Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation on magnetization induced by tightly focused azimuthally polarized fractional vortex beam

Cao Chong-Yang Lu Jian-Neng Zhang Heng-Wen Zhu Zhu-Qing Wang Xiao-Lei Gu Bing

Citation:

Investigation on magnetization induced by tightly focused azimuthally polarized fractional vortex beam

Cao Chong-Yang, Lu Jian-Neng, Zhang Heng-Wen, Zhu Zhu-Qing, Wang Xiao-Lei, Gu Bing
PDF
HTML
Get Citation
  • All-optical magnetic recording based on the inverse Faraday effect has become a research hotspot in recent years due to its ultra-high storage density and ultra-fast magnetization reversal rate. Existing studies have shown that by optimizing the phase modulation or performing 4π tight focusing of azimuthally polarized vortex beams, high-resolution longitudinal magnetization fields with different axisymmetric intensity patterns can be generated. In order to meet the requirements of more complex all-optical magnetic recording and asymmetric magnetic particle capture and manipulation, it is particularly important to generate an asymmetric light-induced magnetization field with adjustable center position. Studies have shown that the fractional vortex phase could lead to the asymmetric focal field distribution generation under tight focusing conditions, which means that the tightly-focused azimuthally polarized light carrying the fractional vortex phase can produce a novel asymmetric light-induced magnetization field. As a new degree of freedom for the regulation of the magnetization field, the fractional topological charge will bring more new phenomena, new effects and new applications in the field of interaction between light and matter. In this work, for the first time to our knowledge, the magnetization induced by tightly focused azimuthally polarized fractional vortex beam is studied based on the Richard-Wolf vector diffraction theory and the inverse Faraday effect. The equivalent approximation of the magnetization induced by azimuthally polarized fractional vortex beam regarded as a weighted superposition of magnetization induced and crossly induced by a finite number of azimuthally polarized adjacent integer-order vortex beams, where the number of the equivalent terms is chosen by using the histogram intersection method of the intensity distribution image of the magnetization field. The magnetization field distribution under different values of α are also numerically simulated. Studies have shown that magnetization induced by the azimuthally polarized fractional vortex beam is asymmetrically distributed. When the fractional vortex topological charge α belongs to [0.5,1.5], as the vortex topological load increases, the splitting phenomenon of the transverse distribution of magnetization field appears with the magnetization spot position shift in the direction perpendicular to the optical axis. When α equals 0.5 or 1.5, the maximum offset of the center of the magnetization spot is 0.24λ. When the fractional vortex topological charge α belongs to [2,3], the transverse distribution of magnetization field splits two hot intensity spots with gradually growing outer ring diameter. When the fractional vortex topological charge α tends to be an integer 3, the transverse distribution of magnetization field also gets round and symmetrical. In particular, when the fractional vortex topological charge α is a half-integer, especially larger than 3. The number of hot spots ($\alpha - 0.5 $) of the intensity of the magnetization field and the number of dark spots ($ \alpha - 1.5 $) surrounded by them all have a positive correlation with the number of vortex order. The research in this paper is expected to have new applications in the fields of all-optical magnetic recording and the capture and manipulation of magnetic particles.
      Corresponding author: Zhu Zhu-Qing, zhuqingzhu@njnu.edu.cn
    [1]

    Pitaevskii L P 1961 Sov. Phys. JETP 12 5

    [2]

    Pershan P S 1963 Phys. Rev. 130 919

    [3]

    Weller D, Moser A 1999 IEEE Trans. Magn. 35 4423Google Scholar

    [4]

    Wang S C, Li X P, Zhou J Y, Gu M 2015 Opt. Express 23 13530Google Scholar

    [5]

    Zhang Y, Okuno Y, Xu X 2009 J. Opt. Soc. Am. B 26 7

    [6]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1Google Scholar

    [7]

    Jiang Y S, Li X P, Gu M 2013 Opt. Lett. 38 2957Google Scholar

    [8]

