Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical modeling and analyzing structural characteristics of AlGaAs/GaAs negative electron affinity array cathode with optically and electrically injected variable bandgap

Deng Wen-Juan Zhou Tian Wang Zhuang-Fei Wu Yue-Chuan Peng Xin-Cun Zou Ji-Jun

Citation:

Theoretical modeling and analyzing structural characteristics of AlGaAs/GaAs negative electron affinity array cathode with optically and electrically injected variable bandgap

Deng Wen-Juan, Zhou Tian, Wang Zhuang-Fei, Wu Yue-Chuan, Peng Xin-Cun, Zou Ji-Jun
PDF
HTML
Get Citation
  • In order to obtain high emission current efficiency of the AlGaAs/GaAs NEA array cathode, this array cathode has two ways to form electron emission, i.e. optical injection and electrical injection. The two-dimensional continuity equation of electronic transport in the variable bandgap emission array is solved numerically by using the finite volume method thereby obtaining the emission current and emission current efficiency. Simulation obtains the optimal parameter range for each layer of the AlGaAs/GaAs NEA array cathode under both optical injection and electrical injection. The results show that the optimal angle of incident light for the array cathode under light injection is 10°–30° for selecting an array micro-nano column with a duty cycle of 2/3. Under the condition of light injection, the P-type variable bandgap AlGaAs layer array micro-nano column height ranges from 0.3–0.6 μm. Under the condition of electrical injection, the height of the micro-nano column of the P-type variable bandgap AlGaAs layer array is 0.1–0.3 μm. The optimal thickness range of N-type variable bandgap AlGaAs layer, N-type AlGaAs layer, and P-type AlGaAs layer under light injection are 0.5–2.5 μm, 0.5–1.0 μm and 0.2–0.5 μm, respectively. The optimal thickness range of N-type variable bandgap AlGaAs layer, N-type AlGaAs layer, and P-type AlGaAs layer under electrical injection conditions are 2–3 μm, 0.8–1.2 μm and 0.1–0.3 μm, respectively. The optimal doping concentration of P-type AlGaAs layer and N-type AlGaAs layer under light injection are range from 5×1018 to 1×1019 cm–3 and from 1×1018 to 5×1018 cm–3, respectively. The optimal doping concentration of the P-type AlGaAs layer and the N-type AlGaAs layer under electrical injection range from 1×1018 to 5×1018 cm–3 and from 5×1017 to 1×1018 cm–3, respectively. The maximum efficiency of the emission current under the light injection is 35.04%, and the maximum emission current per unit length is 10.3 nA/μm. The maximum efficiency of the emission current under electrical injection is 31.23%, and the maximum emission current per unit length is 105.5 μA/μm. Electric injection cathode does not need expensive and complex drive laser system, and the light injection control mode is simple, so light injection or electrical injection control mode can be chosen as needed. The research of array cathode, which integrates the advantages of many advanced technologies, is of great significance for enriching the cathode array cathode emission theory and expanding its application field.
      Corresponding author: Zou Ji-Jun, jjzou@ecut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61961001, 11875012, 62061001, 61771245), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20181BAB202026, 20192ACBL20003, 20202BAB202013, 20203BBE53030), the Jiangxi Double Thousand Plan, China (Grant No. jxsq2019201053), and the Science and Technology Project of Department of Education of Jiangxi Province, China (Grant No. GJJ170451).
    [1]

    Tsentalovich E, Barkhuff D, Chen J, Dodson G, Farkhondeh M, Franklin W, Ihloff E, Kaertner F, Tschalaer C, Yang B, Zwart T 2007 Nucl. Instrum. Methods Phys. Res., Sect. A 582 413Google Scholar

    [2]

    Benson S V, Douglas D, Neil G R, Shinn M D 2011 J. Phys. Conf. Ser. 299 012014Google Scholar

    [3]

    Liu W, Chen Y Q, Lu W T, Moy A, Poelker M, Stutzman M, Zhang S K 2016 Appl. Phys. Lett. 109 252104Google Scholar

