Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Unpinning of pinning sprial waves with pulses of radial electrical field

Deng Ling-Yun Xie Zeng-Hui Wang Lu

Citation:

Unpinning of pinning sprial waves with pulses of radial electrical field

Deng Ling-Yun, Xie Zeng-Hui, Wang Lu
PDF
HTML
Get Citation
  • In this paper, the process of unpinning spiral waves from obstacles with pulses of radial electrical field (PREF) in excitable medium is studied by using Barkley model. We use a radial electrical field to simulate the field of an needle electrode placed in the middle of a round obstacle. Numerical results show that the PREF can separate spiral waves from obstacles effectively. With a single pulse of radial electrical field (SPREF), spiral waves can be unpinned from an obstacle effectively in a weakly excitable medium, but it cannot be unpinned in a strongly excitable medium. The unpinning parameter space of an SPREF is larger than that of a uniform electric field or anti-tachycardia pacing. Multiple pulses of radial electrical field (MPREF) is effective for unpinning in the entire parameter space where spiral waves exist. Compared with other methods to unpin spiral waves, the PREF method has the advantages of low electric field magnitude, high success rate, and large application range in the parameter space. And unlike other methods, the PREF has a success rate insensitive to the phase of the spiral wave on the obstacle. We hope that this method will provide a new idea for clinical treatment for related cardiac diseases.
      Corresponding author: Deng Ling-Yun, denglingyun@hdu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang Province, China (Grant No. GK199900299012-020).
    [1]

    Frisch T, Rica S, Coullet P, Gilli J M 1994 Phys. Rev. Lett. 72 1471Google Scholar

    [2]

    Plapp B B, Egolf D A, Bodenschatz E, Pesch W 1998 Phys. Rev. Lett. 81 5334Google Scholar

    [3]

    Jakubith S, Rotermund H H, Engel W, Von Oertzen A, Ertl G 1900 Phys. Rev. Lett. 65 3013

    [4]

    Plesser T, Mueller S C, Hess B 1990 J. Phys. Chem. 94 7501Google Scholar

    [5]

    Steinbock O, Zykov V, Müller S C 1993 Nature 366 322Google Scholar

    [6]

    Witkowski F X, Leon L J, Penkoske P A, Giles W R, Spano M L, Ditto W L, Winfree A T 1998 Nature 392 78Google Scholar

    [7]

    Holden A V 1998 Nature 392 20Google Scholar

    [8]

    Detal N, Kaboudian A, Fenton F 2021 PANS 119 24

    [9]

    Wang Q, Perc M, Duan Z, Chen G 2008 Phys. Lett. A 372 5681Google Scholar

    [10]

    周振玮, 陈醒基, 田涛涛, 唐国宁 2012 物理学报 61 210506Google Scholar

    Zhou Z W, Chen X J, Tian T T, Tang G N 2012 Acta Phys. Sin. 61 210506Google Scholar

    [11]

    马军, 谢振博, 陈江星 2012 物理学报 61 038701Google Scholar

    Ma J, Xie Z B, Chen J X 2012 Acta Phys. Sin. 61 038701Google Scholar

    [12]

    王春妮, 马军 2013 物理学报 62 084501Google Scholar

    Wang C N, Ma J 2013 Acta Phys. Sin. 62 084501Google Scholar

    [13]

    徐莹, 王春妮, 靳伍银, 马军 2015 物理学报 64 198701Google Scholar

    Xu Y, Wang C N, Jin W Y, Ma J 2015 Acta Phys. Sin. 64 198701Google Scholar

    [14]

    李倩昀, 黄志精, 唐国宁 2018 物理学报 67 248201Google Scholar

    Li Q Y, Huang Z J, Tang G N 2018 Acta Phys. Sin. 67 248201Google Scholar

    [15]

    Zhou M G, Wang H D, Zeng X Y, Zhu J, Chen W, Liang X 2019 The Lancet 394 1145Google Scholar

    [16]

    Zhang H, Cao Z, Wu N J, Ying H P, Hu G 2005 Phys. Rev. Lett. 94 188301Google Scholar

    [17]

