Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of spatial walk-off on squeezing properties of quantum optical frequency combs

Li Juan Liu Peng Xiang Xiao Liu Tao Dong Rui-Fang Zhang Shou-Gang

Citation:

Effect of spatial walk-off on squeezing properties of quantum optical frequency combs

Li Juan, Liu Peng, Xiang Xiao, Liu Tao, Dong Rui-Fang, Zhang Shou-Gang
PDF
HTML
Get Citation
  • Quantum optical frequency combs are of great significance in the fields of quantum computing, quantum information, and high precision quantum measurement, which can be produced by using a degenerate type-I synchronously pumped optical parametric oscillator (SPOPO). When anisotropic crystal is used as a nonlinear medium in the SPOPO, the spatial walk-off effect will occur due to the birefringence effect, which cannot be ignored and will adversely affect the generation of squeezed state. In this work, we investigate the influence of spatial walk-off effect on the squeezing level of quantum optical frequency combs both theoretically and experimentally. A Ti∶sapphire mode-locked femtosecond pulsed laser which produces 130 fs pulse trains at 815 nm with a repetition rate of 76 MHz is utilized as a fundamental source. Its second harmonic at 407.5 nm is used to pump the collinear BiB3O6 (BIBO) crystal for generating the squeezed vacuum frequency comb. It is indicated that as the crystal length increases, the area of interaction between pump light and signal light decreases gradually. Thus the enhancement of squeezing is eventually limited by the spatial walk-off effect. According to the simulations, the squeezing level reaches a maximum value when the crystal length is 1.49 mm. The quantum properties of squeezed vacuum optical frequency combs obtained for four crystal lengths (0.5, 1.0, 1.5 and 2.0 mm) are subsequently measured experimentally. When the length of BIBO is 1.5 mm, the maximum vacuum squeezing of (3.6±0.2) dB is obtained, which is (7.0±0.2) dB after being corrected for detection loss. The experimental results are consistent with the numerical simulations. This study demonstrates that the spatial walk-off effect in nonlinear crystal is a significant factor affecting the quantum optical frequency comb, and the theoretical model presented in this paper can be used to provide a guideline for optimizing the experimental implementation.
      Corresponding author: Dong Rui-Fang, dongruifang@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12033007, 61875205, 61801458, 91836301), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SW-SLH007), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDC07020200), the “Western Young Scholars” Project of Chinese Academy of Sciences (Grant Nos. XAB2019B17, XAB2019B15), and the Key Program of Chinese Academy of Sciences (Grant No. ZDRW-KT-2019-1-0103).
    [1]

    Walls D F 1983 Nature 306 141Google Scholar

    [2]

    Xiao M, Wu L, Kimble H J 1987 Phys. Rev. Lett. 59 278Google Scholar

    [3]

    Kong J, Ou Z, Zhang W 2013 Phys. Rev. A 87 023825Google Scholar

    [4]

    Ou Z 2012 Phys. Rev. A 85 023815Google Scholar

    [5]

    Xin J, Liu J, Jing J 2017 Opt. Express 25 1350Google Scholar

    [6]

    Liu S, Lou Y, Xin J, Jing J 2018 Phys. Rev. Appl. 10 064046Google Scholar

    [7]

    Li Y, Guzun D, Xiao M 1999 Phys. Rev. Lett. 82 5225Google Scholar

    [8]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [9]

    Shi S, Wang Y, Yang W, Zheng Y, Peng K 2018 Opt. Lett. 43 5411Google Scholar

    [10]

    Zheng S, Lin Q, Cai Y, Zeng X, Li Y, Xu S, Fan D 2018 Photonics Res. 6 177Google Scholar

    [11]

    Menicucci N C 2014 Phys. Rev. Lett. 112 120504Google Scholar

    [12]

    Chen H, Liu J 2009 Chin. Opt. Lett. 7 440Google Scholar

    [13]

    Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Schnabel R 2008 Phys. Rev. Lett. 100 033602Google Scholar

    [14]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763Google Scholar

    [15]

    Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar

    [16]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [17]

    Driel H M V 1995 Appl. Phys. B 60 411

    [18]

    de Valcárcel G J, Patera G, Treps N, Fabre C 2006 Phys. Rev. A 74 061801Google Scholar

    [19]

    Patera G, Treps N, Fabre C, de Valcárcel G J 2010 Eur. Phys. J. D 56 123Google Scholar

    [20]

    Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645Google Scholar

    [21]

    Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601Google Scholar

    [22]

    Wang S, Xiang X, Treps N, Fabre C, Liu T, Zhang S, Dong R 2018 Phys. Rev. A 98 053821Google Scholar

    [23]

    Cai, Y, Roslund J, Thiel V, Fabre C, Treps N 2021 npj Quantum Inf. 7 82Google Scholar

    [24]

    Wu L, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [25]

    Pinel O, Jian P, de Araujo R M, Feng J, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601Google Scholar

    [26]

    Roslund, J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics 8 109Google Scholar

    [27]

    Cai Y, Xiang Y, Liu Y, He Q, Treps N 2020 Phys. Rev. Res. 2 032046Google Scholar

    [28]

    刘洪雨, 陈立, 刘灵, 明莹, 刘奎, 张俊香, 郜江瑞 2013 物理学报 164206 164206Google Scholar

    Liu H Y, Chen L, Liu L, Ming Y, Liu K, Zhang J X, Gao J R 2013 Acta Phys. Sin. 164206 164206Google Scholar

