Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Kagome superconductors

Feng Xi-Lin Jiang Kun Hu Jiang-Ping

Citation:

Kagome superconductors

Feng Xi-Lin, Jiang Kun, Hu Jiang-Ping
PDF
HTML
Get Citation
  • The newly discovered Kagome superconductors $ A{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5}(A=\mathrm{K},\mathrm{R}\mathrm{b},\mathrm{C}\mathrm{s}) $ provide a platform to investigate the interplay of the topological property, superconductivity and geometrical frustration. Since their discovery, many research groups, especially many groups in China, have made tremendous progress in this field, including time-reversal-symmetry-breaking (TRSB), charge density wave (CDW), electronic nematicity, superconductivity properties and pair density wave (PDW). In this paper, we introduce the $ A{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5} $properties, discuss the recent research progress and highlight the future focus of this Kagome superconductor.The paper is organized as follows. We start from the exotic normal states of $ A{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5} $, where a CDW emerges at the temperature around 70–100 K depending on $ A $. This CDW enlarges the unit cell size to 2×2 with additional c-direction modulation as observed by scanning tunneling microscope (STM) and X-ray scattering experiments. Interestingly, this CDW behaves differently under opposite magnetic fields. Namely, this CDW may break the time reversal symmetry. To confirm this property, the zero field muon spin relaxation (ZFμSR) experiment is performed with increasing relaxation rates after the CDW transition. Additionally, the intrinsic anomalous Hall effect is also observed, which may relate to this time reversal symmetry breaking (TRSB). Since there are no long-range magnetic orders observed in the elastic neutron scattering experiment and μSR, the TRSB is not related to the electron spin degree of freedom. To explain the TRSB, the chiral flux phase (CFP) with orbital magnetism is theoretically proposed. Moreover, the electronic nematicity is also observed at about 30–50 K below the CDW transition temperature. This phase breaks the $ {C}_{6} $ rotation symmetry of the Kagome lattice as confirmed by STM and nuclear magnetic resonance (NMR). What is the microscopic origin of this nematicity is still under investigation.Then, we move to the superconducting properties of $ A{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5} $. Combining the inversion symmetry property found in optical measurement and decreasing of the spin susceptibility found in NMR, the $ A{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5} $ superconductor is proven to be a spin-singlet superconductor. Experiments in NMR, angle-resolved photoemission, superfluid density and specific heat further confirm the superconductivity in Kagome superconductors is a conventional s-wave superconductor. Although this superconductor is conventional, $ A{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5} $ also contains the unconventional property. Importantly, a PDW is observed in $ \mathrm{C}\mathrm{s}{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5} $ by high-resolution STM. What is the PDW origin or microscopic mechanism is still an open question. These new progress reveal the intriguing physical properties behind the Kagome superconductors and also bring many unsolved questions, which calls for further investigations.
      Corresponding author: Hu Jiang-Ping, jphu@iphy.ac.cn
    [1]

    Onsager L 1944 Phys. Rev. 65 117Google Scholar

    [2]

    Syozi I 1951 Prog. Theor. Phys. 6 306Google Scholar

    [3]

    Ortiz B R, Gomes L C, Morey J R, et al. 2019 Phys. Rev. Mater. 3 094407Google Scholar

    [4]

    Ortiz B R, Teicher S M L, Hu Y, et al. 2020 Phys. Rev. Lett. 125 247002Google Scholar

    [5]

    Jiang Y X, Yin J X, Denner M M, et al. 2021 Nat. Mater. 20 1353Google Scholar

    [6]

    Yu L, Wang C, Zhang Y, et al. arXiv: 2107.10714

    [7]

    Mielke III C, Das D, Yin J X, et al. 2022 Nature 602 245Google Scholar

    [8]

    Guguchia Z, Mielke III C, Das D, et al. arXiv: 2202.07713

    [9]

    Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, Chen X H 2021 Phys. Rev. B 104 L041103Google Scholar

    [10]

    Feng X, Jiang K, Wang Z, Hu J 2021 Sci. Bull. 66 1384Google Scholar

    [11]