    Fenton F H, Luther S, Cherry E M, Otani N F, Krinsky V, Pumir A, Gilmour R F 2009 Circulation 120 467Google Scholar

    [18]

    Bittihn P 2015 Ph. D. Dissertation (Göttingen: the University of Göttingen)

    [19]

    Panchangam S, Monahan K M, Helm R H 2022 Curr. Treat. Option. Cardiovasc. Med. 24 27Google Scholar

    [20]

    Tina L, Andreas R, Tudor B, Andreas M, Shibu M, Erik W, Peter W, Heinz K K, Feifan O Y, Roland R T 2015 Europace:Eur. Pacing 17 1791

    [21]

    Li Q H, Van Nieuwenhuyse E, Xia Y X, Pan J T, Duytschaever M, Knecht S, Vandersickel, Zhou C, Panfilov A V, Zhang H 2021 Phys. Rev. E 104 064401

    [22]

    Nieuwenhuyse E V, Strisciuglio T, Lorenzo G, Haddad M E, Vandersickel N 2021 Clin. Electrophysiol. 7 936Google Scholar

    [23]

    Barkley D 1991 Physica D 49 61Google Scholar

    [24]

    Bittihn P, Luther G, Bodenschatz E, krinsky V, Parlitz U, Luther S 2008 New J. Phys. 10 103012Google Scholar

    [25]

    Chen J X, Peng L, Ma J, Ying H P 2014 Europhys. Lett. 107 38001Google Scholar

    [26]

    Feng X, Gao X, Pan D B, Li B W, Zhang H 2014 Sci. Rep. 4 4831

    [27]

    Punacha S, Kumara A N, Shajahan T K 2020 Phys. Rev. E 102 032411

    [28]

    Bittihn P, Squires A, Luther G, Bodenschatz E, Krinsky V, Parlitz U, Luther S 2010 Philos. Trans. R. Soc. London, Ser. A 368 2221

  • 图 1  SPREF使螺旋波成功脱钉的过程(此时系统参数$ a=0.8 $, $ b=0.07 $, 缺陷半径$ {R}_{{\rm{h}}}=10 $. 在$ t=22 $时刻加入强度$ {E}_{0}=4.0 $的SPREF, 电场持续时间$ {t}_{{\rm{D}}}=0.6 $)

    Figure 1.  A successful unpinning process with SPREF. The parameters used are $ a=0.8 $, $ b=0.07 $. The radius of the obstacle $ {R}_{{\rm{h}}}=10 $. A SPREF with magnitude $ {E}_{0}=4.0 $ is applied at $ t=22 $ and lasts for $ {t}_{{\rm{D}}}=0.6 $.

    图 2  SPREF作用下螺旋波脱钉失败的过程(除了系统参数$ b=0.01 $以外, 其余参数均与图1所用参数相同)

    Figure 2.  An unsuccessful unpinning process with SPREF. In this case parameter $ b=0.01 $, and the other parameters are the same as those used in Figure 1.

    图 3  最小电场在缺陷边界处的强度$ {E}_{{\rm{R}}} $随系统参数$ b $变化的曲线(其他参数为$ a=0.8 $, $ {R}_{{\rm{h}}}=10 $, $ {t}_{{\rm{D}}}=0.6 $)

    Figure 3.  The minimum electric field magnitude at the boundary of the obstacle $ {E}_{{\rm{R}}} $ varies with the system parameter $ b $. Other parameters are $ a=0.8 $, $ {R}_{{\rm{h}}}=10 $, $ {t}_{{\rm{D}}}=0.6 $.

    图 4  PREF方法可以使螺旋波成功脱钉的参数空间. I区域为UEF的脱钉参数区域, I + II区域为SPREF的脱钉参数区域, I + II + III区域为MPREF的脱钉参数区域. NW表示此参数区域不存在波斑图, RW表示此参数区域不存在螺旋波, SW表示此参数区域存在螺旋波, BI表示双稳态

    Figure 4.  Parameter space in which spiral waves can be unpinned with PREF. Area I is the unpinning parameter area of UEF, area I + II is the unpinning parameter area of SPREF, and area I + II + III is the unpinning parameter area of MPREF. The NW, RW, SW and BI regions represent no wave, retracting waves, spiral waves, and bi-stability respectively.