    [4]

    Yamamoto N, Yamamoto M, Kuwahara M, Sakai R, Morino T, Tamagaki K, Mano A, Utsu A, Okumi S, Nakanishi T, Kuriki M, Bo C, Ujihara T, Takeda Y 2007 J. Appl. Phys. 102 024904Google Scholar

    [5]

    Pierce D T, Meier F 1976 Phys. Rev. B 13 5484Google Scholar

    [6]

    滕利华, 牟丽君 2017 物理学报 66 046802Google Scholar

    Teng L H, Mu L J 2017 Acta Phys. Sin. 66 046802Google Scholar

    [7]

    Su C Y, Spicer W E, Lindau I 1983 J. Appl. Phys. 54 1413Google Scholar

    [8]

    Cultrera L, Galdi A, Bae J K, Ikponmwen F, Maxson J, Bazarov I 2020 Phys. Rev. Accel. Beams 23 023401Google Scholar

    [9]

    Machuca F, Liu Z, Sun Y, Pianetta P, Spicer W E, Pease R F W 2003 J. Vac. Sci. Technol. B 21 1863Google Scholar

    [10]

    Maruyama T, Brachmann A, Clendenin J E, Desikan T, Garwin E L, Kirby R E, Luh D A, Turner J, Prepost R 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 492 199Google Scholar

    [11]

    李晓峰 2001 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Li X F 2001 Ph. D. Dissertation (Xi’an: Xi’an Institute of Optical and Precision Mechanics, Chinese Academy of Sciences) (in Chinese)

    [12]

    Zhang Q, Bai X F, Cheng H C, Jiao G C, Li Z K, Han K, Li Q 2022 Acta Photonica Sin. 51 0304005Google Scholar

    [13]

    Liu L, Lu F F, Tian J, Zhangyang X Y, Lv Z S 2020 J. Mater. Sci. Technol. 58 86Google Scholar

    [14]

    邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康 2014 物理学报 63 167902Google Scholar

    Deng W J, Peng X C, Zou J J, Jiang S T, Guo D, Zhang Y J, Chang B K 2014 Acta Phys. Sin. 63 167902Google Scholar

    [15]

    邹继军, 高频, 杨智, 常本康 2008 光子学报 37 1112

    Zou J J, Gao P, Yang Z, Chang B K 2008 Acta Photonica Sin. 37 1112

    [16]

    Xia S, Liu L, Kong Y K 2016 Opt. Quantum Electron. 48 306Google Scholar

    [17]

    张涛 2018 电子世界 15 65

    Zhang T 2018 Electron. World 15 65

    [18]

    曾梦丝, 彭新村 2018 光学仪器 40 67

    Zeng M S, Peng X C 2018 Opt. Instrum. 40 67

    [19]

    邹继军, 张益军, 杨智, 常本康 2011 物理学报 60 017902Google Scholar

    Zou J J, Zhang Y J, Yang Z, Chang B K 2011 Acta Phys. Sin. 60 017902Google Scholar

    [20]

    Xia J Y, Zou J J, Peng X C, Deng W J, Zhang Y J 2020 Ultramicroscopy 219 113121Google Scholar

    [21]

    Ding X J, Ge X W, Zou J J, Zhang Y J, Peng X C, Deng W J, Chen Z P, Zhao W J, Chang B K 2016 Opt. Commun. 367 149Google Scholar

  • 图 1  光和电注入阵列阴极结构

    Figure 1.  Optical and electrical injection array cathode structure.

    图 2  光和电注入NEA阵列阴极光电发射过程和能带结构图

    Figure 2.  Photoelectric emission process and band structure diagram of the light and electrical injection NEA array cathode.

