Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Charge stability diagram of serial triple quantum dots

Zhou Zheng Huang Shao-Yun

Citation:

Charge stability diagram of serial triple quantum dots

Zhou Zheng, Huang Shao-Yun
PDF
HTML
Get Citation
  • Serial triple quantum dot (STQD) systems have received extensive attention in the past decade, not only because quantum dot scaling up is an indispensable ingredient for integrations, but also due to the fact that specific charge states of STQD can be employed to achieve fast full-electrical manipulation of spin qubits. For the latter, a comprehensive understanding of the relationship between neighboring charge occupancy states of STQD is essential for three-electron exchange-only spin qubit-based quantum computations. Charge stability diagram is usually employed to map out the charge occupation states about the plunger gate voltages of STQDs and to study the degeneracy among charge occupation states. Experimentally, two- rather than three-dimensional charge stability diagram was obtained in a lot of early studies by keeping one of plunger gates unchanged to reduce complexity. The obtained two-dimensional diagram can only provide limited information and is subject to blurred boundary of charge occupation states due to the low tunneling current and the energy level broading effects. It is, therefore, challenge to searching for the working points where quantum manipulation can be performed promptly and accurately.In principle, three-dimensional charge occupation stability diagram can be efficiently constructed by numerical simulations based on constant interaction (CI) model. In this study, we calculate the electrochemical potential of STQD about three plunger gate voltages by using the CI model-based capacitance network to reproduce any desired two-dimensional charge stability diagram. The simulated diagram not only well accords with the diagrams obtained from the early experimental data of STQD, but also provides high clarity of the charge state boundaries with tunable parameters. The systematical study of two-dimensional charge stability diagram reviews the energy degeneracy triple and quadruple points of STQD charge occupation states and concludes the energy degeneracy points in three types to compare with experimental data. For each of the energy degeneracy points, we discuss both the electron and hole transport by using the electrochemical potential alignment schematics. We reveal the common and unique triple points of STQD in comparison with those of double quantum dot. The quadruple points of STQD are also addressed in the manipulation of quantum cellular automata and quantum logical gate. The comprehensive understanding of these energy degeneracy points can efficiently guide experiments to build an optimal working point of the STQD system for quantum computations and simulations.
      Corresponding author: Huang Shao-Yun, syhuang@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974030, 92165208), the Natural Science Foundation of Beijing, China (Grant No. 1202010), and the National Basic Research Program of China (Grant No. 2017YFA0204901).
    [1]

    范桁 2018 物理学报 67 120301Google Scholar

    Fan H 2018 Acta Phys. Sin. 67 120301Google Scholar

    [2]

    Georgescu I 2020 Nat. Rev. Phys. 2 666Google Scholar

    [3]

    De Leon N P, Itoh K M, Kim D, Mehta K K, Northup T E, Paik H, Palmer B S, Samarth N, Sangtawesin S, Steuerman D W 2021 Science 372 253

    [4]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A. 57 120Google Scholar

    [5]

    Zhang X, Li H O, Wang K, Cao G, Xiao M, Guo G P 2018 Chin. Phys. B. 27 020305Google Scholar

    [6]

    DiVincenzo D P 2005 Science 309 217Google Scholar

    [7]

    Chatterjee A, Stevenson P, De Franceschi S, Morello A, de Leon N P, Kuemmeth F 2021 Nat. Rev. Phys. 3 157Google Scholar

    [8]

    Elzerman J M, Hanson R, Willems Van Beveren L H, Witkamp B, Vandersypen L M K, Kouwenhoven L P 2004 Nature 430 431Google Scholar

    [9]

    Petta J R, Johnson A C, Taylor J M, et al. 2005 Science 309 2180Google Scholar

    [10]

    Koppens F H L, Buizert C, Tielrooij K J, et al. 2006 Nature 442 766Google Scholar

    [11]

    Nowack K C, Koppens F H L, Nazarov Yu V, Vandersypen L M K 2007 Nature 318 1430

    [12]

    Cao G, Li H O, Tu T, Wang L, Zhou C, Xiao M, Guo G C, Jiang H W, Guo G P 2013 Nat. Commun. 4 1401Google Scholar