    图 5  MPREF使螺旋波成功脱钉的过程(系统参数$ a=0.8 $, $ b=0.01 $, $ {R}_{{\rm{h}}}=10 $, $ {\omega }_{{\rm{e}}}={\omega }_{0} $ , $ {\omega }_{0}=2.03 $, $ {E}_{0}=5 $)

    Figure 5.  A successful unpinning process with MPREF. The parameters are $ a=0.8 $, $ b=0.01 $, $ {R}_{{\rm{h}}}=10 $, $ {\omega }_{{\rm{e}}}={\omega }_{0} $, $ {\omega }_{0}=2.03 $, $ {E}_{0}=5 $.

    图 6  可使螺旋波脱钉的最小电场在缺陷边界处的强度$ {E}_{{\rm{R}}} $随电场频率变化的曲线(此时系统参数$ a=0.8 $, ${R}_{{\rm{h}}}= $$ 10$)

    Figure 6.  Magnitude of the minimum electric fields $ {E}_{{\rm{R}}} $ at the boundary of the obstacle needed for unpinning varies with the angular frequency of MPREF. Other parameters are $ a=0.8 $, $ {R}_{{\rm{h}}}=10 $.

    图 7  (a) 缺陷半径与临界电场强度关系图, 其中$ {E}_{{\rm{R}}} $表示径向电场在缺陷边界处的强度, $ {E}_{0} $表示中心电场强度, 系统参数$ a=0.8 $, $ b=0.02 $, $ {\omega }_{{\rm{e}}}={\omega }_{0} $; (b) 临界电场在缺陷边界处的强度$ {E}_{{\rm{R}}} $与系统参数$ b $关系图, 系统参数$ a=0.8 $, $ {R}_{{\rm{h}}}=10 $, $ {\omega }_{{\rm{e}}}={\omega }_{0} $

    Figure 7.  (a) Relationship between obstacle radius and the magnitude of MPREF. $ {E}_{{\rm{R}}} $ stands for the magnitude of the field at the boundary of the obstacle, and $ {E}_{0} $ is the magnitude of the field in the center of the obstacle. The parameters used are $ a=0.8 $, $ b=0.02 $, $ {\omega }_{{\rm{e}}}={\omega }_{0} $. (b) Relationship between critical electric field magnitude at the boundary of the obstacle $ {E}_{{\rm{R}}} $ and system parameters $ b $. Other parameters are $ a=0.8 $, $ {R}_{{\rm{h}}}=10 $, $ {\omega }_{{\rm{e}}}={\omega }_{0} $.

  • [1]

    Frisch T, Rica S, Coullet P, Gilli J M 1994 Phys. Rev. Lett. 72 1471Google Scholar

    [2]

    Plapp B B, Egolf D A, Bodenschatz E, Pesch W 1998 Phys. Rev. Lett. 81 5334Google Scholar

    [3]

    Jakubith S, Rotermund H H, Engel W, Von Oertzen A, Ertl G 1900 Phys. Rev. Lett. 65 3013

    [4]

    Plesser T, Mueller S C, Hess B 1990 J. Phys. Chem. 94 7501Google Scholar

    [5]

    Steinbock O, Zykov V, Müller S C 1993 Nature 366 322Google Scholar

    [6]

    Witkowski F X, Leon L J, Penkoske P A, Giles W R, Spano M L, Ditto W L, Winfree A T 1998 Nature 392 78Google Scholar

    [7]

    Holden A V 1998 Nature 392 20Google Scholar

    [8]

    Detal N, Kaboudian A, Fenton F 2021 PANS 119 24

    [9]

    Wang Q, Perc M, Duan Z, Chen G 2008 Phys. Lett. A 372 5681Google Scholar

    [10]

    周振玮, 陈醒基, 田涛涛, 唐国宁 2012 物理学报 61 210506Google Scholar

    Zhou Z W, Chen X J, Tian T T, Tang G N 2012 Acta Phys. Sin. 61 210506Google Scholar

    [11]

