Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantized kernel least inverse hyperbolic sine adaptive filtering algorithm

Huo Yuan-Lian Tuo Li-Hua Qi Yong-Feng Zhang Yin

Citation:

Quantized kernel least inverse hyperbolic sine adaptive filtering algorithm

Huo Yuan-Lian, Tuo Li-Hua, Qi Yong-Feng, Zhang Yin
PDF
HTML
Get Citation
  • In the last few decades, the kernel method has been successfully used in the field of adaptive filtering to solve nonlinear problems. Mercer kernel is used to map data from input space to reproducing kernel Hilbert space (RKHS) by kernel adaptive filter (KAF). In regenerated kernel Hilbert spaces, the inner product can be easily calculated by computing the so-called kernel trick. The Kernel adaptive filtering algorithm is superior to common adaptive filtering algorithm in solving nonlinear problems and nonlinear channel equalization. For nonlinear problems, a robust kernel least inverse hyperbolic sine (KLIHS) algorithm is proposed by combining the kernel method with the inverse of hyperbolic sine function.The main disadvantage of KAF is that the radial-basis function (RBF) network grows with every new data sample, which increases the computational-complexity and requires more momories. The vector quantization (VQ) has been proposed to address this problem and has been successfully applied to the current kernel adaptive filtering algorithm. The main idea of the VQ method is to compress the input space through quantization to curb the network-size growth. In this paper, vector quantization is used to quantify the input spatial data, and a quantized kernel least inverse hyperbolic sine (QKLIHS) algorithm is constructed to restrain the growth of network scale. The energy conservation relation and convergence condition of quantized kernel least inverse hyperbolic sine algorithm are given. The simulation results of Mackey-Glass short-time chaotic time series prediction and nonlinear channel equalization environment show that the proposed kernel least inverse hyperbolic sine algorithm and quantized kernel least inverse hyperbolic sine algorithm have advantages in convergence speed, robustness and computational complexity.
      Corresponding author: Huo Yuan-Lian, huoyuanlian@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61561044) and the Natural Science Foundation of Gansu Province, China(Grant No. 20JR10RA077).
    [1]

    Liu W F, Príncipe J C, Haykin S 2010 Kernel Adaptive Filtering: A Comprehensive Introduction (Hoboken, NJ, USA: John Wiley & Sons) pp16–32

    [2]

    火元莲, 王丹凤, 龙小强, 连培君, 齐永锋 2021 物理学报 70 028401Google Scholar

    Huo Y L, Wang D F, Long X Q, Lian P J, Qi Y F 2021 Acta Phys. Sin. 70 028401Google Scholar

    [3]

    Liu W, Pokharel P P, Principe J C 2008 IEEE Trans. Signal Process. 56 543Google Scholar

    [4]

    Ma W, Duan J, Man W, Zhao H, Chen B 2017 Eng. Appl. Artif. Intel. 58 101Google Scholar

    [5]

    Wu Q, Li Y, Zakharov Y V, Xue W 2021 Signal Process. 189 108255Google Scholar

    [6]

    Zhao S, Chen B, Príncipe J C 2011 The 2011 International Joint Conference on Neural Networks San Jose, CA USA, 03 October 2011, p2012

    [7]

    Engel Y, Mannor S, Meir R 2004 IEEE Trans. Signal Process. 52 2275Google Scholar

    [8]

    Liu W, Park I, Principe J C 2009 IEEE Trans. Neural Networds 20 1950Google Scholar

    [9]

    Chen B, Zhao S, Zhu P, Príncipe J C 2013 IEEE Trans. Neural Networks Learn. Syst. 24 1484Google Scholar

    [10]

    Csató L, Opper M 2002 Neural Comput. 14 641Google Scholar

    [11]

    Zhao S, Chen B, Zhu P, Príncipe J C 2013 Signal Process. 93 2759Google Scholar

    [12]

    Chen B, Zhao S, Zhu P, Príncipe J C 2012 IEEE Trans. Neural Networks Learn. Syst. 23 22Google Scholar

    [13]

    Engel Y, Mannor S, Meir R 2004 IEEE Transactions on Signal Processing 52 2275

    [14]

    Wang S, Zheng Y, Duan S, Wang L, Tan H 2017 Digital Signal Process. 63 164Google Scholar

    [15]

    Wu Z, Shi J, Xie Z, Ma W, Chen B 2015 Signal Process. 117 11

    [16]

    Shi L, Yun L 2014 IEEE Signal Process. Lett. 21 385Google Scholar

    [17]

    Guan S, Cheng Q, Zhao Y, Biswal B 2021 PLoS One 16 1

    [18]