    [13]

    Chen B B, Wang B C, Cao G, Li H O, Xiao M, Guo G P 2017 Sci. Bull. 2 712

    [14]

    DiVincenzo D P, Bacon D, Kempe J, Burkard G, Whaley K B 2000 Nature 408 339Google Scholar

    [15]

    Russ M, Burkard G 2017 J. Phys. Condens. Matter 29 393001Google Scholar

    [16]

    Gaudreau L, Studenikin S A, Sachrajda A S, Zawadzki P, Kam A 2006 Phys. Rev. Lett. 97 036807Google Scholar

    [17]

    Granger G, Gaudreau L, Kam A, et al. 2010 Phys. Rev. B 82 075304Google Scholar

    [18]

    Medford J, Beil J, Taylor J M, et al. 2013 Nat. Nanotechnol. 8 654Google Scholar

    [19]

    Wang B C, Cao G, Li H O, Xiao M, Guo G C, Hu X D, Jing H W, Guo G P 2017 Phys. Rev. Appl. 8 064035Google Scholar

    [20]

    Schröer D, Greentree A D, Gaudreau L, Eberl K, Hollenberg L C L, Kotthaus J P, Ludwig S 2007 Phys. Rev. B 76 075306Google Scholar

    [21]

    Rogge M C, Haug R J 2009 New J. Phys. 11 113037Google Scholar

    [22]

    Wang J Y, Huang S Y, Huang G Y, Pan D, Zhao J H, Xu H Q. 2017 Nano Lett. 17 4158Google Scholar

    [23]

    Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217Google Scholar

    [24]

    曾谨言 2013 量子力学(卷I) 第五版 (北京: 科学出版社) 第81页-第83页

    Zeng J Y 2013 Quantum Mechanics (Vol. 1) (5th Ed.) (Beijing: Science Press) pp81—83 (in Chinese)

    [25]

    Van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S, Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1

    [26]

    蔡圣善, 朱耘, 徐建军 2002 电动力学 (第二版) (高等教育出版社) 第65页

    Cai S S, Zhu Y, X J J 2002 Electrodynamics (2nd Ed.) (Beijing: Higher Education Press) p65 (in Chinese)

    [27]

    Mu J W, Huang S Y, Liu Z H, Li W J, Wang J Y, Pan D, Huang G Y, Chen Y J, Zhao J H, Xu H Q 2021 Nanoscale 13 3983Google Scholar

    [28]

    Pierre M, Hofheinz M, Jehl X, Sanquer M, Molas G, Vinet M, Deleonibus S 2009 Eur. Phys. J. B 70 475Google Scholar

    [29]

    Elzerman J M, Hanson R, Greidanus J S, Willems van Beveren L H, De Franceschi S, Vandersypen L M K, Tarucha S, Kouwenhoven L P 2003 Phys. Rev. B 67 161308Google Scholar

    [30]

    Wang X M, Huang S Y, Wang J Y, Pan D, Zhao J H, Xu H Q 2021 Nanoscale 13 1048Google Scholar

    [31]

    Li W J, Mu J W, Huang S Y, Pan D, Zhao J H, Xu H Q 2020 Appl. Phys. Lett. 117 262102Google Scholar

    [32]

    Takakura T, Pioro-Ladrière M, Obata T, Shin Y S, Brunner R, Yoshida K, Taniyama T, Tarucha S 2010 Appl. Phys. Lett. 97 212104Google Scholar

    [33]

    Noiri A, Yoneda J, Nakajima T, et al. 2016 Appl. Phys. Lett. 108 153101Google Scholar

    [34]

    Greentree A D, Cole J H, Hamilton A R, Hollenberg L C L 2004 Phys. Rev. B 70 235317Google Scholar

    [35]

    Van Diepen C J, Hsiao T K, Mukhopadhyay U, Reichl C, Wegscheider W, Vandersypen L M K 2021 Nat. Commun. 12 77Google Scholar

    [36]

    Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G, Petta J R, 2018 Science 359 439

    [37]

    Gullans M J, Petta J R 2019 Phys. Rev. B 100 085419Google Scholar

  • 图 1  电容网络

    Figure 1.  Capacitive network.