    图 3  (a) 发射电流效率α随入射光波长变化曲线; (b) 发射电流效率α随入射光角度变化曲线, 其中阵列阴极Na, Nd, Tcp, Tp, TnTcn分别为5×1018 cm–3, 1×1018 cm–3, 0.2 μm, 0.1 μm, 0.3 μm和1.0 μm

    Figure 3.  (a) Emission current efficiency α versus incident wavelength; (b) emission current efficiency αversus incident light angle, where Na, Nd, Tcp, Tp, Tn and Tcn of the array cathode are 5×1018 cm–3, 1×1018 cm–3, 0.2 μm, 0.1 μm, 0.3 μm and 1.0 μm, respectively.

    图 4  电注入阵列阴极发射电流和发射电流效率随电压变化曲线. 其中阵列阴极Na, Nd, Tcp, Tp, TnTcn分别为5×1018 cm–3, 1×1018 cm–3, 0.1 μm, 0.1 μm, 0.3 μm和1.0 μm

    Figure 4.  The cathodic emission current and emission current efficiency of the electrically implanted array vary with voltage. The array cathode Na, Nd, Tcp, Tp, Tn and Tcn are 5×1018 cm–3, 1×1018 cm–3, 0.1 μm, 0.1 μm, 0.3 μm, 1.0 μm, respectively.

    图 5  (a) 光注入时P型变带隙AlGaAs层厚度变化(a)和P型AlGaAs层厚度变化(b)对阵列阴极发射电流效率α的影响; 电注入时P型变带隙AlGaAs层厚度变化(c)和P型AlGaAs层厚度变化(d)对阵列阴极发射电流效率的影响. 其中光注入入射光角度为20°. (a)和(c)中Tp = 0.1 μm, (b)和(d)中Tcp = 0.2 μm, (a), (b), (c), (d)中阵列阴极Na, Nd, TnTcn分别为5×1018 cm–3, 1×1018 cm–3, 0.3 μm和1.0 μm

    Figure 5.  (a) The effect of the thickness change of P-band gap AlGaAs layer on the emission current efficiency of array cathode during optical injection; (b) the effect of thickness variation of P-type AlGaAs layer on emission current efficiency of array cathode during optical injection; (c) the effect of p-gap AlGaAs layer thickness variation on emission current efficiency of array cathode during electric injection; (d) the effect of thickness variation of P-type AlGaAs layer on emission current efficiency of array cathode during electric injection. The light injection angle is 20°. Tp is 0.1 μm in Figure (a) and Figure (c), Tcp is 0.2 μm in Figure (b) and Figure (d), and array cathode Na, Nd, Tn and Tcn are 5×1018 cm–3, 1×1018 cm–3, 0.3 μm and 1.0 μm in Figure (a), (b), (c) and (d), respectively.

    图 6  光注入时N型AlGaAs层厚度的变化对阵列阴极发射电流效率(a)和阵列阴极发射电流效率(b)的影响; 电注入时N型AlGaAs层厚度的变化对阵列阴极发射电流效率(c)和阵列阴极发射电流效率(d)的影响. 其中光注入入射光角度为20°, (a)和(c)中Tcn = 1 μm, (b)和(d)中Tcp = 0.3 μm, (a), (b), (c)和(d)中阵列阴极Na, Nd, TcpTp分别为5×1018 cm–3, 1×1018 cm–3, 0.2 μm和0.1 μm

    Figure 6.  (a) The effect of thickness variation of N-type AlGaAs layer on emission current efficiency of array cathode during optical injection; (b) effect of the thickness of N-type variable band gap AlGaAs layer on the emission current efficiency of array cathode during optical injection; (c) the effect of thickness variation of N-type AlGaAs layer on emission current efficiency of array cathode during electric injection; (d) the effect of the thickness of N-type variable band gap AlGaAs layer on the emission current efficiency of array cathode during electric injection. The light injection angle is 20°, Tcn is 1 μm in Figure (a) and Figure (c), Tcp is 0.3 μm in Figure (b) and Figure (d), and array cathode Na, Nd, Tcp and Tp are 5×1018 cm–3, 1×1018 cm–3, 0.2 μm and 0.1 μm in Figure (a), (b), (c) and (d), respectively.

