-
The flexoelectric effect describes the coupling of polarization to strain gradient, which has increasingly attracted interest in perovskite oxide materials. The perovskite oxide superlattice containing epitaxial relaxation or intrinsic surface tension or curvature, together with its high dielectric constant, is a highly desirable candidate for high flexoelectricity. In this work, the flexoelectric coefficients of 1SrTiO3/1BaTiO3 superlattice, which is composed of alternating single atomic layers of SrTiO3 and BaTiO3, are systematically investigated with first principle density functional theory calculations. Various supercell sizes are used to minimize the discrepancy between the gradient values of the fixed atoms and relaxed atoms. It is found that the strain gradients of the constrained A-site atoms and the relaxed B-site atoms are almost the same when the supercell sizes are 1×1×24 for longitudinal flexoelectric coefficient, 7×1×16 for transverse flexoelectric coefficient and 3×1×28 for shear flexoelectric coefficient. Calculation results demonstrate that the transverse flexoelectric coefficient and shear flexoelectric coefficient of 1SrTiO3/1BaTiO3 superlattice are about one order of magnitude larger than its longitudinal flexoelectric coefficient. Even though its longitudinal flexoelectric coefficient decreases slightly compared with its constituent compounds, both transverse coefficient and shear flexoelectric coefficient are about several times higher than the counterparts of its constituent compounds, respectively. Hence, the overall flexoelectric coefficient of 1SrTiO3/1BaTiO3 superlattice is enhanced several times in magnitude. There exist a large number of interfaces inside the perovskite oxide superlattice with alternating single atomic layers of SrTiO3 and BaTiO3, which potentially stimulate the redistribution of charge carriers, orbitals and spins of the atoms at the interface and promote the interfacial strain gradient. The stacking order of the superlattice atoms has a profound influence on the flexoelectric properties. These studies present an alternative approach to fabricating better flexoelectric materials for the applications of electromechanical equipment.
-
Keywords:
- flexoelectricity /
- first principles /
- perovskite superlattice
[1] Narvaez J, Catalan G 2014 Appl. Phys. Lett. 104 162903Google Scholar
[2] Ma W, Cross L E 2002 Appl. Phys. Lett. 81 3440Google Scholar
[3] Cross L E 2006 J. Mater. Sci. 41 53Google Scholar
[4] Zhu W Y, Fu J Y, Li N, Cross L E 2006 Appl. Phys. Lett. 89 192904Google Scholar
[5] Shu L L, Wei X Y, Pang T, Yao X, Wang C L 2011 J. Appl. Phys. 110 104106Google Scholar
[6] Majdoub M S, Sharma P, Cagin T 2009 Phys. Rev. B 79 119904Google Scholar
[7] Nguyen T D, Mao S, Yeh Y W, Purohit P K, McAlpine M C 2013 Adv. Mater 25 946Google Scholar
[8] Lu H, Bark C W, Ojos D E D I, Alcala J, Eom C B, Catalan G, Gruverman A 2012 Science 336 59Google Scholar
[9] Wen X, Li D F, Tan K, Deng Q, Shen S P 2019 Phys. Rev. Lett. 122 148001Google Scholar
[10] Abdollahi A, Vasquez-Sancho F, Catalan G 2018 Phys. Rev. Lett. 121 205502Google Scholar
[11] Biancoli A, Fancher C M, Jones J L, Damjanovic D 2014 Nat. Mater 14 2Google Scholar
[12] Stengel M 2014 Phys. Rev. B 90 201112Google Scholar
[13] Zhang X T, Pan Q, Tian D X, Zhou W F, Chen P, Zhang H F, Chu B J 2018 Phys. Rev. Lett. 121 057602Google Scholar
[14] Zhang F, Lv P, Zhang Y, Huang S, Wong C M, Yau H M, Chen X, Wen Z, Jiang X, Zeng C 2019 Phys. Rev. Lett. 122 257601Google Scholar
[15] Plymill A, Xu H 2018 J. Appl. Phys. 123 144101Google Scholar
[16] Shu L, Liang R, Rao Z, Fei L, Ke S, Wang Y 2019 J. Adv. Ceram. 8 153Google Scholar
[17] Lee H N, Christen H M, Chisholm M F, Rouleau C M, Lowndes D H 2005 Nature 433 395Google Scholar
[18] Hong J, Catalan G, Scott J F, Artacho E 2010 J. Phys. Condens. Matter 22 112201Google Scholar
[19] Taib M F M, Yaakob M K, Hassan O H, Yahya M Z A 2013 Ceram. Inter. 39 S297Google Scholar
[20] Xu T, Wang J, Shimada T, Kitamura T 2013 J. Phys. Condens. Matter 25 415901Google Scholar
[21] Wu Z G, Cohen R E 2006 Phys. Rev. B 73 235116Google Scholar
[22] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[23] Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar
[24] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[25] Guo R, Shen L, Wang H, Lim Z, Lu W, Yang P, Ariando, Gruverman A, Venkatesan T, Feng Y P, Chen J 2016 Adv. Mater. Inter. 3 1600737Google Scholar
-
表 1 结构晶格常数
Table 1. Structural lattice constant.