    Gong L P, Wang L, Zhu Z Q, Wang X L, Zhao H, Gu B 2016 Appl. Opt. 55 5783Google Scholar

    [9]

    Nie Z Q, Ding W Q, Shi G, Li D Y, Zhang X R, Wang Y X, Song Y L 2015 Opt. Express 23 21296Google Scholar

    [10]

    Wang S C, Li X P, Zhou J Y, Gu M 2014 Opt. Lett. 39 5022Google Scholar

    [11]

    Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403Google Scholar

    [12]

    Berry V M 2004 J. Opt. A-Pure Appl. Op. 6 259Google Scholar

    [13]

    Leach J, Yao E, Padgett J M 2004 New J. Phys. 6 71Google Scholar

    [14]

    Gbur G 2016 Optica 3 222Google Scholar

    [15]

    李阳月, 陈子阳, 刘辉, 蒲继雄 2010 物理学报 59 1740Google Scholar

    Li Y Y, Chen Z Y, Liu H, Pu J X 2010 Acta Phys. Sin. 59 1740Google Scholar

    [16]

    方桂娟, 孙顺红, 蒲继雄 2012 物理学报 61 064210Google Scholar

    Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210Google Scholar

    [17]

    Zhang N, Davis J A, Moreno I, Lin J, Moh K J, Cottrell D M, Yuan X C 2010 Appl. Opt. 49 2456Google Scholar

    [18]

    Zhu J, Zhang P, Fu D Z, Chen D X, Liu R F, Zhou Y N, Gao H, Li F L 2016 Photon. Res. 4 187Google Scholar

    [19]

    Wen J S, Wang L G, Yang X H, Zhang J X, Zhu S Y 2019 Opt. Express 27 5893Google Scholar

    [20]

    Liu C X, Chew K H, Wu Y, Chen R P 2020 J. Opt. Soc. Am. A 37 327Google Scholar

    [21]

    Tao S H, Yuan X C, Lin J, Peng X, Niu H B 2005 Opt. Express 13 7726Google Scholar

    [22]

    Guo C S, Yu Y N, Hong Z P 2010 Opt. Commun. 283 1889Google Scholar

    [23]

    Du F R, Zhou Z H, Tan Q F, Yang C X, Zhang X Q, Zhu L Q 2013 Chin. Phys. B. 22 064202Google Scholar

    [24]

    李新忠, 台玉萍, 李贺贺, 王静鸽, 聂兆刚, 汤洁, 王辉, 尹传磊 2016 中国激光 43 0605002Google Scholar

    Li X Z, Tai Y P, Li H H, Wang J G, Nie Z G, Tang J, Wang H, Yin C L 2016 Chin. J. Las. 43 0605002Google Scholar

    [25]

    Xu H F, Zhang R, Sheng Z Q, Qu J 2019 Opt. Express 27 23959Google Scholar

    [26]

    Vetsch E, Reitz D, Sagué G, Schmidt R, Dawkins S T, Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603Google Scholar

    [27]

    Richards B, Wolf E 1959 Proc. Roy. Soc. A. 253 1274

    [28]

    Youngworth K S, Brown T G 2000 Opt. Express 7 77Google Scholar

    [29]

    Hertel R 2006 J. Magn. Magn. Mater. 303 L1

    [30]

    米兰·桑卡, 瓦茨拉夫, 罗杰·博伊尔 著 (艾海舟, 武勃 译) 2003 图像处理、分析与机器视觉(北京: 清华大学出版社) 第21−127页

    Sonka M, Hlavac V, Boyle R (translated by Ai H Z, Wu B) 2003 Image Processing, Analysis, And Machine Vision (Beijing: Tsinghua University Press) pp21−127 (in Chinese)

    [31]

    加里·布拉德斯基, 阿德里安·凯布勒 著 (于仕琪, 刘瑞祯 译 2009 学习Open CV[M]. (北京: 清华大学出版社) 第155−279页

    Bradski G, Kaebler A (translated by Yu S Q, Liu R Z) 2009 Learn Open CV [M] (Beijing: Tsinghua University Press) pp155−279 (in Chinese)

  • 图 1  紧聚焦光诱导磁化场原理图. $P\left( {{\rho _s}, {\phi _s}, {z_s}} \right)$是焦平面中的观察点

    Figure 1.  Schematic diagram of magnetization induced by a tightly focused beam. $P\left( {{\rho _s}, {\phi _s}, {z_s}} \right)$ is the observation point in the focal plane.