    图 7  (a) 光注入时P型AlGaAs层和P型变带隙AlGaAs层掺杂浓度Na变化对阵列阴极发射电流效率的影响; (b) 电注入时P型AlGaAs层和P型变带隙AlGaAs层掺杂浓度Na的变化对阵列阴极发射电流效率的影响. 其中光注入入射光角度为20º, 阵列阴极Nd, Tcp, Tp, TnTcn分别为1 × 1018 cm–3, 0.2 μm, 0.1 μm, 0.3 μm和1.0 μm

    Figure 7.  (a) The effect of doping concentration Na of P-type AlGaAs layer and P-type bandgap AlGaAs layer on emission current efficiency of array cathode during optical injection; (b) the effect of doping concentration Na of P-type AlGaAs layer and P-type bandgap AlGaAs layer on emission current efficiency of array cathode during electric injection. Incidence angle of optical injection is 20°, and the array cathode Nd, Tcp, Tp, Tn and Tcn are 1 × 1018 cm–3, 0.2 μm, 0.1 μm, 0.3 μm and 1.0 μm, respectively.

    图 8  (a) 光注入时N型变带隙AlGaAs层和N-AlGaAs层掺杂浓度Nd变化对阵列阴极发射电流效率的影响; (b) 电注入时N型变带隙AlGaAs层和N-AlGaAs层掺杂浓度Nd的变化对阵列阴极发射电流效率的影响. 光注入入射光角度为20°, 阵列阴极Na, Tcp, Tp, TnTcn分别为5 × 1018 cm–3, 0.2 μm, 0.1 μm, 0.3 μm和1.0 μm

    Figure 8.  (a) Effect of doping concentration Nd variation of N-type bandgap AlGaAs layer and N-AlGaAs layer on emission current efficiency of array cathode during optical injection; (b) the effect of doping concentration Nd of N-type variable band gap AlGaAs layer and N-AlGaAs layer on emission current efficiency of array cathode during electric injection. Incidence angle of optical injection is 20°, and the array cathode Na, Tcp, Tp, Tn and Tcn are 5 × 1018 cm–3, 0.2 μm, 0.1 μm, 0.3 μm and 1.0 μm, respectively.

  • [1]

    Tsentalovich E, Barkhuff D, Chen J, Dodson G, Farkhondeh M, Franklin W, Ihloff E, Kaertner F, Tschalaer C, Yang B, Zwart T 2007 Nucl. Instrum. Methods Phys. Res., Sect. A 582 413Google Scholar

    [2]

    Benson S V, Douglas D, Neil G R, Shinn M D 2011 J. Phys. Conf. Ser. 299 012014Google Scholar

    [3]

    Liu W, Chen Y Q, Lu W T, Moy A, Poelker M, Stutzman M, Zhang S K 2016 Appl. Phys. Lett. 109 252104Google Scholar

    [4]

    Yamamoto N, Yamamoto M, Kuwahara M, Sakai R, Morino T, Tamagaki K, Mano A, Utsu A, Okumi S, Nakanishi T, Kuriki M, Bo C, Ujihara T, Takeda Y 2007 J. Appl. Phys. 102 024904Google Scholar

    [5]

    Pierce D T, Meier F 1976 Phys. Rev. B 13 5484Google Scholar

    [6]

    滕利华, 牟丽君 2017 物理学报 66 046802Google Scholar

    Teng L H, Mu L J 2017 Acta Phys. Sin. 66 046802Google Scholar

    [7]

    Su C Y, Spicer W E, Lindau I 1983 J. Appl. Phys. 54 1413Google Scholar

    [8]

    Cultrera L, Galdi A, Bae J K, Ikponmwen F, Maxson J, Bazarov I 2020 Phys. Rev. Accel. Beams 23 023401Google Scholar

    [9]

    Machuca F, Liu Z, Sun Y, Pianetta P, Spicer W E, Pease R F W 2003 J. Vac. Sci. Technol. B 21 1863Google Scholar