    焦尚彬, 任超, 黄伟超, 梁炎明 2013 物理学报 62 210501Google Scholar

    Jiao S B, Ren C, Huang W C, Liang Y M 2013 Acta Phys. Sin. 62 210501Google Scholar

    [19]

    火元莲, 脱丽华, 齐永锋, 丁瑞博 2022 物理学报 71 048401Google Scholar

    Huo Y L, Tuo L H, Qi Y F, Ding R B 2022 Acta Phys. Sin. 71 048401Google Scholar

    [20]

    Aalo V, Ackie A, Mukasa C 2019 Signal Process. 154 363Google Scholar

    [21]

    Wu Q, Li Y, Jiang Z, Zhang Y 2019 IEEE Access. 7 62107Google Scholar

    [22]

    王世元, 史春芬, 钱国兵, 王万里 2018 物理学报 67 018401Google Scholar

    Wang S Y, Shi C F, Qian G B, Wang W L 2018 Acta Phys. Sin. 67 018401Google Scholar

  • 图 1  $ \alpha = 1.3 $时的Alpha稳定分布噪声(非高斯环境)

    Figure 1.  When $ \alpha = 1.3 $, alpha stable distribution noise (non-Gaussian environment).

    图 2  在短时混沌时间序列预测下不同算法的性能比较

    Figure 2.  Performance comparison of different algorithms under short-time chaotic time series prediction.

    图 3  在短时混沌时间序列预测下不同量化阈值$ \gamma $的QKLIHS算法的性能比较

    Figure 3.  Performance comparison of QKLIHS algorithms with different quantization thresholds $ \gamma $under short-time chaotic time series prediction.

    图 4  在短时混沌时间序列预测下不同量化阈值$ \gamma $的QKLIHS算法的网络尺寸比较

    Figure 4.  Network size comparison of QKLIHS algorithms with different quantization thresholds $ \gamma $under short-time chaotic time series prediction.

    图 5  非线性信道

    Figure 5.  Nonlinear channel.

    图 6  在非线性信道均衡下不同算法的性能比较

    Figure 6.  Performance comparison of different algorithms under nonlinear channel equalization.

    图 7  在非线性信道均衡下不同量化阈值$ \gamma $的QKLIHS算法的性能比较

    Figure 7.  Performance comparison of QKLIHS algorithms with different quantization thresholds $ \gamma $ under nonlinear channel equalization.

    图 8  在非线性信道均衡下不同量化阈值$ \gamma $的QKLIHS算法的网络尺寸比较

    Figure 8.  Network size comparison of QKLIHS algorithms with different quantization thresholds $ \gamma $under nonlinear channel equalization.

    表 1  KLIHS算法

    Table 1.  KLIHS algorithm.

    初始化:
      选择步长$ \mu $; 映射核宽h; $ {\boldsymbol{a} }(1) = 2\mu \dfrac{1}{ {\sqrt {1 + {d^4}\left( 1 \right)} } }d\left( 1 \right) $; ${\boldsymbol{C}}\left( 1 \right) = \left\{ {x\left( 1 \right)} \right\}$
    每获得一对新的样本$\left\{ {{\boldsymbol{x}}(n), {\boldsymbol{d}}(n)} \right\}$时
      1) 计算输出值: $y\left( n \right) = \displaystyle\sum\nolimits_{j = 1}^{n - 1} { { {\boldsymbol{a} }_j}\left( n \right)\kappa \left( { {\boldsymbol{x} }\left( j \right), {\boldsymbol{x} }\left( n \right)} \right)}$
      2) 计算误差: $ e(n) = d(n) - y\left( n \right) $
      3) 添加存储新中心: ${\boldsymbol{C}}\left( n \right) = \left\{ {{\boldsymbol{C}}\left( {n - 1} \right), {\boldsymbol{x}}\left( n \right)} \right\}$
      4) 更新系数:
    ${~} \qquad \qquad {\boldsymbol{a} }(n) = \Big\{ { {\boldsymbol{a} }(n-1), 2\mu \dfrac{1}{ {\sqrt {1 + {e^4} (n)} } }e (n)} \Big\}$
    停止循环
    DownLoad: CSV

    表 2  QKLIHS算法

    Table 2.  QKLIHS algorithm.

