atutov S N, Calabrese R, Guidi V, Mai B, Rudavets A G, Scansani E, Tomassetti L, Biancalana V, Burchianti A, Marinelli C, Mariotti E, Moi L, Veronesi S 2003 Phys. Rev. A 67 053401Google Scholar

    [3]

    Phelan C F, Hennessy T, Busch T 2013 Opt. Express 21 27093Google Scholar

    [4]

    Grinolds M S, Warner M, De Greve K, Dovzhenko Y, Thiel L, Walsworth R L, Hong S, Maletinsky P, Yacoby A 2014 Nat. Nanotechnol. 9 279Google Scholar

    [5]

    van der Ziel J P, Pershan P S, Malmstrom L D 1965 Phys. Rev. Lett. 15 190Google Scholar

    [6]

    Weller D, Moser A 1999 IEEE Trans. Magn. 35 6Google Scholar

    [7]

    Albrecht M, Rettner C T, Moser A, Best M E, Terris B D 2002 Appl. Phys. Lett. 81 2875Google Scholar

    [8]

    Helseth L E 2011 Opt. Lett. 36 987Google Scholar

    [9]

    Yan W, Nie Z, Liu X, Lan G, Zhang X, Wang Y, Song Y 2018 Opt. Express. 26 16824Google Scholar

    [10]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [11]

    Zhang Y, Bai J 2008 Phys. Lett. A 372 6294Google Scholar

    [12]

    Jiang Y, Li X, Gu M 2013 Opt. Lett. 38 2957Google Scholar

    [13]

    Wang S, Cao Y, Li X 2017 Opt. Lett. 42 5050Google Scholar

    [14]

    Luo J, Zhang H, Wang S, Shi L, Zhu Z, Gu B, Wang X, Li X 2019 Opt. Lett. 44 727Google Scholar

    [15]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655Google Scholar

    [16]

    Astakhov G V, Kimel A V, Schott G M, Tsvetkov A A, Kirilyuk A, Yakovlev D R, Karczewski G, Ossau W, Schmidt G, Molenkamp L W, Rasing T 2005 Appl. Phys. Lett. 86 152506Google Scholar

    [17]

    Iihama S, Xu Y, Deb M, Malinowski G, Hehn M, Gorchon J, Fullerton E E, Mangin S 2018 Adv. Mater. 30 e1804004Google Scholar

    [18]

    Balanis A 2005 Antenna Theory Analysis and Design (Wiley-Interscience)

    [19]

    Chen W, Zhan Q 2009 Opt. Lett. 34 2444Google Scholar

    [20]

    Chen W, Zhan Q 2010 J. Opt. 12 045707Google Scholar

    [21]

    Chen W, Zhan Q 2011 Opt. Commun. 284 52Google Scholar

    [22]

    Wang J, Chen W, Zhan Q 2012 J. Opt. 14 055004Google Scholar

    [23]

    李瑾, 冯晓毅, 王明军 2017 装备环境工程 14 18Google Scholar

    Li J, Feng X Y, Wang M J 2017 Equip. Environ. Eng. 14 18Google Scholar

    [24]

    Stallinga S 2001 J. Opt. Soc. Am. A 18 2846Google Scholar

    [25]

    Volkov P V, Novikov M A 2002 Crystallogr. Rep. 47 824Google Scholar

    [26]

    Aiello A, Lindlein N, Marquardt C, Leuchs G 2009 Phys. Rev. Lett. 103 100401Google Scholar

    [27]

    周志龙, 王朝玉, 兰国强, 柴志军, 聂仲泉, 孔德贵 2021 黑龙江大学自然科学学报 38 109Google Scholar

    Zhou Z L, Wang Z Y, Lan G Q, Chai Z J, Nie Z Q, Kong D G 2021 J. Nat. Sci. Heilongjiang Univ. 38 109Google Scholar

