Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase regulation of lightwave transmission in inhomogeneous atmospheric medium using plane acoustic field

Wang Ming-Jun Wang Wan-Rou Li Yong-Jun

Citation:

Phase regulation of lightwave transmission in inhomogeneous atmospheric medium using plane acoustic field

Wang Ming-Jun, Wang Wan-Rou, Li Yong-Jun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Based on the acousto-optic effect and the Gladstone–Dale relationship, the relationship about variations of the refractive index of the isotropic homogeneous atmospheric medium and the inhomogeneous atmospheric medium with the sound pressure under the disturbance of the plane sound field is derived. Models for the transmission of plane light waves and Laguerre-Gaussian beams through homogeneous atmospheric medium and inhomogeneous atmospheric medium disturbed by plane acoustic waves are established. The results show that the refractive index distribution of the homogeneous atmospheric medium exhibits a homogeneous periodic distribution after being disturbed by the plane sound field. For large-scale angles of longitudinal variation of atmospheric pressure, the plane sound field has little effect on the distribution of the refractive index of the inhomogeneous atmosphere. For small-scale angles, the inhomogeneous atmospheric refractive index gradually decreases with height and fluctuates with the influence of sound pressure. When the plane acoustic wave disturbs the homogeneous atmospheric medium, the isophase plane of the plane light wave will fluctuate significantly due to the influence of the acoustic wave. The phase of the LG beam rotates and always returns to the original phase. When the plane acoustic wave disturbs the inhomogeneous atmospheric medium, the phase change of the plane light wave will change periodically with the change law of the sound wave. The overall optical path is an inclined plane, but due to the disturbance of the sound wave, the optical path will fluctuate. The phase of the LG beam still rotates, but unlike the homogeneous medium, its phase does not return to its original phase due to the change of its refractive index with height.
      Corresponding author: Wang Ming-Jun, wangmingjun@xaut.edu.cn
    • Funds: Project supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China (Grant No. 92052106), the National Natural Science Foundation of China (Grant No. 61771385), the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2020JC-42), and the Open Fund Project of Science and Technology on Solid-State Laser Laboratory, China (Grant No. 6142404190301).
    [1]

    Adler R 1967 IEEE spectr. 4 42Google Scholar

    [2]

    Torras-Rosell A, Barrera-Figueroa S, Jacobsen F 2012 J. Acoust. Soc. Am. 131 3786Google Scholar

    [3]

    Certon D, Ferin G, Matar O B, Guyonvarch J, Remenieras J P, Patat F 2004 Ultrasonics 42 465Google Scholar

    [4]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M 2012 Nat. Photonics 6 488Google Scholar

    [5]

    Ramachandran S, Kristensen P, Yan M F 2009 Opt. Lett. 34 2525Google Scholar

    [6]

    Weisbuch G, Garbay F 1979 Am. J. Phys. 47 355Google Scholar

    [7]

    Pitts T A, Greenleaf J F 2000 J. Acoust. Soc. Am. 108 2873Google Scholar

    [8]

    Yamaguchi K, Choi P K 2006 Jpn. J. Appl. Phys. 45 4621Google Scholar

    [9]

    周慧婷, 吕朋, 廖长义, 王华, 沈勇 2012 光学学报 32 6Google Scholar

    Zhou H T, Lv P, Liao C Y, Wang H, Shen Y 2012 Acta Opt. Sin. 32 6Google Scholar

    [10]

    Farhat M, Guenneau S, Bagci H 2013 Phys. Rev. Lett. 111 237404Google Scholar

    [11]

    Ishikawa K, Yatabe K, Chitanont N, Ikeda Y, Oikawa Y, Onuma T, Niwa H, Yoshii M 2016 Opt. Express 24 12922Google Scholar

    [12]

    Gladstone J H, Dale T P 1863 Philos. Trans. R. Soc. London 153 317

    [13]

    Ishikawa K, Yatabe K, Ikeda Y, Oikawa Y 2015 12 th Western Pacific Acoustics Conference Singapore, December 6-10, 2015 pp165–169

    [14]

    程建春 2012 声学原理 (北京: 科学出版社) 第341页

    Cheng J C 2012 Principles of Acoustic (Beijing: Science Press) p32 (in Chinese)

    [15]

    Gong S H, Yan D, Wang X 2015 Radio Sci. 50 983Google Scholar

    [16]

    Gong S H, Liu Y, Hou M Y, Guo L X 2017 Computational and Experimental Studies of Acoustic Waves (New York: IntechOpen) p124

    [17]