    初始化:
      选择步长$ \mu $; 映射核宽$ h $; 量化阈值$ \gamma $; $ {\boldsymbol{a} }(1) = 2\mu \dfrac{1}{ {\sqrt {1 + {d^4}\left( 1 \right)} } }d\left( 1 \right) $; ${\boldsymbol{C} }\left( 1 \right) = \left\{ { {\boldsymbol{x} }\left( 1 \right)} \right\}$
    每获得一对新的样本$\left\{ {{\boldsymbol{x}}(n), d(n)} \right\}$时
     1) 计算输出值: $y\left( n \right) = \displaystyle\sum\limits_{j = 1}^{n - 1} { { {\boldsymbol{a} }_j}\left( n \right)\kappa \left( { {\boldsymbol{x} }\left( j \right), {\boldsymbol{x} }\left( n \right)} \right)}$
     2) 计算误差: $ e(n) = d(n) - y\left( n \right) $
     3) 计算${\boldsymbol{x} }\left( n \right)$与当前字典${\boldsymbol{C} }\left( {n - 1} \right)$的欧几里得距离:
    ${\rm{dis} }({ {\boldsymbol{x} }(n), {(\boldsymbol{C} }({n - 1})}) = \mathop {\min }\limits_{1 \leqslant j \leqslant {\rm{size} }({ {\boldsymbol C } ({n - 1})})} \left\| { {\boldsymbol{x} }( n) - { {\boldsymbol{C} }_j}({n - 1})} \right\|$
     4) 若${\rm{dis}}\left( { {\boldsymbol{x} }\left( n \right), {\boldsymbol{C} }\left( {n - 1} \right)} \right) > \gamma$, 更新字典: ${ {\boldsymbol{x} }_{\rm{q}}}\left( n \right) = {\boldsymbol{x} }\left( n \right)$, ${\boldsymbol{C} }\left( n \right) = \left\{ { {\boldsymbol{C} }\left( {n - 1} \right), { {\boldsymbol{x} }_{\rm{q}}}\left( n \right)} \right\}$
    添加相应系数向量$ {\boldsymbol{a} }\left( n \right) = \left[ { {\boldsymbol{a} }\left( {n - 1} \right), 2\mu \dfrac{1}{ {\sqrt {1 + {e^4}\left( n \right)} } }e\left( n \right)} \right] $
      否则, 保持字典不变: ${\boldsymbol{C} }\left( n \right) = {\boldsymbol{C} }\left( {n - 1} \right)$
    计算与当前数据最近字典元素的下标$j * = \mathop {\arg \min }\limits_{1 \leqslant j \leqslant {\rm{size}}\left( { {\boldsymbol{C} }\left( {n - 1} \right)} \right)} \left\| { {\boldsymbol{x} }\left( n \right) - { {\boldsymbol{C} }_j}\left( {n - 1} \right)} \right\|$
    将${ {\boldsymbol{C} }_{j * } }\left( {n - 1} \right)$作为当前数据的量化值, 并更新系数向量:
    ${ {\boldsymbol{x} }_{\rm{q}}}\left( n \right) = { {\boldsymbol{C} }_{j * } }\left( {n - 1} \right)$, $ { {\boldsymbol{a} }_{j * } }\left( n \right) = { {\boldsymbol{a} }_{j * } }\left( {n - 1} \right) + 2\mu \dfrac{1}{ {\sqrt {1 + {e^4}\left( n \right)} } }e\left( n \right) $
    停止循环
    DownLoad: CSV

    表 3  在短时混沌时间序列预测下不同算法的均值±标准偏差

    Table 3.  The mean standard deviation of different algorithms under short-term chaotic time series prediction.

    算法均值$ \pm $偏差
    KLMS$ 0.2256 \pm 0.1082 $
    KMCC$ 0.1847 \pm 0.0034 $
    KLMP$ 0.1831 \pm 0.0061 $
    KLL$ 0.1807 \pm 0.0047 $
    KLIHS$ 0.1773 \pm 0.0045 $
    DownLoad: CSV

    表 4  在短时混沌时间序列预测下不同量化阈值的QKLIHS算法的均方误差与网络尺寸比较

    Table 4.  Comparison of mean square error and network size of QKLIHS algorithm with different quantization thresholds $ \gamma $ under short-time chaotic time series prediction

    量化阈值误差均值$ \pm $偏差网络尺寸
    0$ 0.1738 \pm 0.0046 $1000
    0.5$ 0.1759 \pm 0.0050 $454
    0.9$ 0.1793 \pm 0.0041 $172
    1.2$ 0.1820 \pm 0.0045 $101
    2.0$ 0.2149 \pm 0.0056 $41
    DownLoad: CSV

    表 5  在非线性信道均衡下不同量化阈值$ \gamma $的QKLIHS算法的稳态误差均值与网络尺寸

    Table 5.  Steady-state error mean and network size of QKLIHS algorithm with different quantization threshold $ \gamma $under nonlinear channel equalization.