    Feng X, Zhang Y, Jiang K, Hu J 2021 Phys. Rev. B 104 165136Google Scholar

    [12]

    Nie L, Sun K, Ma W, et al. 2022 Nature 604 59Google Scholar

    [13]

    Mu C, Yin Q, Tu Z, Gong C, Lei H, Li Z, Luo J 2021 Chin. Phys. Lett. 38 077402Google Scholar

    [14]

    Duan W, Nie Z, Luo S, et al. 2021 Sci. China Phys. Mech. Astron. 64 107462Google Scholar

    [15]

    Luo H, Gao Q, Liu H, et al. 2022 Nat Commun 13 273Google Scholar

    [16]

    Chen H, Yang H, Hu B, et al. 2021 Nature 599 222Google Scholar

    [17]

    Hamidian M H, Edkins S D, Joo S H, Kostin A, Eisaki H, Uchida S, Lawler M J, Kim E A, Mackenzie A P, Fujita K, Lee J, Davis J C S 2016 Nature 532 343Google Scholar

    [18]

    Edkins S D, Kostin A, Fujita K, Mackenzie A P, Eisaki H, Uchida S, Sachdev S, Lawler M J, Kim E A, Davis J C S, Hamidian M H 2019 Science 364 976Google Scholar

  • 图 1  (a) 笼目结构示意图; (b) CsV3Sb5元胞结构示意图[4]; (c) 仅考虑最近邻原子间电子跃迁时, 笼目晶格的电子能谱; (d) 常压下笼目超导体随温度变化的相图

    Figure 1.  (a) Schematic diagram of the Kagome lattice structure; (b) schematic diagram of the primitive unit cell structure of CsV3Sb5[4]; (c) the electronic energy spectrum of the Kagome lattice when electrons hop between the nearest neighbor atoms; (d) the Kagome superconductor’s phase diagram as a function of temperature under ambient pressure.

    图 2  (a) CsV3Sb5比热随温度的变化[4], 其中ZFC代表零场条件, FC代表有场条件; (b) STM下KV3Sb5的电荷密度分布图, 内嵌图为其傅里叶变换的结果表现出2×2有序的特性[5]

    Figure 2.  (a) The specific heat of CsV3Sb5 varies with temperature[4], ZFC means zero field case, and FC means finite field case; (b) the charge density distribution of KV3Sb5 observed by STM, the inset image is the result of Fourier transform which shows the characteristic of 2×2 order[5].

    图 3  μSR测量和光学SHG结果[6]

    Figure 3.  μSR measurement and optical SHG results[6].

    图 4  (a) CFP实空间示意图[10,11]; (b) CFP的局域轨道磁矩分布及电荷分布[10]

    Figure 4.  (a) Schematic diagram of CFP in real space[10,11]; (b) local orbital magnetic moment distribution and charge distribution of CFP[10].

    图 5  由核磁共振结果分析得出的笼目超导体各相的相变示意图, 浅蓝色代表电子结构[12]

    Figure 5.  Schematic diagram of phase transition of each phase of Kagome superconductor obtained from the analysis of NMR results. Light blue represents the electronic structure[12]

    图 6  (a) CsV3Sb5材料在各方向的奈特位移随温度的变化; (b) 超导转变温度附近自旋晶格弛豫率的Hebel-Slicheter共振峰[13]

    Figure 6.  (a) The Knight shift of CsV3Sb5 material in all directions as a function of temperature; (b) Hebel-Slicheter resonance peak of the spin lattice relaxation rate near the superconducting transition temperature[13].

    图 7  (a) BCS超导电子配对示意图(左)与FFLO态配对示意图(右); (b) CsV3Sb5的零场STM结果快速傅里叶变换图, 绿色圈中的峰对应于2×2的CDW相, 粉色圈中的峰对应于PDW相[16]

    Figure 7.  (a) Cooper pair for BCS superconductor (left) and for FFLO state (right); (b) Fourier transform of the STM diagram of CsV3Sb5 under zero field, the green cycle shows the 2×2 CDW phase, the pink cycle shows the PDW phase[16].