    图 2  STQD的等效电路

    Figure 2.  Equivalent circuits of STQD.

    图 3  在中间量子点栅压Vβ = 0.0106 V时的STQD的二维稳态图. 其中红色线、蓝色线和黑色线分别代表了量子点A, B, C的充电线; 黄色线、紫色线以及绿色线分别代表了电荷在量子点AB、量子点BC以及量子点AC之间的电荷重分布线; 灰色线代表了STQD点独有的输运过程

    Figure 3.  Low source-drain bias charge stability diagram of STQD at Vβ = 0.0106 V. Red-, blue- and black-colored lines represent the charging line of quantum dot A, B and C, respectively; Yellow-, purple- and green-colored lines represent charge reconfiguration lines between quantum dots A and B, B and C, and A and C, respectively; Gray-colored line represents a unique transport process of STQD.

    图 4  第一类三点. 其中I区指代的是$ ({N}_{A}, {N}_{B}+1, {N}_{C}) $区域 (a) 对应了图3中的紫色虚线方框, 这里$ {V}_{\beta }=0.0106\rm{V}. $绿色箭头表示$ A $$ C $两个量子点电化学势对齐, 紫色箭头表示$ B $$ C $两个量子点电化学势对齐, 黄色箭头表示$ A $$ B $两个量子点电化学势对齐, 实心点对应了电子型输运, 空心点对应了空穴型输运; (b) 图(a)中绿色实心点对应的电化学势对齐情况, QDA, QDB和QDC分别指代的是量子点A, BC; (c) 图(a)中绿色空心点对应的电化学势对齐情况, QDA, QDB和QDC分别指代的是量子点A, BC

    Figure 4.  The first type of triple points. Region I refers to $ ({N}_{A}, {N}_{B}+1, {N}_{C}) $ charge state: (a) Zoom-in of the purple box in Fig. 3 at $ {V}_{\beta }=0.0106\rm{V} $.The green-colored arrow indicates the alignment between electrochemical potential of dot A and dot C. The purple-colored arrow indicates the alignment between electrochemical potential of dot B and dot C. The yellow-colored arrow indicates the alignment between electrochemical potential of dot A and dot B. Solid dots correspond to electron transport, and open dots correspond to hole transport; (b) the alignment of electrochemical potential of green-colored solid dot in Figure (a). QDA, QDB and QDC refer to quantum dot A, B and C, respectively; (c) the alignment of electrochemical potential of green-colored open dot in Figure (a). QDA, QDB and QDC refer to quantum dot A, B and C, respectively.

    图 5  第二类三点, 其中I区指代的是$ ({N}_{A}, {N}_{B}+1, {N}_{C}) $区域, II区指代的是$ ({N}_{A}+1, {N}_{B}, {N}_{C}+1) $区域 (a) 对应了图3中的蓝色虚线方框, 这里$ {V}_{\beta }=0.0106\;\rm{V} $. 箭头指代的空心点标示了在该三点处是空穴型输运; (b) $ {V}_{\beta }=0.0078\;\rm{V} $. 箭头指代的实心点标示了在该三点处是电子型输运. 图(b)对应二维稳态图的$ {V}_{\beta } $值小于图(a)的$ {V}_{\beta } $值; (c) 图(a)蓝色空心点对应的电化学势对齐情况, QDA, QDB和QDC分别指代的是量子点A, BC; (d) 图(b)蓝色实心点对应的电化学势对齐情况, QDA, QDB和QDC分别指代的是量子点A, B和C

    Figure 5.  The second type of triple points. Region I refers to $ ({N}_{A}, {N}_{B}+1, {N}_{C}) $ charge state and region II refers to $ ({N}_{A}+1, {N}_{B}, $$ {N}_{C}+1) $ charge state: (a) Zoom-in of the blue-colored box in Fig. 3 at $ {V}_{\beta }=0.0106\;\rm{V} $.The two arrows indicate triple points of hole transport; (b) at $ {V}_{\beta }=0.0078\;\rm{V} $. The two arrows indicate triple points of electron transport. $ {V}_{\beta } $of (b) is smaller than that of Figure (a); (c) the alignment of electrochemical potential indicated by the blue-colored open dot in Figure (a). QDA, QDB and QDC refer to quantum dot A, B and C, respectively; (d) the alignment of electrochemical potential indicated by the blue-colored solid dot in Figure (b). QDA, QDB and QDC refer to quantum dot A, B and C, respectively