    Abdullah-Al-Mamun M, Voelz D 2020 Opt. Eng. 59 081802Google Scholar

    [18]

    Rüeger J M 2002 Refractive indices of light, infrared and radio waves in the atmosphere (Sydney: School of Surveying and Spatial Information Systems, University of New South Wales)

    [19]

    Luo H, Wen S, Shu W, Tang Z, Zou Y, Fan D 2008 Phys. Rev. A 78 1Google Scholar

    [20]

    丁攀峰, 蒲继雄 2011 物理学报 60 094204Google Scholar

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204Google Scholar

    [21]

    Yang S, Wang J, Guo M, Qin Z, Li J 2020 Opt. Commun. 465 125559Google Scholar

  • 图 1  参考坐标系及不同类型声源所导致均匀介质折射率分布示意图

    Figure 1.  Reference coordinate system and schematic diagram of refractive index distribution of uniform medium caused by different types of sound sources.

    图 2  不同声源扰动均匀介质折射率分布三维图 (a) 平面波声源; (b) 球面波声源; (c) 柱面波声源

    Figure 2.  Three-dimensional diagram of refractive index distribution of homogeneous medium perturbed by different sound sources: (a) Plane wave sound source; (b) spherical wave sound source; (c) cylindrical wave sound source.

    图 3  不同声源扰动均匀介质折射率分布二维图 (a) 平面波声源; (b) 球面波声源; (c) 柱面波声源

    Figure 3.  Two-dimensional diagram of the refractive index distribution of homogeneous medium perturbed by different sound sources: (a) Plane wave sound source; (b) spherical wave sound source; (c) cylindrical wave sound source.

    图 4  声波扰动非均匀大气介质折射率随高度和距离变化 (a) 大气压强纵向变化大尺度; (b) 大气压强纵向变化小尺度

    Figure 4.  Variation of refractive index with height and distance of inhomogeneous atmospheric medium perturbed by acoustic waves: (a) Large-scale longitudinal variation of atmospheric pressure; (b) small-scale longitudinal variation of atmospheric pressure.

    图 5  非均匀介质折射率随高度变化曲线 (a) 不同声波频率; (b) 不同声压

    Figure 5.  Variation curve of refractive index of inhomogeneous medium with height: (a) Different sound wave frequencies; (b) different sound pressures

    图 6  平面光波通过平面声场扰动的大气介质模型

    Figure 6.  The atmospheric medium model of plane light wave perturbed by plane sound field.

    图 7  均匀大气介质中平面光波的相位变化 (a) 未进入声场(z = 0 m, p = 10 Pa); (b) 通过声场后(z = 20 m, p = 10 Pa)

    Figure 7.  Phase change of plane light waves in homogeneous atmospheric medium: (a) Without entering the sound field (z = 0 m, p = 10 Pa); (b) after passing through the sound field (z = 20 m, p = 10 Pa).

    图 8  均匀大气介质中平面光波的光程 (a)无声场(z = 20 m, p = 0 Pa); (b) 有声场(z = 20 m, p = 10 Pa)

    Figure 8.  Optical path of plane light waves in homogeneous atmospheric medium: (a) Without sound field (z = 20 m, p = 0 Pa); (b) with sound field (z = 20 m, p = 10 Pa).

    图 9  非均匀大气介质中平面光波的相位变化 (a) 未进入声场(z = 0 m, p = 10 Pa); (b) 通过声场后(z = 20 m, p = 10 Pa)

    Figure 9.  Phase change of plane light waves in inhomogeneous atmospheric medium: (a) Without entering the sound field (z = 0 m, p = 10 Pa); (b) after passing through the sound field (z = 20 m, p = 10 Pa)

    图 10  非均匀大气介质中平面光波的光程 (a) 无声场(z = 20 m, p = 0 Pa); (b) 有声场(z = 20 m, p = 10 Pa)

    Figure 10.  Optical path of plane light waves in inhomogeneous atmospheric medium: (a) Without sound field (z = 20 m, p = 0 Pa); (b) with sound field (z = 20 m, p = 10 Pa).

    图 11  LG光束通过平面声场扰动的大气介质模型

    Figure 11.  The atmospheric medium model of LG beam perturbed by the plane sound field.

    图 12  均匀介质折射率随高度变化曲线

    Figure 12.  Variation curve of refractive index of homogeneous medium with height

    图 13  LG光束进入声场扰动的均匀介质相位随高度变化情况 (a) 未进入声场; (b) 进入无声场介质; (c) 进入平面声场扰动的均匀介质

    Figure 13.  The phase variation of LG beam entering the homogeneous medium disturbed by the sound field: (a) Without entering the sound field; (b) entering the medium without sound field; (c) entering the homogeneous medium disturbed by the plane sound field.