    量化阈值误差均值$ \pm $偏差网络尺寸
    0$ 0.0422 \pm 0.0060 $1000
    0.5$ 0.0454 \pm 0.0065 $127
    0.9$ 0.0489 \pm 0.0063 $68
    1.2$ 0.0560 \pm 0.0080 $47
    2.0$ 0.0866 \pm 0.0095 $26
    DownLoad: CSV
  • [1]

    Liu W F, Príncipe J C, Haykin S 2010 Kernel Adaptive Filtering: A Comprehensive Introduction (Hoboken, NJ, USA: John Wiley & Sons) pp16–32

    [2]

    火元莲, 王丹凤, 龙小强, 连培君, 齐永锋 2021 物理学报 70 028401Google Scholar

    Huo Y L, Wang D F, Long X Q, Lian P J, Qi Y F 2021 Acta Phys. Sin. 70 028401Google Scholar

    [3]

    Liu W, Pokharel P P, Principe J C 2008 IEEE Trans. Signal Process. 56 543Google Scholar

    [4]

    Ma W, Duan J, Man W, Zhao H, Chen B 2017 Eng. Appl. Artif. Intel. 58 101Google Scholar

    [5]

    Wu Q, Li Y, Zakharov Y V, Xue W 2021 Signal Process. 189 108255Google Scholar

    [6]

    Zhao S, Chen B, Príncipe J C 2011 The 2011 International Joint Conference on Neural Networks San Jose, CA USA, 03 October 2011, p2012

    [7]

    Engel Y, Mannor S, Meir R 2004 IEEE Trans. Signal Process. 52 2275Google Scholar

    [8]

    Liu W, Park I, Principe J C 2009 IEEE Trans. Neural Networds 20 1950Google Scholar

    [9]

    Chen B, Zhao S, Zhu P, Príncipe J C 2013 IEEE Trans. Neural Networks Learn. Syst. 24 1484Google Scholar

    [10]

    Csató L, Opper M 2002 Neural Comput. 14 641Google Scholar

    [11]

    Zhao S, Chen B, Zhu P, Príncipe J C 2013 Signal Process. 93 2759Google Scholar

    [12]

    Chen B, Zhao S, Zhu P, Príncipe J C 2012 IEEE Trans. Neural Networks Learn. Syst. 23 22Google Scholar

    [13]

    Engel Y, Mannor S, Meir R 2004 IEEE Transactions on Signal Processing 52 2275

    [14]

    Wang S, Zheng Y, Duan S, Wang L, Tan H 2017 Digital Signal Process. 63 164Google Scholar

    [15]

    Wu Z, Shi J, Xie Z, Ma W, Chen B 2015 Signal Process. 117 11

    [16]

    Shi L, Yun L 2014 IEEE Signal Process. Lett. 21 385Google Scholar

    [17]

    Guan S, Cheng Q, Zhao Y, Biswal B 2021 PLoS One 16 1

    [18]

    焦尚彬, 任超, 黄伟超, 梁炎明 2013 物理学报 62 210501Google Scholar

    Jiao S B, Ren C, Huang W C, Liang Y M 2013 Acta Phys. Sin. 62 210501Google Scholar

    [19]

    火元莲, 脱丽华, 齐永锋, 丁瑞博 2022 物理学报 71 048401Google Scholar

    Huo Y L, Tuo L H, Qi Y F, Ding R B 2022 Acta Phys. Sin. 71 048401Google Scholar

    [20]

    Aalo V, Ackie A, Mukasa C 2019 Signal Process. 154 363Google Scholar

    [21]

    Wu Q, Li Y, Jiang Z, Zhang Y 2019 IEEE Access. 7 62107Google Scholar

    [22]

    王世元, 史春芬, 钱国兵, 王万里 2018 物理学报 67 018401Google Scholar

    Wang S Y, Shi C F, Qian G B, Wang W L 2018 Acta Phys. Sin. 67 018401Google Scholar