    马军, 谢振博, 陈江星 2012 物理学报 61 038701Google Scholar

    Ma J, Xie Z B, Chen J X 2012 Acta Phys. Sin. 61 038701Google Scholar

    [12]

    王春妮, 马军 2013 物理学报 62 084501Google Scholar

    Wang C N, Ma J 2013 Acta Phys. Sin. 62 084501Google Scholar

    [13]

    徐莹, 王春妮, 靳伍银, 马军 2015 物理学报 64 198701Google Scholar

    Xu Y, Wang C N, Jin W Y, Ma J 2015 Acta Phys. Sin. 64 198701Google Scholar

    [14]

    李倩昀, 黄志精, 唐国宁 2018 物理学报 67 248201Google Scholar

    Li Q Y, Huang Z J, Tang G N 2018 Acta Phys. Sin. 67 248201Google Scholar

    [15]

    Zhou M G, Wang H D, Zeng X Y, Zhu J, Chen W, Liang X 2019 The Lancet 394 1145Google Scholar

    [16]

    Zhang H, Cao Z, Wu N J, Ying H P, Hu G 2005 Phys. Rev. Lett. 94 188301Google Scholar

    [17]

    Fenton F H, Luther S, Cherry E M, Otani N F, Krinsky V, Pumir A, Gilmour R F 2009 Circulation 120 467Google Scholar

    [18]

    Bittihn P 2015 Ph. D. Dissertation (Göttingen: the University of Göttingen)

    [19]

    Panchangam S, Monahan K M, Helm R H 2022 Curr. Treat. Option. Cardiovasc. Med. 24 27Google Scholar

    [20]

    Tina L, Andreas R, Tudor B, Andreas M, Shibu M, Erik W, Peter W, Heinz K K, Feifan O Y, Roland R T 2015 Europace:Eur. Pacing 17 1791

    [21]

    Li Q H, Van Nieuwenhuyse E, Xia Y X, Pan J T, Duytschaever M, Knecht S, Vandersickel, Zhou C, Panfilov A V, Zhang H 2021 Phys. Rev. E 104 064401

    [22]

    Nieuwenhuyse E V, Strisciuglio T, Lorenzo G, Haddad M E, Vandersickel N 2021 Clin. Electrophysiol. 7 936Google Scholar

    [23]

    Barkley D 1991 Physica D 49 61Google Scholar

    [24]

    Bittihn P, Luther G, Bodenschatz E, krinsky V, Parlitz U, Luther S 2008 New J. Phys. 10 103012Google Scholar

    [25]

    Chen J X, Peng L, Ma J, Ying H P 2014 Europhys. Lett. 107 38001Google Scholar

    [26]

    Feng X, Gao X, Pan D B, Li B W, Zhang H 2014 Sci. Rep. 4 4831

    [27]

    Punacha S, Kumara A N, Shajahan T K 2020 Phys. Rev. E 102 032411

    [28]

    Bittihn P, Squires A, Luther G, Bodenschatz E, Krinsky V, Parlitz U, Luther S 2010 Philos. Trans. R. Soc. London, Ser. A 368 2221