    图 2  $\alpha = 1.3$时不同等效项数($n'$)下的磁化场强度分布图相似度比较图

    Figure 2.  Comparison diagram of the similarity of the magnetization intensity distribution under different equivalent terms when $\alpha = 1.3$.

    图 3  不同$\alpha $情况下磁化场强度分布(x-y平面和x-z平面)、z = 0截面强度及其峰值位置偏移图

    Figure 3.  Magnetization Distribution (x-y plane and y-z plane) with the intensity line scan at z = 0 and its peak position offset under different values of $\alpha $.

    图 4  不同$\alpha $情况下磁化场横向分布强度分布图(x-y平面)

    Figure 4.  Transverse magnetization distribution (x-y plane) under different values of $\alpha $ cases.

    图 5  不同$\alpha $情况下紧聚焦角向偏振半整数阶涡旋光诱导磁化场的分布

    Figure 5.  Magnetization distribution induced by tightly focused azimuthally polarized beam with semi-integer order vortex under different values of $\alpha $.

  • [1]

    Pitaevskii L P 1961 Sov. Phys. JETP 12 5

    [2]

    Pershan P S 1963 Phys. Rev. 130 919

    [3]

    Weller D, Moser A 1999 IEEE Trans. Magn. 35 4423Google Scholar

    [4]

    Wang S C, Li X P, Zhou J Y, Gu M 2015 Opt. Express 23 13530Google Scholar

    [5]

    Zhang Y, Okuno Y, Xu X 2009 J. Opt. Soc. Am. B 26 7

    [6]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1Google Scholar

    [7]

    Jiang Y S, Li X P, Gu M 2013 Opt. Lett. 38 2957Google Scholar

    [8]

    Gong L P, Wang L, Zhu Z Q, Wang X L, Zhao H, Gu B 2016 Appl. Opt. 55 5783Google Scholar

    [9]

    Nie Z Q, Ding W Q, Shi G, Li D Y, Zhang X R, Wang Y X, Song Y L 2015 Opt. Express 23 21296Google Scholar

    [10]

    Wang S C, Li X P, Zhou J Y, Gu M 2014 Opt. Lett. 39 5022Google Scholar

    [11]

    Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403Google Scholar

    [12]

    Berry V M 2004 J. Opt. A-Pure Appl. Op. 6 259Google Scholar

    [13]

    Leach J, Yao E, Padgett J M 2004 New J. Phys. 6 71Google Scholar

    [14]

    Gbur G 2016 Optica 3 222Google Scholar

    [15]

    李阳月, 陈子阳, 刘辉, 蒲继雄 2010 物理学报 59 1740Google Scholar

    Li Y Y, Chen Z Y, Liu H, Pu J X 2010 Acta Phys. Sin. 59 1740Google Scholar

    [16]

    方桂娟, 孙顺红, 蒲继雄 2012 物理学报 61 064210Google Scholar

    Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210Google Scholar

    [17]

    Zhang N, Davis J A, Moreno I, Lin J, Moh K J, Cottrell D M, Yuan X C 2010 Appl. Opt. 49 2456Google Scholar

    [18]

    Zhu J, Zhang P, Fu D Z, Chen D X, Liu R F, Zhou Y N, Gao H, Li F L 2016 Photon. Res. 4 187Google Scholar

    [19]

    Wen J S, Wang L G, Yang X H, Zhang J X, Zhu S Y 2019 Opt. Express 27 5893Google Scholar

    [20]