    图 6  第三类三点, 其中I区指代的是$ ({N}_{A}, {N}_{B}+1, {N}_{C}) $区域, II区指代的是$ ({N}_{A}+1, {N}_{B}, {N}_{C}+1) $区域 (a) 对应了图3中的红色虚线方框, 这里$ {V}_{\beta }=0.0106\;\rm{V} $. 箭头指代的实心点标示了在该三点处是电子型输运; (b) $ {V}_{\beta }=0.0167\;\rm{V} $. 箭头指代的空心点标示了在该三点处是空穴型输运. 图(b)对应二维稳态图的$ {V}_{\beta } $值大于图(a)的$ {V}_{\beta } $值; (c) 图(a)红色实心点对应的电化学势对齐情况, QDA, QDB和QDC分别指代的是量子点A, B和C. (d) 图(b)红色空心点对应的电化学势对齐情况, QDA、QDB和QDC分别指代的是量子点A, B和C

    Figure 6.  The third type of triple points. Region I refers to $ ({N}_{A}, {N}_{B}+1, {N}_{C}) $ charge state and region II refers to $ ({N}_{A}+1, {N}_{B}, $$ {N}_{C}+1) $ charge state; (a) Zoom-in of the red-colored box in Fig. 3 at $ {V}_{\beta }=0.0106 \; \rm{V} $ .The arrow indicates a triple point of electron transport; (b) if $ ({N}_{A}, {N}_{B}, {N}_{C})=(\rm{1, 1}, 1) $, then $ {V}_{\beta }=0.0167\;\rm{V} $. The arrow indicates a triple point of hole transport. $ {V}_{\beta } $ of Figure (b) is larger than that of Figure (a); (c) the alignment of electrochemical potential indicated by the red-colored solid dot in Figure (a). QDA, QDB and QDC refer to quantum dot A, B and C, respectively; (d) the alignment of electrochemical potential indicated by the red-colored open dot in Figure (b). QDA, QDB and QDC refer to quantum dot A, B and C, respectively.

    图 7  第一类四点, 其中I区指代的是$ ({N}_{A}, {N}_{B}+1, {N}_{C}) $区域, II区指代的是$ ({N}_{A}+1, {N}_{B}, {N}_{C}+1) $区域 (a) 在$ {V}_{\beta }=0.0109\;\rm{V} $下的二维稳态图. 箭头指代的实心点对应了电子输运的四点; (b) $ {V}_{\beta }=0.0166\;\rm{V} $. 箭头指代的空心点对应了空穴输运的四点. 图(b)对应二维稳态图的$ {V}_{\beta } $值大于图(a)的$ {V}_{\beta } $值; (c) 图(a)棕色实心点对应的电化学势对齐情况, QDA, QDB和QDC分别指代的是量子点A, BC; (d) 图(b)棕色空心点对应的电化学势对齐情况, QDA, QDB和QDC分别指代的是量子点A, BC

    Figure 7.  The first type of quadruple points. Region I refers to $ ({N}_{A}, {N}_{B}+1, {N}_{C}) $ charge state and region II refers to $ ({N}_{A}+1, {N}_{B}, $$ {N}_{C}+1) $ charge state: (a) Charge stability diagram at $ {V}_{\beta }=0.0109\;\rm{V} $. The arrow indicates a quadruple point of electron transport; (b) at $ {V}_{\beta }=0.0166\;\rm{V} $.The arrow indicates a quadruple point of hole transport. $ {V}_{\beta } $of Figure (b) is larger than that of Figure (a); (c) the alignment of electrochemical potential indicated by the brown-colored solid dot in Figure (a). QDA, QDB and QDC refer to quantum dot A, B and C, respectively; (d) the alignment of electrochemical potential indicated by the brown-colored open dot in Figure (b).QDA, QDB and QDC refer to quantum dot A, B and C, respectively.

