Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

On theoretical calculation method for two-dimensional planar shock wave refractions

Jia Lei-Ming Wang Zhi-Huan Wang Shu-Fei Zhong Wei Tian Zhou

Citation:

On theoretical calculation method for two-dimensional planar shock wave refractions

Jia Lei-Ming, Wang Zhi-Huan, Wang Shu-Fei, Zhong Wei, Tian Zhou
PDF
HTML
Get Citation
  • A theoretical calculation method for wave structures in the flow resulting from the interaction between the two-dimensional planar shock and the material interface is developed. First, the propagation of the shock wave on either side of the interface is analyzed, and two regular refraction types and three irregular ones are identified. Then, according to the relative speed of the perturbations on either side, three different interaction cases are established. Compared with the existing Catherasoo’s method, this method is improved in the following aspects: 1) the influence of the perturbation in the post-shock flow field on the interaction is taken into account, including its type and whether it can catch up and interact with the shock front; 2) the interactions between different waves are calculated mostly based on the exact solutions of the Euler equations, except those involving post-shock subsonic rarefaction waves. This method has been used to investigate the interaction of a Mach number 1.17 shock with an air/SF6 interface, and give wave structures that accord with numerical results and existing experimental data. The angle between the transmitted shock and the horizontal direction is obtained to be in better agreement with experimental data than Catherasoo’s result, and more parameters are obtained, such as the reflected wave and the interface deflection angle. For cases involving a Mach number 2.00 shock with different material density ratios and interface inclination angles, comparisons between theoretical and numerical results show that our method can obtain the type of wave structure more accurately than Catherasoo’s method, and identify a refraction type in which the post-shock strong perturbation catches up with the shock front and a three-wave structure is formed, whereas Catherasoo’s method cannot handle this case. Thus, the results show that the improved method in this work has better applicability and higher accuracy than the existing method in identifying the type of wave structure, and can also provide more information about the wave structures.
      Corresponding author: Jia Lei-Ming, jialeiming@nint.ac.cn
    [1]

    Taub A H 1947 Phys. Rev. 72 51Google Scholar

    [2]

    Polachek H, Seeger R J 1951 Phys. Rev. 84 922Google Scholar

    [3]

    Henderson L F 1966 J. Fluid Mech. 26 607Google Scholar

    [4]

    Ben-Dor G, Igra O, Elperin T 2001 Handbook of Shock Waves (Vol. 2) (London: Academic Press) pp71,72

    [5]

    Jahn R G 1956 J. Fluid Mech. 1 457Google Scholar

    [6]

    Abd-El-Fattah A M, Henderson L F, Lozzi A 1976 J. Fluid Mech. 76 157Google Scholar

    [7]

    Flores J, Holt M 1982 Phys. Fluids 25 238Google Scholar

    [8]

    Henderson L F, Jia-Huan M, Akira S, Kazuyoshi T 1990 Fluid Dyn. Res. 5 337Google Scholar

    [9]

    Henderson L F 1992 Shock Waves 2 103Google Scholar

    [10]

    Abd-El-Fattah A M, Henderson L F 1978 J. Fluid Mech. 86 15Google Scholar

    [11]

    Abd-El-Fattah A M, Henderson L F 1978 J. Fluid Mech. 89 79Google Scholar

    [12]

    Henderson L F 1989 J. Fluid Mech. 198 365Google Scholar

    [13]

    Henderson L F, Colella P, Puckett E G 1991 J. Fluid Mech. 224 1Google Scholar

    [14]

    Henderson L F, Puckett E G 2014 Shock Waves 24 553Google Scholar

    [15]

    Nourgaliev R R, Sushchikh S Y, Dinh T N, Theofanous T G 2005 Int. J. Multiphas. Flow 31 969Google Scholar

    [16]

    Zhai Z G, Wang M H, Si T, Luo X S 2014 J. Fluid Mech. 757 800Google Scholar

    [17]

    Wang M H, Si T, Luo X S 2015 Shock Waves 25 347Google Scholar

    [18]

    Luo X S, Wang M H, Si T, Zhai Z G 2015 J. Fluid Mech. 773 366Google Scholar

    [19]

    Zhai Z G, Li W, Si T, Luo X S, Yang J M, Lu X Y 2017 Phys. Fluids 29 016102Google Scholar

    [20]

    Igra D, Igra O 2018 Phys. Fluids 30 056104Google Scholar

    [21]

    Sadin D V, Davidchuk V A 2020 J. Eng. Phys. Thermophys. 93 474Google Scholar

    [22]

    Onwuegbu S, Yang Z 2022 AIP Adv. 12 025215Google Scholar

    [23]