  • [1] Pan Jun-Ting, He Yin-Jie, Xia Yuan-Xun, Zhang Hong. Control of spiral waves in excitable media under polarized electric fields. Acta Physica Sinica, 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [2] Wei Bin, Tang Guo-Ning, Deng Min-Yi. Spiral wave breakup manner in the excitable system with early afterdepolarizations. Acta Physica Sinica, 2018, 67(9): 090501. doi: 10.7498/aps.67.20172505
    [3] Li Wei-Heng, Pan Fei, Li Wei-Xin, Tang Guo-Ning. Dynamics of spiral waves in an asymmetrically coupled two-layer excitable medium. Acta Physica Sinica, 2015, 64(19): 198201. doi: 10.7498/aps.64.198201
    [4] Pan Fei, Li Wei-Xin, Wang Xiao-Yan, Tang Guo-Ning. Terminating the spiral wave and spatiotemporal chaos in cardiac tissue using the low-pass filtering scheme. Acta Physica Sinica, 2015, 64(21): 218202. doi: 10.7498/aps.64.218202
    [5] Li Wei-Heng, Li Wei-Xin, Pan Fei, Tang Guo-Ning. Transformation of spiral wave to plan wave in the two layers of coupled excitable media. Acta Physica Sinica, 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [6] Chen Xue-Qiong, Chen Zi-Yang, Pu Ji-Xiong, Zhu Jian-Qiang, Zhang Guo-Wen. Intensity distribution of the flat-topped beam propagating through the thick nonlinear medium with defects. Acta Physica Sinica, 2013, 62(4): 044213. doi: 10.7498/aps.62.044213
    [7] Chen Xing-Ji, Qiao Cheng-Gong, Wang Li-Li, Zhou Zhen-Wei, Tian Tao-Tao, Tang Guo-Ning. Evolution of spiral waves in indirectly coupled excitable medium with time-delayed coupling. Acta Physica Sinica, 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [8] Zhao Long, Yang Ji-Ping, Zheng Yan-Hong. Modulation of nonlinear coupling on the synchronization induced by linear coupling. Acta Physica Sinica, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [9] Li Guang-Zhao, Chen Yong-Qi, Tang Guo-Ning. The dynamics of spiral waves in three-layer excitable medium with circular feedback coupling. Acta Physica Sinica, 2012, 61(2): 020502. doi: 10.7498/aps.61.020502
    [10] Chen Xing-Ji, Tian Tao-Tao, Zhou Zhen-Wei, Hu Yi-Bo, Tang Guo-Ning. Synchronization of two spiral waves interacting through a passive medium. Acta Physica Sinica, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [11] Zhou Zhen-Wei, Chen Xing-Ji, Tian Tao-Tao, Tang Guo-Ning. Study on the control of spiral waves in coupled excitable media. Acta Physica Sinica, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [12] Dong Li-Fang, Bai Zhan-Guo, He Ya-Feng. Sparse and dense spiral waves in heterogeneous excitable media. Acta Physica Sinica, 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [13] Wei Hai-Ming, Tang Guo-Ning. The numerical study on the effect of the earlyafterdepolarization on spiral wavesin discrete excitable media. Acta Physica Sinica, 2011, 60(3): 030501. doi: 10.7498/aps.60.030501
    [14] Dai Yu, Wei Hai-Ming, Tang Guo-Ning. The evolution of spiral waves in inhomogeneous excitable media. Acta Physica Sinica, 2010, 59(9): 5979-5984. doi: 10.7498/aps.59.5979
    [15] Tang Dong-Ni, Zhang Xu, Ren Wei, Tang Guo-Ning. A ring-like heterogeneous medium-induced self-sustained target waves in excitable media. Acta Physica Sinica, 2010, 59(8): 5313-5318. doi: 10.7498/aps.59.5313
    [16] Tang Dong-Ni, Tang Guo-Ning. The influence of the defects without diffusion function on dynamics of spiral wave. Acta Physica Sinica, 2010, 59(4): 2319-2325. doi: 10.7498/aps.59.2319
    [17] Dai Yu, Tang Guo-Ning. Some origins of the low excitability of a discrete excitable medium. Acta Physica Sinica, 2009, 58(3): 1491-1496. doi: 10.7498/aps.58.1491
    [18] Yin Xiao-Zhou, Liu Yong. Suppression of spiral wave in the excitable media by using intermittent feedback scheme. Acta Physica Sinica, 2008, 57(11): 6844-6851. doi: 10.7498/aps.57.6844
    [19] Zhang Guo-Yong, Ma Jun, Gan Zheng-Ning, Chen Yong. Spiral wave in an inhomogeneous excitable medium. Acta Physica Sinica, 2008, 57(11): 6815-6823. doi: 10.7498/aps.57.6815
    [20] Ma Jun, Jin Wu-Yin, Li Yan-Long, Chen Yong. Suppression of meandering spiral waves in the excitable media due to a perturbation with stochastic phase. Acta Physica Sinica, 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
Metrics
  • Abstract views:  1786
  • PDF Downloads:  39
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2022
  • Accepted Date:  12 December 2022
  • Available Online:  01 February 2023
  • Published Online:  20 March 2023

/

返回文章
返回