  • [1]

    Onsager L 1944 Phys. Rev. 65 117Google Scholar

    [2]

    Syozi I 1951 Prog. Theor. Phys. 6 306Google Scholar

    [3]

    Ortiz B R, Gomes L C, Morey J R, et al. 2019 Phys. Rev. Mater. 3 094407Google Scholar

    [4]

    Ortiz B R, Teicher S M L, Hu Y, et al. 2020 Phys. Rev. Lett. 125 247002Google Scholar

    [5]

    Jiang Y X, Yin J X, Denner M M, et al. 2021 Nat. Mater. 20 1353Google Scholar

    [6]

    Yu L, Wang C, Zhang Y, et al. arXiv: 2107.10714

    [7]

    Mielke III C, Das D, Yin J X, et al. 2022 Nature 602 245Google Scholar

    [8]

    Guguchia Z, Mielke III C, Das D, et al. arXiv: 2202.07713

    [9]

    Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, Chen X H 2021 Phys. Rev. B 104 L041103Google Scholar

    [10]

    Feng X, Jiang K, Wang Z, Hu J 2021 Sci. Bull. 66 1384Google Scholar

    [11]

    Feng X, Zhang Y, Jiang K, Hu J 2021 Phys. Rev. B 104 165136Google Scholar

    [12]

    Nie L, Sun K, Ma W, et al. 2022 Nature 604 59Google Scholar

    [13]

    Mu C, Yin Q, Tu Z, Gong C, Lei H, Li Z, Luo J 2021 Chin. Phys. Lett. 38 077402Google Scholar

    [14]

    Duan W, Nie Z, Luo S, et al. 2021 Sci. China Phys. Mech. Astron. 64 107462Google Scholar

    [15]

    Luo H, Gao Q, Liu H, et al. 2022 Nat Commun 13 273Google Scholar

    [16]

    Chen H, Yang H, Hu B, et al. 2021 Nature 599 222Google Scholar

    [17]

    Hamidian M H, Edkins S D, Joo S H, Kostin A, Eisaki H, Uchida S, Lawler M J, Kim E A, Mackenzie A P, Fujita K, Lee J, Davis J C S 2016 Nature 532 343Google Scholar

    [18]

    Edkins S D, Kostin A, Fujita K, Mackenzie A P, Eisaki H, Uchida S, Sachdev S, Lawler M J, Kim E A, Davis J C S, Hamidian M H 2019 Science 364 976Google Scholar