    [10]

    Maruyama T, Brachmann A, Clendenin J E, Desikan T, Garwin E L, Kirby R E, Luh D A, Turner J, Prepost R 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 492 199Google Scholar

    [11]

    李晓峰 2001 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Li X F 2001 Ph. D. Dissertation (Xi’an: Xi’an Institute of Optical and Precision Mechanics, Chinese Academy of Sciences) (in Chinese)

    [12]

    Zhang Q, Bai X F, Cheng H C, Jiao G C, Li Z K, Han K, Li Q 2022 Acta Photonica Sin. 51 0304005Google Scholar

    [13]

    Liu L, Lu F F, Tian J, Zhangyang X Y, Lv Z S 2020 J. Mater. Sci. Technol. 58 86Google Scholar

    [14]

    邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康 2014 物理学报 63 167902Google Scholar

    Deng W J, Peng X C, Zou J J, Jiang S T, Guo D, Zhang Y J, Chang B K 2014 Acta Phys. Sin. 63 167902Google Scholar

    [15]

    邹继军, 高频, 杨智, 常本康 2008 光子学报 37 1112

    Zou J J, Gao P, Yang Z, Chang B K 2008 Acta Photonica Sin. 37 1112

    [16]

    Xia S, Liu L, Kong Y K 2016 Opt. Quantum Electron. 48 306Google Scholar

    [17]

    张涛 2018 电子世界 15 65

    Zhang T 2018 Electron. World 15 65

    [18]

    曾梦丝, 彭新村 2018 光学仪器 40 67

    Zeng M S, Peng X C 2018 Opt. Instrum. 40 67

    [19]

    邹继军, 张益军, 杨智, 常本康 2011 物理学报 60 017902Google Scholar

    Zou J J, Zhang Y J, Yang Z, Chang B K 2011 Acta Phys. Sin. 60 017902Google Scholar

    [20]

    Xia J Y, Zou J J, Peng X C, Deng W J, Zhang Y J 2020 Ultramicroscopy 219 113121Google Scholar

    [21]

    Ding X J, Ge X W, Zou J J, Zhang Y J, Peng X C, Deng W J, Chen Z P, Zhao W J, Chang B K 2016 Opt. Commun. 367 149Google Scholar