  • [1] Zhou Li-Li, Hu Xin-Yue, Mu Zhong-Lin, Zhang Rui, Zheng Yue. Far-field calculation of an arbitrarily oriented electric dipole in horizontal layered confined space. Acta Physica Sinica, 2022, 71(20): 200301. doi: 10.7498/aps.71.20220545
    [2] Zhong Zhe-Qiang, Mu Jie, Wang Xiao, Zhang Bin. Analysis of coherent combination characteristics of beam array via tight focusing. Acta Physica Sinica, 2020, 69(9): 094204. doi: 10.7498/aps.69.20200034
    [3] Cao Chong-Yang, Lu Jian-Neng, Zhang Heng-Wen, Zhu Zhu-Qing, Wang Xiao-Lei, Gu Bing. Investigation on magnetization induced by tightly focused azimuthally polarized fractional vortex beam. Acta Physica Sinica, 2020, 69(16): 167802. doi: 10.7498/aps.69.20200269
    [4] Lu Yun-Qing, Hu Si-Leng, Lu Yi, Xu Ji, Wang Jin. Plasmonic lens with long focal length and tight focusing under illumination of a radially polarized light. Acta Physica Sinica, 2015, 64(9): 097301. doi: 10.7498/aps.64.097301
    [5] Geng Yuan-Chao, Liu Lan-Qin, Wang Wen-Yi, Zhang Ying, Huang Wan-Qing, Su Jing-Qin, Li Ping. A new method of simultaneous focal spot shaping and polarization smoothing using crystal phase plate. Acta Physica Sinica, 2013, 62(14): 145201. doi: 10.7498/aps.62.145201
    [6] Zhao Wei-Qian, Tang Fang, Qiu Li-Rong, Liu Da-Li. Research status and application on the focusing properties of cylindrical vector beams. Acta Physica Sinica, 2013, 62(5): 054201. doi: 10.7498/aps.62.054201
    [7] Dong Li-Juan, Du Gui-Qiang, Yang Cheng-Quan, Shi Yun-Long. Magneto-optical Faraday rotation effect enhancement of a thick metal Ag. Acta Physica Sinica, 2012, 61(16): 164210. doi: 10.7498/aps.61.164210
    [8] Wang Jia-Fu, Xia Song, Xu Zhuo, Qu Shao-Bo, Zhao Jing-Bo, Yang Yi-Ying, Bai Peng, Li Zhe. All-dielectric left-handed metamaterial design basedon dielectric resonator theory. Acta Physica Sinica, 2011, 60(7): 074201. doi: 10.7498/aps.60.074201
    [9] Huang Yong-Chao, Zhang Ting-Rong, Chen Sen-Hui, Song Hong-Yuan, Li Yan-Tao, Zhang Wei-Lin. Propagation of elliptical Gaussian beam in uniaxialcrystal orthogonal to the optical axis. Acta Physica Sinica, 2011, 60(7): 074212. doi: 10.7498/aps.60.074212
    [10] Jin Zuan-Ming, Guo Fei-Yun, Ma Hong, Wang Li-Hua, Ma Guo-Hong, Chen Jian-Zhong. Femtosecond photoinduced magnetization of terbium gallium garnet crystal. Acta Physica Sinica, 2011, 60(8): 087803. doi: 10.7498/aps.60.087803
    [11] Wu Chong-Qing, Zhao Shuang. Study on the localization of the electric dipole sources. Acta Physica Sinica, 2007, 56(9): 5180-5184. doi: 10.7498/aps.56.5180
    [12] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Single attosecond pulse generation by tightly focused laser beam-electron interaction. Acta Physica Sinica, 2006, 55(5): 2115-2121. doi: 10.7498/aps.55.2115
    [13] Zhang Chun-Fu, Hao Yue, You Hai-Long, Zhang Jin-Feng, Zhou Xiao-Wei. Influence of interface dipoles on the UV/solar rejection ratios of GaN/AlGaN/GaN photodetectors. Acta Physica Sinica, 2005, 54(8): 3810-3814. doi: 10.7498/aps.54.3810
    [14] Luo Hai-Lu, Hu Wei, Yi Xu-Nong, Zhu Jing. The vectorial properties of paraxial beams propagating in a uniaxial crystal. Acta Physica Sinica, 2004, 53(9): 2947-2952. doi: 10.7498/aps.53.2947
    [15] Chen Ying, Qiu Xi-Jun. Collective radiation of water in cytoskeletal microtubule. Acta Physica Sinica, 2003, 52(6): 1554-1560. doi: 10.7498/aps.52.1554
    [16] Luo Shi-Rong, Lü Bai-Da. Propagation of flattened-Gaussian beams in uniaxial crystals. Acta Physica Sinica, 2003, 52(12): 3061-3067. doi: 10.7498/aps.52.3061
    [17] Guo Qi, Shi Zhi-Wei. . Acta Physica Sinica, 2002, 51(8): 1716-1723. doi: 10.7498/aps.51.1716
    [18] LIU GONG-QIANG, ZHU LIAN-GEN, WEI BANG-DA, ZHANG NING-GAO. THE DYNAMIC FARADAY EFFECT AND IT′S-MECHANISM OF LOSSES. Acta Physica Sinica, 1997, 46(3): 604-611. doi: 10.7498/aps.46.604
    [19] LIU GONG-QIANG, HUANG YAN-PING. QUANTUM THEORY OF FARADAY MAGNETO-OPTIC EFFECT IN THE PARAMAGNETIC MEDIA. Acta Physica Sinica, 1988, 37(10): 1626-1632. doi: 10.7498/aps.37.1626
    [20] WANG HUAN-YUAN, JIA WEI-YI, SHEN JING-XING. MAGNETO-OPTICAL FARADAY ROTATION IN Bi4Ge3O12 CRYSTAL. Acta Physica Sinica, 1985, 34(1): 126-128. doi: 10.7498/aps.34.126
Metrics
  • Abstract views:  4511
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  21 February 2022
  • Accepted Date:  26 March 2022
  • Available Online:  05 July 2022
  • Published Online:  20 July 2022

/

返回文章
返回