    图 14  LG光束进入声场扰动的非均匀介质相位随高度变化情况 (a) 进入无声场非均匀介质; (b) 进入平面声场扰动的非均匀介质

    Figure 14.  The phase variation of the LG beam entering the inhomogeneous medium disturbed by the sound field: (a) Entering the inhomogeneous medium without sound field; (b) entering the inhomogeneous medium with plane sound field disturbance.

  • [1]

    Adler R 1967 IEEE spectr. 4 42Google Scholar

    [2]

    Torras-Rosell A, Barrera-Figueroa S, Jacobsen F 2012 J. Acoust. Soc. Am. 131 3786Google Scholar

    [3]

    Certon D, Ferin G, Matar O B, Guyonvarch J, Remenieras J P, Patat F 2004 Ultrasonics 42 465Google Scholar

    [4]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M 2012 Nat. Photonics 6 488Google Scholar

    [5]

    Ramachandran S, Kristensen P, Yan M F 2009 Opt. Lett. 34 2525Google Scholar

    [6]

    Weisbuch G, Garbay F 1979 Am. J. Phys. 47 355Google Scholar

    [7]

    Pitts T A, Greenleaf J F 2000 J. Acoust. Soc. Am. 108 2873Google Scholar

    [8]

    Yamaguchi K, Choi P K 2006 Jpn. J. Appl. Phys. 45 4621Google Scholar

    [9]

    周慧婷, 吕朋, 廖长义, 王华, 沈勇 2012 光学学报 32 6Google Scholar

    Zhou H T, Lv P, Liao C Y, Wang H, Shen Y 2012 Acta Opt. Sin. 32 6Google Scholar

    [10]

    Farhat M, Guenneau S, Bagci H 2013 Phys. Rev. Lett. 111 237404Google Scholar

    [11]

    Ishikawa K, Yatabe K, Chitanont N, Ikeda Y, Oikawa Y, Onuma T, Niwa H, Yoshii M 2016 Opt. Express 24 12922Google Scholar

    [12]

    Gladstone J H, Dale T P 1863 Philos. Trans. R. Soc. London 153 317

    [13]

    Ishikawa K, Yatabe K, Ikeda Y, Oikawa Y 2015 12 th Western Pacific Acoustics Conference Singapore, December 6-10, 2015 pp165–169

    [14]

    程建春 2012 声学原理 (北京: 科学出版社) 第341页

    Cheng J C 2012 Principles of Acoustic (Beijing: Science Press) p32 (in Chinese)

    [15]

    Gong S H, Yan D, Wang X 2015 Radio Sci. 50 983Google Scholar

    [16]

    Gong S H, Liu Y, Hou M Y, Guo L X 2017 Computational and Experimental Studies of Acoustic Waves (New York: IntechOpen) p124

    [17]

    Abdullah-Al-Mamun M, Voelz D 2020 Opt. Eng. 59 081802Google Scholar

    [18]

    Rüeger J M 2002 Refractive indices of light, infrared and radio waves in the atmosphere (Sydney: School of Surveying and Spatial Information Systems, University of New South Wales)

    [19]

    Luo H, Wen S, Shu W, Tang Z, Zou Y, Fan D 2008 Phys. Rev. A 78 1Google Scholar

    [20]

    丁攀峰, 蒲继雄 2011 物理学报 60 094204Google Scholar

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204Google Scholar

    [21]