    图 8  第二类四点 (a) 在$ {V}_{\beta }=0.0138 $ V下的二维稳态图. I区指代的是$ ({N}_{A}, {N}_{B}+1, {N}_{C}) $区域, II区指代的是$ ({N}_{A}+1, {N}_{B}, $$ {N}_{C}+1) $区域. 箭头对应了四点的位置; (b) 图(a)橘黄色点对应的电化学势对齐情况, QDA, QDB和QDC分别指代的是量子点A, BC

    Figure 8.  The second type of quadruple points: (a) Charge stability diagram at $ {V}_{\beta }=0.0138\rm{V} $. Region I refers to $ ({N}_{A}, {N}_{B}+1, {N}_{C}) $ charge state and region II refers to $ ({N}_{A}+1, {N}_{B}, {N}_{C}+1) $ charge state.The arrows indicate the position of quadruple points; (b) the alignment of electrochemical potential indicated by the orange-colored point in Figure (a). QDA, QDB and QDC refer to quantum dot A, B and C, respectively.

    图 9  第三类四点, 其中I区指代的是$ ({N}_{A}, {N}_{B}+1, {N}_{C}) $区域, II区指代的是$ ({N}_{A}+1, {N}_{B}, {N}_{C}+1) $区域 (a) 这里$ {V}_{\beta }=0.0102 \; \rm{V} $. 箭头指代的四点对应了电子输运; (b) $ {V}_{\beta }=0.0104 \; \rm{V} $. 图(b)对应二维稳态图的$ {V}_{\beta } $值稍大于图(a)的$ {V}_{\beta } $值; (c) ${V}_{\beta }=0.0170 \; \rm{V}$. 图(c)对应二维稳态图的$ {V}_{\beta } $值稍小于图(d)的$ {V}_{\beta } $值; (d) ${V}_{\beta }=0.0172 \; {\rm{V}}.$ 箭头指代的四点对应了空穴输运; (e) 图(a)灰色实心点对应的电化学势对齐情况, QDA, QDB和QDC分别指代的是量子点A, BC; (f) 图(d)灰色空心点对应的电化学势对齐情况, QDA, QDB和QDC分别指代的是量子点A, BC

    Figure 9.  The third type of quadruple points. Region I refers to $ ({N}_{A}, {N}_{B}+1, {N}_{C}) $ charge state and region II refers to $ ({N}_{A}+1, {N}_{B}, $$ {N}_{C}+1) $ charge state: (a) Charge stability diagram at $ {V}_{\beta }=0.0102 \; \rm{V} $. The arrow indicates a quadruple point of electron transport; (b) at $ {V}_{\beta }=0.0104 \; \rm{V} $. $ {V}_{\beta } $of Figure (b) is a little bit larger than that of Figure (a); (c) at $ {V}_{\beta }=0.0170 \; \rm{V} $. $ {V}_{\beta } $of Figure (c) is a little bit smaller than that of Figure (d); (d) at $ {V}_{\beta }=0.0172 \; \rm{V} $. The arrow indicates a quadruple point of hole transport; (e) the alignment of electrochemical potential indicated by the gray-colored solid dot in Figure (a). QDA, QDB and QDC refer to quantum dot A, B and C, respectively; (e) the alignment of electrochemical potential indicated by the gray-colored open dot in Figure (d). QDA, QDB and QDC refer to quantum dot A, B and C, respectively.

    表 1  STQD二维稳态图模拟使用的电容参数(图3图9的电容参数), 参考自文献[22] 中的相关实验值

    Table 1.  The capacitance parameters used to reproduce the charge stability diagram shown in Fig.3Fig.9. The quantity of each parameters is cited from Ref. [22]