  • [1] Zhang Jun-Hui, Fan Li, Wu Zheng-Mao, Gou Chen-Hao, Luo Yang, Xia Guang-Qiong. Broadband and tunable optical frequency comb based on 1550 nm verticalcavity surface-emitting laser under pulsed current modulation and optical injection. Acta Physica Sinica, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [2] Zhou Pei, Zhang Ren-Heng, Zhu Jian, Li Nian-Qiang. High-performance linear frequency-modulated signal generation based on optically injected semiconductor laser with dual-loop optoelectronic feedback. Acta Physica Sinica, 2022, 71(21): 214204. doi: 10.7498/aps.71.20221308
    [3] Wang Xue-You, Wang Yu-Fei, Zheng Wan-Hua. Mode control of electrically injected semiconductor laser with parity-time symmetry. Acta Physica Sinica, 2020, 69(2): 024202. doi: 10.7498/aps.69.20191351
    [4] Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong. Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection. Acta Physica Sinica, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [5] Liu Qing-Xi, Pan Wei, Zhang Li-Yue, Li Nian-Qiang, Yan Juan. Chaotic randomness of mutually coupled vertical-cavity surface-emitting laser by optical injection. Acta Physica Sinica, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [6] Cao Ti, Lin Xiao-Dong, Xia Guang-Qiong, Chen Xing-Hua, Wu Zheng-Mao. Dynamics of vertical-cavity surface-emitting laser subject to optical injection and positive optoelectronic feedback. Acta Physica Sinica, 2012, 61(11): 114202. doi: 10.7498/aps.61.114202
    [7] Yang Bing-Xing, Xia Guang-Qiong, Lin Xiao-Dong, Wu Zheng-Mao. Polarization switching performance of VCSEL subjected to optical pulse injection. Acta Physica Sinica, 2009, 58(3): 1480-1483. doi: 10.7498/aps.58.1480
    [8] Lü Yu-Xiang, Sun Shuai, Yang Xing. Simultaneous all-optical individual channel clock extraction and wavelength conversion using an optically injected Fabry-Perot laser diode. Acta Physica Sinica, 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [9] Wang Xin-Qing, Li Liang, Chu Ning-Jie, Jin Hong-Xiao, Ge Hong-Liang. Theoretical optimization for field emission current density from carbon nanotubes array. Acta Physica Sinica, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [10] Yang Hao, Guo Xia, Guan Bao-Lu, Wang Tong-Xi, Shen Guang-Di. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [11] Zhong Dong-Zhou, Cao Wen-Hua, Wu Zheng-Mao, Xia Guang-Qiong. Vector polarization mode switch mechanism of the vertical-cavity surface-emitting laser with anisotropic optical feedback injection. Acta Physica Sinica, 2008, 57(3): 1548-1556. doi: 10.7498/aps.57.1548
    [12] Fan Yan, Xia Guang-Qiong, Wu Zheng-Mao. The self-correlation performance of semiconductor lasers with optical feedback and optical injection. Acta Physica Sinica, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [13] Niu Sheng-Xiao, Zhang Ming-Jiang, An Yi, He Hu-Cheng, Li Jing-Xia, Wang Yun-Cai. Frequency-tunable all-optical clock division using semiconductor laser subjected to external optical injection. Acta Physica Sinica, 2008, 57(11): 6998-7004. doi: 10.7498/aps.57.6998
    [14] Liu Sheng-Fang, Xia Guang-Qiong, Wu Jia-Gui, Li Lin-Fu, Wu Zheng-Mao. Improving chaotic carrier fundamental frequency in VCSELs with optical feedback by strong light injection. Acta Physica Sinica, 2008, 57(3): 1502-1505. doi: 10.7498/aps.57.1502
    [15] Zhong Dong-Zhou, Xia Guang-Qiong, Wang Fei, Wu Zheng-Mao. Vectorial chaotic synchronization characteristics of unidrectionally coupled and injected vertical-cavity surface-emitting lasers based on optical feedback. Acta Physica Sinica, 2007, 56(6): 3279-3291. doi: 10.7498/aps.56.3279
    [16] Li Yuan, Zhao Su-Ling, Xu Zheng, Zhang Fu-Jun, Huang Jin-Zhao, Song Lin, Ouyang Ping. Reseach on improving the electron injection in SSCL. Acta Physica Sinica, 2007, 56(9): 5526-5530. doi: 10.7498/aps.56.5526
    [17] Wang Yun-Cai, Zhang Geng-Wei, Wang An-Bang, Wang Bing-Jie, Li Yan-Li, Guo Ping. Bandwidth enhancement of semiconductor laser as a chaotic transmitter by external light injection. Acta Physica Sinica, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [18] Clock division with optical injection semiconductor laser. Acta Physica Sinica, 2007, 56(12): 6982-6988. doi: 10.7498/aps.56.6982
    [19] Li Xiao-Feng, Pan Wei, Ma Dong, Luo Bin, Zhang Wei-Li, Xiong Yue. Effects of spontaneous emission noise in semiconductor lasers on chaotic optical communication systems. Acta Physica Sinica, 2006, 55(10): 5094-5104. doi: 10.7498/aps.55.5094
    [20] TAN SONG-SHENG, CHEN PEI-RAN. THE EFFECT OF PHOTO-INJECTED CARRIERS IN FORWARD BIASED JUNCTIONS OF A MULTIJUNCTION DEVICE. Acta Physica Sinica, 1980, 29(10): 1237-1244. doi: 10.7498/aps.29.1237
Metrics
  • Abstract views:  4573
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  05 July 2022
  • Accepted Date:  15 August 2022
  • Available Online:  26 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回