    Yang S, Wang J, Guo M, Qin Z, Li J 2020 Opt. Commun. 465 125559Google Scholar

  • [1] Lü Yu-Xi, Wang Chen, Duan Tian-Qi, Zhao Tong, Chang Peng-Fa, Wang An-Bang. Asymmetric transmission of cascaded acousto-optic device and whispering gallery mode microcavity. Acta Physica Sinica, 2024, 73(1): 014101. doi: 10.7498/aps.73.20230653
    [2] Zhang Ruo-Yu, Li Pei-Li. Acousto-optic tunable flat top filter based on one-dimensional coupled-cavity photonic crystals. Acta Physica Sinica, 2021, 70(5): 054208. doi: 10.7498/aps.70.20201461
    [3] Zhang Ruo-Yu, Li Pei-Li, Gao Hui. Research on acousto-optic switch based on optical tamm state. Acta Physica Sinica, 2020, 69(16): 164204. doi: 10.7498/aps.69.20200396
    [4] Sun Hong-Xiang, Fang Xin, Ge Yong, Ren Xu-Dong, Yuan Shou-Qi. Acoustic focusing lens with near-zero refractive index based on coiling-up space structure. Acta Physica Sinica, 2017, 66(24): 244301. doi: 10.7498/aps.66.244301
    [5] Tang Yuan-He, Cui Jin, Gao Hai-Yang, Qu Ou-Yang, Duan Xiao-Dong, Li Cun-Xia, Liu Li-Na. Calibrations of ground based airglow imaging interferometer for the upper atmospheric wind field measurement. Acta Physica Sinica, 2017, 66(13): 130601. doi: 10.7498/aps.66.130601
    [6] Zhou Zhi-Gang, Zong Jin, Wang Wen-Guang, Hou Mei-Ying. Experimental study on the influence of granular shear deformation on sound propagation. Acta Physica Sinica, 2017, 66(15): 154502. doi: 10.7498/aps.66.154502
    [7] Qi Zhi-Ming, Liang Wen-Yao. Reflection phase characteristics and their applications based on one-dimensional coupled-cavity photonic crystals with gradually changed thickness ofsurface layer. Acta Physica Sinica, 2016, 65(7): 074201. doi: 10.7498/aps.65.074201
    [8] He Jing, Miao Qiang, Wu De-Wei. Microwave and light wave radar cross section similitude with unequal electrical length. Acta Physica Sinica, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [9] Cheng Yang, Yao Bai-Cheng, Wu Yu, Wang Ze-Gao, Gong Yuan, Rao Yun-Jiang. Simulation and experimental research of phase transmission features based on evanescent field coupled graphene waveguide. Acta Physica Sinica, 2013, 62(23): 237805. doi: 10.7498/aps.62.237805
    [10] Shi Zhan, Chen Lai-Zhu, Tong Yong-Shuai, Zheng Zhi-Bin, Yang Shui-Yuan, Wang Cui-Ping, Liu Xing-Jun. Phase drift of magnetoelectric effect in Terfenol-D/PZT composite materials. Acta Physica Sinica, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [11] Chen Xiao-Yi, Liu Man, Li Hai-Xia, Zhang Mei-Na, Song Hong-Sheng, Teng Shu-Yun, Cheng Chuan-Fu. Experimental study of the evolution of phase vortices in the speckle fields generated by weak scattering screens in the extremely deep Fresnel diffraction region. Acta Physica Sinica, 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
    [12] Liu Qi-Neng. Analytic method of studying defect mode of 1D doped phononic crystal. Acta Physica Sinica, 2011, 60(4): 044302. doi: 10.7498/aps.60.044302
    [13] Huang Qin, Leng Feng-Chun, Liang Wen-Yao, Dong Jian-Wen, Wang He-Zhou. Sensitive temperature sensor based on phase properties of photonic crystal. Acta Physica Sinica, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [14] Xu Min, Zhang Yue-Heng, Shen Wen-Zhong. Reflectivity and phase shift of semiconductor far-infrared mirrors. Acta Physica Sinica, 2007, 56(4): 2415-2421. doi: 10.7498/aps.56.2415
    [15] Yan Sen-Lin. Studies on chaotic modulation performance and internal phase shifting key encoding in injection semiconductor lasers. Acta Physica Sinica, 2006, 55(12): 6267-6274. doi: 10.7498/aps.55.6267
    [16] Wang Wen-Gang, Liu Zheng-You, Zhao De-Gang, Ke Man-Zhu. Resonant tunneling of acoustic waves in 1D phononic crystal. Acta Physica Sinica, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [17] Yan Sen-Lin. Theoretical studies on optical fiber secure communication using chaotic phase encoding. Acta Physica Sinica, 2005, 54(5): 2000-2006. doi: 10.7498/aps.54.2000
    [18] Han Ru-Qu, Shi Qing-Fan, Sun Gang. Simulation of transmitting sound wave in one-dimensional easy-expanding medium. Acta Physica Sinica, 2005, 54(5): 2188-2193. doi: 10.7498/aps.54.2188
    [19] Duan Wen-Shan, Hong Xue-Ren. Ion acoustic solitary waves in a weakly relativistic plasma under transverse p erturbations. Acta Physica Sinica, 2003, 52(6): 1337-1339. doi: 10.7498/aps.52.1337
    [20] Wu Fu-Gen, Liu You-Yan. . Acta Physica Sinica, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
Metrics
  • Abstract views:  4264
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  17 March 2022
  • Accepted Date:  19 April 2022
  • Available Online:  09 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回