    参数取值
    ${C_{A\alpha }}$$5 \times {10^{ - 18} }~\rm F$
    $ {C_{A{ \mathcal{S}} }} $$5 \times {10^{ - 18} }~{\text{F} }$
    ${C_{A\beta }}$$2.5 \times {10^{ - 18} }~{\text{F} }$
    ${C_{A\gamma }}$$1 \times {10^{ - 18} }~{\text{F} }$
    ${C_{B\alpha }}$$2.5 \times {10^{ - 18}}~{\text{F}}$
    ${C_{B\beta }}$$5 \times {10^{ - 18}}~{\text{F}}$
    ${C_{B\gamma }}$$2.5 \times {10^{ - 18}}~{\text{F}}$
    ${C_{C\alpha }}$$1 \times {10^{ - 18}}~{\text{F}}$
    ${C_{C\beta }}$$2.5 \times {10^{ - 18}}~{\text{F}}$
    ${C_{C\gamma }}$$5 \times {10^{ - 18}}~{\text{F}}$
    $ {C_{C{ \mathcal{D}} }} $$5 \times {10^{ - 18} }~{\text{F} }$
    ${C_{AB}}$$5 \times {10^{ - 18}}~{\text{F}}$
    ${C_{AC}}$$2.5 \times {10^{ - 18}}~{\text{F}}$
    ${C_{BC}}$$5 \times {10^{ - 18}}~{\text{F}}$
    DownLoad: CSV
  • [1]

    范桁 2018 物理学报 67 120301Google Scholar

    Fan H 2018 Acta Phys. Sin. 67 120301Google Scholar

    [2]

    Georgescu I 2020 Nat. Rev. Phys. 2 666Google Scholar

    [3]

    De Leon N P, Itoh K M, Kim D, Mehta K K, Northup T E, Paik H, Palmer B S, Samarth N, Sangtawesin S, Steuerman D W 2021 Science 372 253

    [4]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A. 57 120Google Scholar

    [5]

    Zhang X, Li H O, Wang K, Cao G, Xiao M, Guo G P 2018 Chin. Phys. B. 27 020305Google Scholar

    [6]

    DiVincenzo D P 2005 Science 309 217Google Scholar

    [7]

    Chatterjee A, Stevenson P, De Franceschi S, Morello A, de Leon N P, Kuemmeth F 2021 Nat. Rev. Phys. 3 157Google Scholar

    [8]

    Elzerman J M, Hanson R, Willems Van Beveren L H, Witkamp B, Vandersypen L M K, Kouwenhoven L P 2004 Nature 430 431Google Scholar

    [9]

    Petta J R, Johnson A C, Taylor J M, et al. 2005 Science 309 2180Google Scholar

    [10]

    Koppens F H L, Buizert C, Tielrooij K J, et al. 2006 Nature 442 766Google Scholar

    [11]

    Nowack K C, Koppens F H L, Nazarov Yu V, Vandersypen L M K 2007 Nature 318 1430

    [12]

    Cao G, Li H O, Tu T, Wang L, Zhou C, Xiao M, Guo G C, Jiang H W, Guo G P 2013 Nat. Commun. 4 1401Google Scholar

    [13]

    Chen B B, Wang B C, Cao G, Li H O, Xiao M, Guo G P 2017 Sci. Bull. 2 712

    [14]

    DiVincenzo D P, Bacon D, Kempe J, Burkard G, Whaley K B 2000 Nature 408 339Google Scholar

    [15]

    Russ M, Burkard G 2017 J. Phys. Condens. Matter 29 393001Google Scholar

    [16]

    Gaudreau L, Studenikin S A, Sachrajda A S, Zawadzki P, Kam A 2006 Phys. Rev. Lett. 97 036807Google Scholar

    [17]

    Granger G, Gaudreau L, Kam A, et al. 2010 Phys. Rev. B 82 075304Google Scholar

    [18]

    Medford J, Beil J, Taylor J M, et al. 2013 Nat. Nanotechnol. 8 654Google Scholar

    [19]

    Wang B C, Cao G, Li H O, Xiao M, Guo G C, Hu X D, Jing H W, Guo G P 2017 Phys. Rev. Appl. 8 064035Google Scholar

    [20]

    Schröer D, Greentree A D, Gaudreau L, Eberl K, Hollenberg L C L, Kotthaus J P, Ludwig S 2007 Phys. Rev. B 76 075306Google Scholar

    [21]