    Liu C X, Chew K H, Wu Y, Chen R P 2020 J. Opt. Soc. Am. A 37 327Google Scholar

    [21]

    Tao S H, Yuan X C, Lin J, Peng X, Niu H B 2005 Opt. Express 13 7726Google Scholar

    [22]

    Guo C S, Yu Y N, Hong Z P 2010 Opt. Commun. 283 1889Google Scholar

    [23]

    Du F R, Zhou Z H, Tan Q F, Yang C X, Zhang X Q, Zhu L Q 2013 Chin. Phys. B. 22 064202Google Scholar

    [24]

    李新忠, 台玉萍, 李贺贺, 王静鸽, 聂兆刚, 汤洁, 王辉, 尹传磊 2016 中国激光 43 0605002Google Scholar

    Li X Z, Tai Y P, Li H H, Wang J G, Nie Z G, Tang J, Wang H, Yin C L 2016 Chin. J. Las. 43 0605002Google Scholar

    [25]

    Xu H F, Zhang R, Sheng Z Q, Qu J 2019 Opt. Express 27 23959Google Scholar

    [26]

    Vetsch E, Reitz D, Sagué G, Schmidt R, Dawkins S T, Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603Google Scholar

    [27]

    Richards B, Wolf E 1959 Proc. Roy. Soc. A. 253 1274

    [28]

    Youngworth K S, Brown T G 2000 Opt. Express 7 77Google Scholar

    [29]

    Hertel R 2006 J. Magn. Magn. Mater. 303 L1

    [30]

    米兰·桑卡, 瓦茨拉夫, 罗杰·博伊尔 著 (艾海舟, 武勃 译) 2003 图像处理、分析与机器视觉(北京: 清华大学出版社) 第21−127页

    Sonka M, Hlavac V, Boyle R (translated by Ai H Z, Wu B) 2003 Image Processing, Analysis, And Machine Vision (Beijing: Tsinghua University Press) pp21−127 (in Chinese)

    [31]

    加里·布拉德斯基, 阿德里安·凯布勒 著 (于仕琪, 刘瑞祯 译 2009 学习Open CV[M]. (北京: 清华大学出版社) 第155−279页

    Bradski G, Kaebler A (translated by Yu S Q, Liu R Z) 2009 Learn Open CV [M] (Beijing: Tsinghua University Press) pp155−279 (in Chinese)