-
[1] Narvaez J, Catalan G 2014 Appl. Phys. Lett. 104 162903Google Scholar
[2] Ma W, Cross L E 2002 Appl. Phys. Lett. 81 3440Google Scholar
[3] Cross L E 2006 J. Mater. Sci. 41 53Google Scholar
[4] Zhu W Y, Fu J Y, Li N, Cross L E 2006 Appl. Phys. Lett. 89 192904Google Scholar
[5] Shu L L, Wei X Y, Pang T, Yao X, Wang C L 2011 J. Appl. Phys. 110 104106Google Scholar
[6] Majdoub M S, Sharma P, Cagin T 2009 Phys. Rev. B 79 119904Google Scholar
[7] Nguyen T D, Mao S, Yeh Y W, Purohit P K, McAlpine M C 2013 Adv. Mater 25 946Google Scholar
[8] Lu H, Bark C W, Ojos D E D I, Alcala J, Eom C B, Catalan G, Gruverman A 2012 Science 336 59Google Scholar
[9] Wen X, Li D F, Tan K, Deng Q, Shen S P 2019 Phys. Rev. Lett. 122 148001Google Scholar
[10] Abdollahi A, Vasquez-Sancho F, Catalan G 2018 Phys. Rev. Lett. 121 205502Google Scholar
[11] Biancoli A, Fancher C M, Jones J L, Damjanovic D 2014 Nat. Mater 14 2Google Scholar
[12] Stengel M 2014 Phys. Rev. B 90 201112Google Scholar
[13] Zhang X T, Pan Q, Tian D X, Zhou W F, Chen P, Zhang H F, Chu B J 2018 Phys. Rev. Lett. 121 057602Google Scholar
[14] Zhang F, Lv P, Zhang Y, Huang S, Wong C M, Yau H M, Chen X, Wen Z, Jiang X, Zeng C 2019 Phys. Rev. Lett. 122 257601Google Scholar
[15] Plymill A, Xu H 2018 J. Appl. Phys. 123 144101Google Scholar
[16] Shu L, Liang R, Rao Z, Fei L, Ke S, Wang Y 2019 J. Adv. Ceram. 8 153Google Scholar
[17] Lee H N, Christen H M, Chisholm M F, Rouleau C M, Lowndes D H 2005 Nature 433 395Google Scholar
[18] Hong J, Catalan G, Scott J F, Artacho E 2010 J. Phys. Condens. Matter 22 112201Google Scholar
[19] Taib M F M, Yaakob M K, Hassan O H, Yahya M Z A 2013 Ceram. Inter. 39 S297Google Scholar
[20] Xu T, Wang J, Shimada T, Kitamura T 2013 J. Phys. Condens. Matter 25 415901Google Scholar
[21] Wu Z G, Cohen R E 2006 Phys. Rev. B 73 235116Google Scholar
[22] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[23] Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar
[24] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[25] Guo R, Shen L, Wang H, Lim Z, Lu W, Yang P, Ariando, Gruverman A, Venkatesan T, Feng Y P, Chen J 2016 Adv. Mater. Inter. 3 1600737Google Scholar
Catalog
Metrics
- Abstract views: 5319
- PDF Downloads: 160
- Cited By: 0