    Rogge M C, Haug R J 2009 New J. Phys. 11 113037Google Scholar

    [22]

    Wang J Y, Huang S Y, Huang G Y, Pan D, Zhao J H, Xu H Q. 2017 Nano Lett. 17 4158Google Scholar

    [23]

    Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217Google Scholar

    [24]

    曾谨言 2013 量子力学(卷I) 第五版 (北京: 科学出版社) 第81页-第83页

    Zeng J Y 2013 Quantum Mechanics (Vol. 1) (5th Ed.) (Beijing: Science Press) pp81—83 (in Chinese)

    [25]

    Van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S, Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1

    [26]

    蔡圣善, 朱耘, 徐建军 2002 电动力学 (第二版) (高等教育出版社) 第65页

    Cai S S, Zhu Y, X J J 2002 Electrodynamics (2nd Ed.) (Beijing: Higher Education Press) p65 (in Chinese)

    [27]

    Mu J W, Huang S Y, Liu Z H, Li W J, Wang J Y, Pan D, Huang G Y, Chen Y J, Zhao J H, Xu H Q 2021 Nanoscale 13 3983Google Scholar

    [28]

    Pierre M, Hofheinz M, Jehl X, Sanquer M, Molas G, Vinet M, Deleonibus S 2009 Eur. Phys. J. B 70 475Google Scholar

    [29]

    Elzerman J M, Hanson R, Greidanus J S, Willems van Beveren L H, De Franceschi S, Vandersypen L M K, Tarucha S, Kouwenhoven L P 2003 Phys. Rev. B 67 161308Google Scholar

    [30]

    Wang X M, Huang S Y, Wang J Y, Pan D, Zhao J H, Xu H Q 2021 Nanoscale 13 1048Google Scholar

    [31]

    Li W J, Mu J W, Huang S Y, Pan D, Zhao J H, Xu H Q 2020 Appl. Phys. Lett. 117 262102Google Scholar

    [32]

    Takakura T, Pioro-Ladrière M, Obata T, Shin Y S, Brunner R, Yoshida K, Taniyama T, Tarucha S 2010 Appl. Phys. Lett. 97 212104Google Scholar

    [33]

    Noiri A, Yoneda J, Nakajima T, et al. 2016 Appl. Phys. Lett. 108 153101Google Scholar

    [34]

    Greentree A D, Cole J H, Hamilton A R, Hollenberg L C L 2004 Phys. Rev. B 70 235317Google Scholar

    [35]

    Van Diepen C J, Hsiao T K, Mukhopadhyay U, Reichl C, Wegscheider W, Vandersypen L M K 2021 Nat. Commun. 12 77Google Scholar

    [36]

    Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G, Petta J R, 2018 Science 359 439

    [37]