    Georgievskii P, Levin V, Sutyrin O 2010 Fluid Dyn. 45 281Google Scholar

    [24]

    Georgievskiy P, Levin V, Sutyrin O 2012 Proceedings of the 15th International Symposium on Flow Visualization Minsk, Belarus, June 25-28, 2012 p1

    [25]

    Catherasoo C J, Sturtevant B 1983 J. Fluid Mech. 127 539Google Scholar

    [26]

    Whitham G B 1957 J. Fluid Mech. 2 145Google Scholar

    [27]

    Whitham G B 1959 J. Fluid Mech. 5 369Google Scholar

    [28]

    Schwendeman D W 1988 J. Fluid Mech. 188 383Google Scholar

    [29]

    Toro E F 2009 Riemann Solvers and Numerical Methods for Fluid Dynamics (3rd Ed.) (Berlin, Heidelberg: Springers-Verlag) pp115–151

  • 图 1  二维平面激波与物质界面作用示意图 (a) t < 0; (b) t > 0

    Figure 1.  Schematic diagram of the interaction of two-dimensional planar shock wave with material interface: (a) t < 0; (b) t > 0.

    图 2  波I1沿界面OP1的折射类型 (a) RRS; (b) RRE; (c) IRS; (d) IRE; (e) IRP

    Figure 2.  Various refraction types of shock wave I1 along the interface OP1: (a) RRS; (b) RRE; (c) IRS; (d) IRE; (e) IRP

    图 3  波I1, R1和M1组成三波结构

    Figure 3.  Three wave structures of I1, R1 and M1.

    图 4  不同时刻波I1与R1作用

    Figure 4.  Interaction between I1 and R1 at different times.

    图 5  波I2沿界面OP1的折射类型 (a) IRE; (b) IRP

    Figure 5.  Various refraction types of shock wave I2 along the interface OP1: (a) IRE; (b) IRP.

    图 6  第一种情形下波I1, I2沿界面OP1的相互作用

    Figure 6.  Interaction of I1 and I2 along the interface OP1 under case 1.

    图 7  第二种情形下波I1, I2沿界面OP1的相互作用

    Figure 7.  Interaction of I1 and I2 along the interface OP1 under case 2.

    图 8  第三种情形下波I1, I2沿界面OP1的相互作用

    Figure 8.  Interaction of I1 and I2 along the interface OP1 under case 3.

    图 9  t = 0.10 ms时刻波系结构 (a) 本文方法; (b) Catherasoo方法; (c) 数值结果

    Figure 9.  Wave structure at t = 0.10 ms: (a) Our own method; (b) Catherasoo’s method; (c) numerical results.

    图 10  波系结构参量随时间变化 (a) 波系结构; (b) ϕ1; (c) α1; (d) α2

    Figure 10.  Variation of wave structure parameters with time: (a) Wave structure; (b) ϕ1; (c) α1; (d) α2.

    图 11  |θMθT1|和|θMθI2|随pM的变化 (a) |θM θT1|; (b) |θMθI2|

    Figure 11.  Variations of |θMθT1| and |θMθI2| with pM: (a) |θMθT1|; (b) |θMθI2|.

    图 12  不同φ值下的波系结构(MaI1 = 2.00, ρ2/ρ1 = 0.25) (a)—(i) 分别对应φ = 0°, 10°, ···, 80°

    Figure 12.  Wave structures for different φ (MaI1 = 2.00, ρ2/ρ1 = 0.25). Panels (a)–(i) correspond to φ = 0°, 10°, ···, 80°, respectively.

    图 13  波系结构变量示意图

    Figure 13.  Diagram for wave structure parameters.

    图 14  t = 4.00 ms时流场压力分布数值结果(MaI1 = 2.00, ρ2/ρ1 = 0.25) (a) φ = 40°; (b) φ = 50°

    Figure 14.  Numerical results for field pressure at t = 4.00 ms (MaI1 = 2.00, ρ2/ρ1 = 0.25): (a) φ = 40°; (b) φ = 50°.

    图 15  偏差绝对值随φ的变化(MaI1 = 2.00, ρ2/ρ1 = 0.25) (a) ϕ2, α3r4; (b) α4d7-8.

    Figure 15.  Variation of absolute value of deviations with φ (MaI1 = 2.00, ρ2/ρ1 = 0.25): (a) ϕ2, α3 and r4; (b) α4 and d7-8.

    图 16  波系结构类型随φ的变化(MaI1 = 2.00, ρ2/ρ1 = 0.25)

    Figure 16.  Variation of wave structure types with φ (MaI1 = 2.00, ρ2/ρ1 = 0.25).