  • [1] Wen Hu-Feng, Shang Tian-Shuai, Li Jian, Niu Zhong-Ming, Yang Dong, Xue Yong-He, Li Xiang, Huang Xiao-Long. Prediction of ground-state spin in odd-A nuclei within decision tree. Acta Physica Sinica, 2023, 72(15): 152101. doi: 10.7498/aps.72.20230530
    [2] Qi Le-Tian, Wang Shi-Yuan, Shen Ming-Lin, Huang Gang-Yi. Prediction of chaotic time series based on Nyström Cauchy kernel conjugate gradient algorithm. Acta Physica Sinica, 2022, 71(10): 108401. doi: 10.7498/aps.71.20212274
    [3] Li Jun, Hou Xin-Yan. Dynamic reconstruction of chaotic system based on exponential weighted online sequential extreme learning machine with kernel. Acta Physica Sinica, 2019, 68(10): 100503. doi: 10.7498/aps.68.20190156
    [4] Li Jun, Li Da-Chao. Wind power time series prediction using optimized kernel extreme learning machine method. Acta Physica Sinica, 2016, 65(13): 130501. doi: 10.7498/aps.65.130501
    [5] Wang Xin-Ying, Han Min. Multivariate chaotic time series prediction using multiple kernel extreme learning machine. Acta Physica Sinica, 2015, 64(7): 070504. doi: 10.7498/aps.64.070504
    [6] Tang Zhou-Jin, Ren Feng, Peng Tao, Wang Wen-Bo. A least square support vector machine prediction algorithm for chaotic time series based on the iterative error correction. Acta Physica Sinica, 2014, 63(5): 050505. doi: 10.7498/aps.63.050505
    [7] Tian Zhong-Da, Gao Xian-Wen, Shi Tong. Combination kernel function least squares support vector machine for chaotic time series prediction. Acta Physica Sinica, 2014, 63(16): 160508. doi: 10.7498/aps.63.160508
    [8] Zhao Yong-Ping, Zhang Li-Yan, Li De-Cai, Wang Li-Feng, Jiang Hong-Zhang. Chaotic time series prediction using filtering window based least squares support vector regression. Acta Physica Sinica, 2013, 62(12): 120511. doi: 10.7498/aps.62.120511
    [9] Yu Yan-Hua, Song Jun-De. Redundancy-test-based hyper-parameters selection approach for support vector machines to predict time series. Acta Physica Sinica, 2012, 61(17): 170516. doi: 10.7498/aps.61.170516
    [10] Li Jun, Dong Hai-Ying. Modelling of chaotic systems using wavelet kernel partial least squares regression method. Acta Physica Sinica, 2008, 57(8): 4756-4765. doi: 10.7498/aps.57.4756
    [11] Wang Ge-Li, Yang Pei-Cai, Mao Yu-Qing. On the application of non-stationary time series prediction based on the SVM method. Acta Physica Sinica, 2008, 57(2): 714-719. doi: 10.7498/aps.57.714
    [12] Yang Yong-Feng, Ren Xing-Min, Qin Wei-Yang, Wu Ya-Feng, Zhi Xi-Zhe. Prediction of chaotic time series based on EMD method. Acta Physica Sinica, 2008, 57(10): 6139-6144. doi: 10.7498/aps.57.6139
    [13] Zhang Jun-Feng, Hu Shou-Song. Chaotic time series prediction based on multi-kernel learning support vector regression. Acta Physica Sinica, 2008, 57(5): 2708-2713. doi: 10.7498/aps.57.2708
    [14] Prediction of chaotic time series based on selective support vector machine ensemble. Acta Physica Sinica, 2007, 56(12): 6820-6827. doi: 10.7498/aps.56.6820
    [15] Yu Zhen-Hua, Cai Yuan-Li. Prediction of chaotic time-series based on online wavelet support vector regression. Acta Physica Sinica, 2006, 55(4): 1659-1665. doi: 10.7498/aps.55.1659
    [16] Meng Qing-Fang, Zhang Qiang, Mu Wen-Ying. A novel multi-step adaptive prediction method for chaotic time series. Acta Physica Sinica, 2006, 55(4): 1666-1671. doi: 10.7498/aps.55.1666
    [17] Ren Ren, Xu Jin, Zhu Shi-Hua. Prediction of chaotic time sequence using least squares support vector domain. Acta Physica Sinica, 2006, 55(2): 555-563. doi: 10.7498/aps.55.555
    [18] Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua. Prediction of the chaotic time series using support vector machines for fuzzy rule-based modeling. Acta Physica Sinica, 2005, 54(7): 3009-3018. doi: 10.7498/aps.54.3009
    [19] Ye Mei-Ying, Wang Xiao-Dong, Zhang Hao-Ran. Chaotic time series forecasting using online least squares support vector machine regression. Acta Physica Sinica, 2005, 54(6): 2568-2573. doi: 10.7498/aps.54.2568
    [20] Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua. Prediction of the chaotic time series using support vector machines. Acta Physica Sinica, 2004, 53(10): 3303-3310. doi: 10.7498/aps.53.3303
Metrics
  • Abstract views:  3286
  • PDF Downloads:  34
  • Cited By: 0
Publishing process
  • Received Date:  30 May 2022
  • Accepted Date:  04 August 2022
  • Available Online:  08 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回