    Gullans M J, Petta J R 2019 Phys. Rev. B 100 085419Google Scholar

  • [1] Zhao Xiu-Qin, Zhang Wen-Hui, Wang Hong-Mei. Nonlinear interactions caused novel quantum phase transitions in two-mode Dicke models. Acta Physica Sinica, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] Li Yan. Effects of long-range inter-particle interactions and isolated defect on quantum walks of two hard-core bosons in one-dimensional lattices. Acta Physica Sinica, 2023, 72(17): 170501. doi: 10.7498/aps.72.20230642
    [3] Yi Tian-Cheng, Ding Yue-Ran, Ren Jie, Wang Yi-Min, You Wen-Long. Quantum coherence of XY model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2018, 67(14): 140303. doi: 10.7498/aps.67.20172755
    [4] Mao Bin-Bin, Cheng Chen, Chen Fu-Zhou, Luo Hong-Gang. Phase separation induced by density-spin interaction in one-dimensional extended t-J model. Acta Physica Sinica, 2015, 64(18): 187105. doi: 10.7498/aps.64.187105
    [5] Xi Yu-Xing, Shan Chuan-Jia, Huang Yan-Xia. Quantum teleportation in an XXZ spin chain system with three-site interaction. Acta Physica Sinica, 2014, 63(11): 110305. doi: 10.7498/aps.63.110305
    [6] Wen Feng, Wang Jian-Hua. An analytical solution for the interaction of two-dimensional currents and gravity short-crest waves. Acta Physica Sinica, 2014, 63(9): 094701. doi: 10.7498/aps.63.094701
    [7] Yan Yuan, Wei Hou. Dynamical entanglement in the model of field interacted with atoms of a nonlinear medium. Acta Physica Sinica, 2013, 62(11): 110301. doi: 10.7498/aps.62.110301
    [8] Wang Tao, Huang Xiao-Li, Liu Yang, Xu Huan. Entangled quantum heat engines based on two-qubit XXZ model with Dzyaloshinski-Mariya interaction. Acta Physica Sinica, 2013, 62(6): 060301. doi: 10.7498/aps.62.060301
    [9] Yu Wen-Jian, Wang Ji-Suo, Liang Bao-Long. Quantum properties of two-level atoms interacting with nonlinear coherent states. Acta Physica Sinica, 2012, 61(6): 060301. doi: 10.7498/aps.61.060301
    [10] Zhang Xia-Ping. Three-dimensional short-range interactions of strongly nonlocal optical spatial solitons. Acta Physica Sinica, 2011, 60(3): 034211. doi: 10.7498/aps.60.034211
    [11] Wang Yan-Hui, Xia Yun-Jie. Pairwise entanglement in three-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2009, 58(11): 7479-7485. doi: 10.7498/aps.58.7479
    [12] Shan Chuan-Jia, Cheng Wei-Wen, Liu Tang-Kun, Huang Yan-Xia, Li Hong. The entanglement in one-dimensional random XY spin chain with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2008, 57(5): 2687-2694. doi: 10.7498/aps.57.2687
    [13] Study on the coupling energy of two-dimensional magnetic clusters with power-law interactions. Acta Physica Sinica, 2007, 56(12): 6881-6885. doi: 10.7498/aps.56.6881
    [14] Gong Hua-Rong, Gong Yu-Bin, Wei Yan-Yu, Tang Chang-Jian, Xue Dong-Hai, Wang Wen-Xiang. Analysis of ion noise with beam-wave interaction in klystron by two dimensional particle simulation method. Acta Physica Sinica, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [15] Qiu Zhi-Jun, Gui Yong-Sheng, Shu Xiao-Zhou, Dai Ning, Guo Shao-Ling, Chu Jun-Hao. Spin-orbit and exchange interaction in a HgMnTe magnetic two-dimensional electron gas. Acta Physica Sinica, 2004, 53(6): 1977-1980. doi: 10.7498/aps.53.1977
    [16] Chen Ai-Xi, Wu Shu-Dong, Jin Li-Xia, Zhan Zhi-Ming. Interaction of a moving two-level atom with a two-mode quantized cavity field. Acta Physica Sinica, 2003, 52(10): 2466-2470. doi: 10.7498/aps.52.2466
    [17] Shu Lei, Chen Yu-Guang, Chen Hong. . Acta Physica Sinica, 2002, 51(4): 902-907. doi: 10.7498/aps.51.902
    [18] GAO YUN-FENG, FENG JIAN, SHI SHU-REN. CAVITY FIELD SPECTRA OF AN ATOM INTERACTING WITH TWO-MODE FIELD THROUGH RAMAN PROCESS. Acta Physica Sinica, 2001, 50(8): 1496-1500. doi: 10.7498/aps.50.1496
    [19] XIE WEN-FANG. THREE-ELECTRON SYSTEMS OF THREE-DIMENSIONAL QUANTUM DOTS. Acta Physica Sinica, 1997, 46(3): 563-567. doi: 10.7498/aps.46.563
    [20] XIONG XIAO-MING, ZHOU SHI-XUN. ENERGIES OF A FINITE 2D COULOMB INTERACTING ELECTRON GAS IN A STRONG MAGNETIC FIELD. Acta Physica Sinica, 1987, 36(9): 1235-1240. doi: 10.7498/aps.36.1235
Metrics
  • Abstract views:  4631
  • PDF Downloads:  119
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2022
  • Accepted Date:  03 October 2022
  • Available Online:  29 December 2022
  • Published Online:  05 January 2023

/

返回文章
返回