    图 17  不同φ值下的波系结构(MaI1 = 2.00, ρ2/ρ1 = 4.00) (a)—(i) 分别对应φ = 0°, 10°, ···, 80°

    Figure 17.  Wave structures for different φ (MaI1 = 2.00, ρ2/ρ1 = 4.00). Panels (a)–(i) correspond to φ = 0°, 10°, ···, 80°, respectively.

    图 18  t = 6.00 ms时流场压力分布数值结果(MaI1 = 2.00, ρ2/ρ1 = 4.00) (a) φ = 20°; (b) φ = 30°

    Figure 18.  Numerical results for field pressure at t = 6.00 ms (MaI1 = 2.00, ρ2/ρ1 = 4.00): (a) φ = 20°; (b) φ = 30°.

    图 19  偏差绝对值随φ的变化(MaI1 = 2.00, ρ2/ρ1 = 4.00) (a) ϕ1, α1d5-6; (b) α2r3

    Figure 19.  Variation of absolute value of deviations with φ (MaI1 = 2.00, ρ2/ρ1 = 4.00): (a) ϕ1, α1 and d5-6; (b) α2 and r3.

    图 20  波系结构类型随φ的变化(MaI1 = 2.00, ρ2/ρ1 = 4.00)

    Figure 20.  Variation of wave structure types with φ (MaI1 = 2.00, ρ2/ρ1 = 4.00).

    表 1  波T1参数的理论计算结果

    Table 1.  Theoretical retuslts for parameters of T1.

    计算方法pT1/(105 Pa)uT1/(m·s–1)vT1/(m·s–1)
    本文1.3215.8–32.6
    Catherasoo1.219.95–21.6
    DownLoad: CSV

    表 2  波T1与I2作用的理论计算结果

    Table 2.  Theoretical retuslts for interaction between T1 and I2.

    波T1参数计算方法α1/(°)α2/(°)pM/(105 Pa)
    pT1 = 1.32×105 Pa本文21.837.22.45
    Catherasoo24.932.02.23
    pT1 = 1.21×105 Pa本文21.336.62.37
    Catherasoo24.130.82.17
    DownLoad: CSV

    表 3  不同φ值下波系结构变量(MaI1 = 2.00, ρ2/ρ1 = 0.25)

    Table 3.  Wave structure parameters for different φ (MaI1 = 2.00, ρ2/ρ1 = 0.25).

    φ/(°)计算方法ϕ2α3α4d7–8r4
    结果/(°)偏差/%结果/(°)偏差/%结果/(°)偏差/%结果/m偏差/%结果/m偏差/%
    0本文29.4–4.4213.0–10.131.710.61.1334.24.600.86
    Catherasoo28.4–7.8912.2–15.629.53.011.0222.04.54–0.31
    10本文29.4–4.628.97–14.322.68.860.8434.04.33–0.51
    Catherasoo28.2–8.547.89–24.622.16.530.8738.94.29–1.33
    20本文29.4–5.125.33–25.413.92.430.5433.04.09–3.34
    Catherasoo28.1–9.283.97–44.415.412.80.7277.54.06–3.89
    30本文29.4–9.642.01–54.15.74–27.50.242.593.88–8.68
    Catherasoo28.1–13.70.37–91.79.1215.00.59148.73.86–9.00
    40本文4.1725.94.16–5.15
    Catherasoo5.0251.44.22–3.88
    50本文0.8222.74.74–1.27
    Catherasoo1.99197.94.861.22
    60本文4.94–0.06
    Catherasoo0.715.052.12
    70本文4.60–0.85
    Catherasoo4.60–0.85
    80本文4.31–0.98
    Catherasoo4.31–0.98
    DownLoad: CSV

    表 4  不同φ值下波系结构变量(MaI1 = 2.00, ρ2/ρ1 = 4.00)

    Table 4.  Wave structure parameters for different φ (MaI1 = 2.00, ρ2/ρ1 = 4.00).