  • [1] Jiang Chi, Geng Tao. The study of tight focusing characteristics of azimuthally polarized vortex beams and the implementation of ultra-long super-resolved optical needle. Acta Physica Sinica, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [2] Xu Lin-Xi, Zhu Rong-Qi, Zhu Zhu-Qing, Gong Li-Ping, Gu Bing. High-purity longitudinal needle-shaped magnetization fields produced in uniaxial crystals. Acta Physica Sinica, 2022, 71(14): 147801. doi: 10.7498/aps.71.20220316
    [3] Zhong Zhe-Qiang, Mu Jie, Wang Xiao, Zhang Bin. Analysis of coherent combination characteristics of beam array via tight focusing. Acta Physica Sinica, 2020, 69(9): 094204. doi: 10.7498/aps.69.20200034
    [4] Liu Heng, Li Sheng-Gang, Sun Ye-Guo, Wang Hong-Xing. Adaptive fuzzy synchronization for uncertain fractional-order chaotic systems with unknown non-symmetrical control gain. Acta Physica Sinica, 2015, 64(7): 070503. doi: 10.7498/aps.64.070503
    [5] Yan Sen-Lin. Control of chaos in a semiconductor laser using the Faraday effect. Acta Physica Sinica, 2015, 64(24): 240505. doi: 10.7498/aps.64.240505
    [6] Ren Rui-Bin, Liu De-Hao, Wang Chuan-Yi, Luo Mao-Kang. Directed transport of fractional Brownian motor driven by a temporal asymmetry force. Acta Physica Sinica, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [7] Lu Yun-Qing, Hu Si-Leng, Lu Yi, Xu Ji, Wang Jin. Plasmonic lens with long focal length and tight focusing under illumination of a radially polarized light. Acta Physica Sinica, 2015, 64(9): 097301. doi: 10.7498/aps.64.097301
    [8] Tu Zhe, Lai Li, Luo Mao-Kang. Directional transport of fractional asymmetric coupling system in symmetric periodic potential. Acta Physica Sinica, 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [9] Zhou Xing-Wang, Lin Li-Feng, Ma Hong, Luo Mao-Kang. Spatiotemporally asymmetric fractionalLangevin-like ratchet. Acta Physica Sinica, 2014, 63(16): 160503. doi: 10.7498/aps.63.160503
    [10] Zhou Xing-Wang, Lin Li-Feng, Ma Hong, Luo Mao-Kang. Temporal-asymmetric fractional Langevin-like ratchet. Acta Physica Sinica, 2014, 63(11): 110501. doi: 10.7498/aps.63.110501
    [11] Wang Fei, Deng Cui, Tu Zhe, Ma Hong. Transport of fractional coupled Brownian motor in asymmetric periodic potential. Acta Physica Sinica, 2013, 62(4): 040501. doi: 10.7498/aps.62.040501
    [12] Zhao Wei-Qian, Tang Fang, Qiu Li-Rong, Liu Da-Li. Research status and application on the focusing properties of cylindrical vector beams. Acta Physica Sinica, 2013, 62(5): 054201. doi: 10.7498/aps.62.054201
    [13] Fang Gui-Juan, Sun Shun-Hong, Pu Ji-Xiong. Experimental study on fractional double-vortex beams. Acta Physica Sinica, 2012, 61(6): 064210. doi: 10.7498/aps.61.064210
    [14] Dong Li-Juan, Du Gui-Qiang, Yang Cheng-Quan, Shi Yun-Long. Magneto-optical Faraday rotation effect enhancement of a thick metal Ag. Acta Physica Sinica, 2012, 61(16): 164210. doi: 10.7498/aps.61.164210
    [15] Jin Zuan-Ming, Guo Fei-Yun, Ma Hong, Wang Li-Hua, Ma Guo-Hong, Chen Jian-Zhong. Femtosecond photoinduced magnetization of terbium gallium garnet crystal. Acta Physica Sinica, 2011, 60(8): 087803. doi: 10.7498/aps.60.087803
    [16] Wang Zeng, Dong Gang, Yang Yin-Tang, Li Jian-Wei. Study on clock skew of unsymmetrical RLC interconnect tree with temperature distribution. Acta Physica Sinica, 2010, 59(8): 5646-5651. doi: 10.7498/aps.59.5646
    [17] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Single attosecond pulse generation by tightly focused laser beam-electron interaction. Acta Physica Sinica, 2006, 55(5): 2115-2121. doi: 10.7498/aps.55.2115
    [18] LIU GONG-QIANG, ZHU LIAN-GEN, WEI BANG-DA, ZHANG NING-GAO. THE DYNAMIC FARADAY EFFECT AND IT′S-MECHANISM OF LOSSES. Acta Physica Sinica, 1997, 46(3): 604-611. doi: 10.7498/aps.46.604
    [19] SHE WEI-LONG, HE SUI-RONG, WANG HE-ZHOU, YU ZHEN-XIN, MO DANG. PHOTOREFRACTIVE ASYMMETRICAL SELF-DEFOCUSING INDUCED BY THERMAL SELF-FOCUSING. Acta Physica Sinica, 1996, 45(12): 2022-2026. doi: 10.7498/aps.45.2022
    [20] LIU GONG-QIANG, HUANG YAN-PING. QUANTUM THEORY OF FARADAY MAGNETO-OPTIC EFFECT IN THE PARAMAGNETIC MEDIA. Acta Physica Sinica, 1988, 37(10): 1626-1632. doi: 10.7498/aps.37.1626
Metrics
  • Abstract views:  6874
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  24 February 2020
  • Accepted Date:  12 May 2020
  • Available Online:  19 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回