  • [1] Li Yong-Kai, Liu Jin-Jin, Zhang Xin, Zhu Peng, Yang Liu, Zhang Yu-Qi, Wu Huang-Yu, Wang Zhi-Wei. Doping effects of Kagome superconductor AV3Sb5 (A = K, Rb, Cs). Acta Physica Sinica, 2024, 73(6): 067401. doi: 10.7498/aps.73.20231954
    [2] Li Qi-Zhi, Zhang Shi-Long, Peng Ying-Ying. Resonant inelastic X-ray scattering study of charge density waves and elementary excitations in cuprate superconductors. Acta Physica Sinica, 2024, 73(19): 197401. doi: 10.7498/aps.73.20240983
    [3] Yin Jia-Xin, Wang Qiang-Hua. Superconducting gap modulations: Are they from pair density waves or pair-breaking scattering?. Acta Physica Sinica, 2024, 73(15): 157401. doi: 10.7498/aps.73.20240807
    [4] Zhao Zong-Yang, Li Ming, Zhou Tao. Single magnetic impurity effects in graphene based superconductors. Acta Physica Sinica, 2023, 72(20): 207401. doi: 10.7498/aps.72.20230830
    [5] Huang Jia-Bei, Lian Fu-Zhuo, Wang Zhi-Yuan, Sun Shi-Tao, Li Ming, Zhang Di, Cai Xiao-Fan, Ma Guo-Dong, Mai Zhi-Hong, Andy Shen, Wang Lei, Yu Ge-Liang. Two-dimensional van der Waals: Characterization and manipulation of superconductivity. Acta Physica Sinica, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [6] Fan Jin-Ze, Fang Zhan-Bo, Luo Chao-Jie, Zhang Hui. Charge density waves in low-dimensional material. Acta Physica Sinica, 2022, 71(12): 127103. doi: 10.7498/aps.71.20220052
    [7] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [8] Shi Liang-Ma, Zhou Ming-Jian, Zhu Ren-Yi. Evolution of vortex configuration for superconducting ring in the presence of an externally applied field. Acta Physica Sinica, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [9] Shi Liang-Ma, Zhang Shi-Jun, Zhu Ren-Yi. Numerical simulation of vortex structure in mesoscopic two-gap superconductor. Acta Physica Sinica, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [10] Zhou Yu, Zhang La-Bao, Jia Tao, Zhao Qing-Yuan, Gu Min, Qiu Jian, Kang Lin, Chen Jian, Wu Pei-Heng. Response properties of NbN superconductor nanowire for multi-photon. Acta Physica Sinica, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [11] Yang Peng-Fei, Bai Jin-Tao, Yang Xiao-Peng. The strict solutions to the field distribution of superconducting unbounded slab model. Acta Physica Sinica, 2007, 56(9): 5033-5036. doi: 10.7498/aps.56.5033
    [12] Yang Peng-Fei, Chen Wen-Xue. The distribution and origination of electric field and charge in interface layer of superconductor. Acta Physica Sinica, 2006, 55(12): 6622-6629. doi: 10.7498/aps.55.6622
    [13] Xu Jing, Wang Zhi-Guo, Chen Yu-Guang, Shi Yun-Long, Chen Hong. The phase diagram of Hubbard model with alternating chemical potentials. Acta Physica Sinica, 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
    [14] Li Yong, Wen Ping, Liu Zhen-Xing, Jing Xiu-Nian, Wang Wan-Lu, Bai Hai-Yang. Superconductivity and negative temperature coefficient of the resistivity of bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5. Acta Physica Sinica, 2004, 53(3): 844-849. doi: 10.7498/aps.53.844
    [15] Wang Jun-Feng, Xiong Rui, Yu Heng, Li Hui, Tang Wu-Feng, Yu Zu-Xin, Shi Jing, Tian De-Cheng, Tian Ming-Liang, Zhang Yu-Heng. Crystal growth of quasi-two-dimensional purple bronze KxMo6O17. Acta Physica Sinica, 2004, 53(3): 895-899. doi: 10.7498/aps.53.895
    [16] Feng Tian, Wang Nan-Lin, Chen Zhao-Jia, Tian Ming-Liang, Zhang Yu-Heng. . Acta Physica Sinica, 2002, 51(9): 2113-2116. doi: 10.7498/aps.51.2113
    [17] DONG ZHENG-CHAO, XING DING-YU, DONG JIN-MING. SHOT NOISE IN FERROMAGNET-SUPERCONDUCTOR TUNNELING JUNCTION. Acta Physica Sinica, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
    [18] . Acta Physica Sinica, 2000, 49(2): 339-343. doi: 10.7498/aps.49.339
    [19] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. CHARGE TRANSFER IN MIXED HALIDE MX COMPOUNDS. Acta Physica Sinica, 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
    [20] TIAN MING-LIANG, SHI JING, LI SHI-YAN, CAO QIANG, YUE SONG, ZHANG YU-HENG. MAGNETORESISTANCE PROPERTIES IN QUASI-TWO DIMENSIONAL CHARGE-DENSITY WAVE COMPOU ND (PO2)4(WO3)2m(m=6). Acta Physica Sinica, 2000, 49(9): 1892-1896. doi: 10.7498/aps.49.1892
Metrics
  • Abstract views:  7747
  • PDF Downloads:  681
  • Cited By: 0
Publishing process
  • Received Date:  06 May 2022
  • Accepted Date:  04 June 2022
  • Available Online:  07 June 2022
  • Published Online:  05 June 2022

/

返回文章
返回