    φ/(°)计算方法ϕ1α1α2d5–6r3
    结果/(°)偏差/%结果/(°)偏差/%结果/(°)偏差/%结果/m偏差/%结果/m偏差/%
    0本文29.6–2.3213.3–11.431.211.30.9940.44.270.83
    Catherasoo29.4–3.0212.0–20.031.010.51.0448.14.17–1.61
    10本文29.5–2.6417.8–9.3540.28.181.2231.24.560.69
    Catherasoo29.8–1.6416.8–14.239.66.551.2332.54.46–1.51
    20本文29.4–1.1423.0–6.6349.81.444.941.78
    Catherasoo30.21.7322.0–10.948.81.444.78–1.53
    30本文29.53.2028.0–6.9659.71.715.321.96
    Catherasoo29.94.5327.4–9.1058.41.665.19–0.68
    40本文27.53.7432.6–9.0769.21.975.860.14
    Catherasoo27.43.0733.4–6.8167.91.845.860.14
    50本文22.81.8638.1–8.4078.51.795.82–0.16
    Catherasoo23.34.4939.9–3.9977.21.655.82–0.16
    60本文17.60.1244.088.01.365.240.01
    Catherasoo18.33.7146.886.51.225.240.01
    70本文12.00.3650.197.70.844.38–0.45
    Catherasoo12.54.3554.095.80.734.38–0.45
    80本文6.10–0.6456.4107.50.454.31–0.73
    Catherasoo6.353.4760.9105.00.394.31–0.73
    DownLoad: CSV
  • [1]

    Taub A H 1947 Phys. Rev. 72 51Google Scholar

    [2]

    Polachek H, Seeger R J 1951 Phys. Rev. 84 922Google Scholar

    [3]

    Henderson L F 1966 J. Fluid Mech. 26 607Google Scholar

    [4]

    Ben-Dor G, Igra O, Elperin T 2001 Handbook of Shock Waves (Vol. 2) (London: Academic Press) pp71,72

    [5]

    Jahn R G 1956 J. Fluid Mech. 1 457Google Scholar

    [6]

    Abd-El-Fattah A M, Henderson L F, Lozzi A 1976 J. Fluid Mech. 76 157Google Scholar

    [7]

    Flores J, Holt M 1982 Phys. Fluids 25 238Google Scholar

    [8]

    Henderson L F, Jia-Huan M, Akira S, Kazuyoshi T 1990 Fluid Dyn. Res. 5 337Google Scholar

    [9]

    Henderson L F 1992 Shock Waves 2 103Google Scholar

    [10]

    Abd-El-Fattah A M, Henderson L F 1978 J. Fluid Mech. 86 15Google Scholar

    [11]

    Abd-El-Fattah A M, Henderson L F 1978 J. Fluid Mech. 89 79Google Scholar

    [12]

    Henderson L F 1989 J. Fluid Mech. 198 365Google Scholar

    [13]

    Henderson L F, Colella P, Puckett E G 1991 J. Fluid Mech. 224 1Google Scholar

    [14]

    Henderson L F, Puckett E G 2014 Shock Waves 24 553Google Scholar

    [15]

    Nourgaliev R R, Sushchikh S Y, Dinh T N, Theofanous T G 2005 Int. J. Multiphas. Flow 31 969Google Scholar

    [16]

    Zhai Z G, Wang M H, Si T, Luo X S 2014 J. Fluid Mech. 757 800Google Scholar

    [17]

    Wang M H, Si T, Luo X S 2015 Shock Waves 25 347Google Scholar

    [18]

    Luo X S, Wang M H, Si T, Zhai Z G 2015 J. Fluid Mech. 773 366Google Scholar

    [19]

    Zhai Z G, Li W, Si T, Luo X S, Yang J M, Lu X Y 2017 Phys. Fluids 29 016102Google Scholar

    [20]

    Igra D, Igra O 2018 Phys. Fluids 30 056104Google Scholar

    [21]

    Sadin D V, Davidchuk V A 2020 J. Eng. Phys. Thermophys. 93 474Google Scholar

    [22]

    Onwuegbu S, Yang Z 2022 AIP Adv. 12 025215Google Scholar

    [23]

    Georgievskii P, Levin V, Sutyrin O 2010 Fluid Dyn. 45 281Google Scholar

    [24]

    Georgievskiy P, Levin V, Sutyrin O 2012 Proceedings of the 15th International Symposium on Flow Visualization Minsk, Belarus, June 25-28, 2012 p1

    [25]

    Catherasoo C J, Sturtevant B 1983 J. Fluid Mech. 127 539Google Scholar

    [26]

    Whitham G B 1957 J. Fluid Mech. 2 145Google Scholar

    [27]

    Whitham G B 1959 J. Fluid Mech. 5 369Google Scholar

    [28]

    Schwendeman D W 1988 J. Fluid Mech. 188 383Google Scholar

    [29]

    Toro E F 2009 Riemann Solvers and Numerical Methods for Fluid Dynamics (3rd Ed.) (Berlin, Heidelberg: Springers-Verlag) pp115–151

  • [1] Zhang Sheng-Bo, Zhang Huan-Hao, Zhang Jun, Mao Yong-Jian, Chen Zhi-Hua, Shi Qi-Chen, Zheng Chun. Magnetic field suppression characteristics in interaction process between shock wave and light gas cylinder. Acta Physica Sinica, 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [2] Zhang Sheng-Bo, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun. Influence of different interface component distributions on Richtmyer-Meshkov instability. Acta Physica Sinica, 2023, 72(10): 105202. doi: 10.7498/aps.72.20222090
    [3] Sha Sha, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun, Wu Wei-Tao, Shi Qi-Chen. Mechanism of longitudinal magnetic field suppressed Richtmyer-Meshkov instability. Acta Physica Sinica, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [4] Peng Xu, Li Bin, Wang Shun-Yao, Rao Guo-Ning, Chen Wang-Hua. Gas-liquid two-phase flow of liquid film breaking process under shock wave. Acta Physica Sinica, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [5] Chen Zhe, Wu Jiu-Hui, Chen Xin, Lei Hao, Hou Jie-Jie. Experimental study on screech tone mode switching of supersonic jet flowing through rectangular nozzles. Acta Physica Sinica, 2015, 64(5): 054703. doi: 10.7498/aps.64.054703
    [6] Sun Xiao-Yan, Zhu Jun-Fang. Study of the shock wave induced by closing partial road in traffic flow. Acta Physica Sinica, 2015, 64(11): 114502. doi: 10.7498/aps.64.114502
    [7] Yi Shi-He, Chen Zhi. Review of recent experimental studies of the shock train flow field in the isolator. Acta Physica Sinica, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [8] Chen Zhi, Yi Shi-He, Zhu Yang-Zhu, He Lin, Quan Peng-Cheng. Experimental study on of dynamics of particles in the flow filed with intensive gradients. Acta Physica Sinica, 2014, 63(18): 188301. doi: 10.7498/aps.63.188301
    [9] Sha Sha, Chen Zhi-Hua, Xue Da-Wen, Zhang Hui. Richtmyer-Meshkov instability induced by the interaction between shock wave and SF6 isosceles trapezoid cylinders. Acta Physica Sinica, 2014, 63(8): 085205. doi: 10.7498/aps.63.085205
    [10] Zhang Qiang, Chen Xin, He Li-Ming, Rong Kang. An experimental study of rectangular under-expanded supersonic jets collision. Acta Physica Sinica, 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [11] Zhang Yang, Gu Shu-Lin, Ye Jian-Dong, Huang Shi-Min, Gu Ran, Chen Bin, Zhu Shun-Ming, Zhen You-Dou. Two-dimensional electron Gas in ZnMgO/ZnO heterostructures. Acta Physica Sinica, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [12] Sha Sha, Chen Zhi-Hua, Zhang Huan-Hao, Jiang Xiao-Hai. Numerical investigations on the Schardin's problem. Acta Physica Sinica, 2012, 61(6): 064702. doi: 10.7498/aps.61.064702
    [13] Wang Jian, Li Ying-Hong, Cheng Bang-Qin, Su Chang-Bing, Song Hui-Min, Wu Yun. The mechanism investigation on shock wave controlled by plasma aerodynamic actuation. Acta Physica Sinica, 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [14] Wu Qin-Kuan. The shock solution for a class of the nonlinear equations by the Sinc-Galerkin method. Acta Physica Sinica, 2006, 55(4): 1561-1564. doi: 10.7498/aps.55.1561
    [15] Wu Qin-Kuan. The indirect matching solution for a class of shock problems. Acta Physica Sinica, 2005, 54(6): 2510-2513. doi: 10.7498/aps.54.2510
    [16] Zhang Wei-Jia, Wang Tian-Min, Zhong Li-Zhi, Wu Xiao-Wen, Cui Min. Theoretical study of infrared emissivity of indium tin oxide films. Acta Physica Sinica, 2005, 54(9): 4439-4444. doi: 10.7498/aps.54.4439
    [17] Zhou Xiao-Feng, Tao Shu-Fen, Liu Zuo-Quan, Kan Jia-De, Li Hai-Yang. . Acta Physica Sinica, 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
    [18] He Feng, Yang Jing-Long, Shen Meng-Yu. . Acta Physica Sinica, 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [19] Lü XIAO-YANG, KONG LING-JIANG, LIU MU-REN. ANALYSIS ON MACROSCOPIC EQUATION TO ONE-DIMENSIONAL RANDOM TRAFFIC FLOW MODELS. Acta Physica Sinica, 2001, 50(7): 1255-1259. doi: 10.7498/aps.50.1255
    [20] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
Metrics
  • Abstract views:  3909
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  24 October 2022
  • Accepted Date:  23 December 2022
  • Available Online:  07 January 2023
  • Published Online:  20 March 2023

/

返回文章
返回