    [29]

    石顺祥, 陈国夫, 赵卫, 刘继芳 2012 非线性光学 (西安: 电子科技大学出版社) 第105页

    Shi S X, Chen G F, Zhao W, Liu J F 2012 Nonlinear Optics (Xidian: University Press) p105 (in Chinese)

    [30]

    Hellwig H, Liebertz J, Bohaty L 2000 J. Appl. Phys. 88 240Google Scholar

    [31]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [32]

    Gehr R J, Kimmel M W, Smith A V 1998 Opt. Lett. 23 1298Google Scholar

    [33]

    周绪桂, 王燕玲, 吴洪, 丁良恩 2009 光学学报 29 2630Google Scholar

    Zhou X G, Wang Y L, Wu H, Ding L E 2009 Acta Opt. Sin. 29 2630Google Scholar

    [34]

    孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄 2015 物理学报 64 164205Google Scholar

    Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M, Lin W X 2015 Acta Phys. Sin. 64 164205Google Scholar

    [35]

    Perez A M, Just F, Cavanna A, Chekhova M V, Leuchs G 2013 Laser Phys. Lett. 10 125201Google Scholar

  • 图 1  系统阈值(a)和压缩(b)随晶体长度的理论变化曲线. 黑色虚线和红色实线分别是无空间走离和有空间走离的结果. $ {n_0} = 1.82 $, $\chi = 3.54~ \rm pm/V$, $ \delta = 0.0468 $, $ T = 0.1 $

    Figure 1.  System threshold (a) and squeezing noise levels (b) as a function of crystal length, respectively. The black dotted line and red line are the results without/with spatial walk-off respectively. $ {n_0} = 1.82 $, $\chi = 3.54~\rm pm/V$, $ \delta = 0.0468 $, $ T = 0.1 $.

    图 2  量子光频梳产生和测量的实验装置图. HWP, 半波片; PBS, 偏振分束器; DBS, 双色镜; SPOPO, 同步泵浦光学参量振荡器; PZT, 压电陶瓷; SA, 频谱分析仪器

    Figure 2.  Experimental setup for the generation and measurement of squeezed frequency comb states. HWP, half-wave plate; PBS, polarizing beam splitter; DBS, dichroic beamsplitter; SPOPO, synchronously pumped optical parametric oscillator; PZT, piezoelectric transducer; SA, spectrum analyzer.

    图 3  倍频光功率及倍频效率随基频光变化的实验结果

    Figure 3.  Experimentally dependence of second harmonic power and efficiency on fundamental power.

    图 4  种子光与泵浦光的光谱

    Figure 4.  The spectral profiles of the seed and pump.

    图 5  在三种不同透过率下, 系统阈值随晶体长度的变化. 方块为实验测量结果, 曲线为理论计算结果

    Figure 5.  Dependence of the pump threshold on the crystal length under three different transmissions. The square is the experimental measurement result, and the curve is the theoretical calculation result.

    图 6  在三种不同透过率下, 真空压缩随晶体长度变化的结果. 方块为实验测量结果, 曲线为理论计算结果. RBW = 100 kHz, VBW = 100 Hz

    Figure 6.  Dependence of squeezing noise levels on the crystal length under three different transmission. The square is the experimental measurement result, and the curve is the theoretical calculation result. RBW = 100 kHz, VBW = 100 Hz

    图 7  晶体长度1.5 mm、输出耦合镜透过率30%时的真空压缩噪声谱

    Figure 7.  Squeezed vacuum states versus the sweeping time with 1.5 mm crystal length and 30% transmission.

  • [1]

    Walls D F 1983 Nature 306 141Google Scholar

    [2]

    Xiao M, Wu L, Kimble H J 1987 Phys. Rev. Lett. 59 278Google Scholar

    [3]

    Kong J, Ou Z, Zhang W 2013 Phys. Rev. A 87 023825Google Scholar

    [4]

    Ou Z 2012 Phys. Rev. A 85 023815Google Scholar

    [5]

    Xin J, Liu J, Jing J 2017 Opt. Express 25 1350Google Scholar

    [6]

    Liu S, Lou Y, Xin J, Jing J 2018 Phys. Rev. Appl. 10 064046Google Scholar

    [7]

    Li Y, Guzun D, Xiao M 1999 Phys. Rev. Lett. 82 5225Google Scholar

    [8]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [9]

    Shi S, Wang Y, Yang W, Zheng Y, Peng K 2018 Opt. Lett. 43 5411Google Scholar

    [10]

    Zheng S, Lin Q, Cai Y, Zeng X, Li Y, Xu S, Fan D 2018 Photonics Res. 6 177Google Scholar

    [11]

    Menicucci N C 2014 Phys. Rev. Lett. 112 120504Google Scholar

    [12]

    Chen H, Liu J 2009 Chin. Opt. Lett. 7 440Google Scholar

    [13]

    Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Schnabel R 2008 Phys. Rev. Lett. 100 033602Google Scholar

    [14]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763Google Scholar

    [15]

    Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar

    [16]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [17]

    Driel H M V 1995 Appl. Phys. B 60 411

    [18]

    de Valcárcel G J, Patera G, Treps N, Fabre C 2006 Phys. Rev. A 74 061801Google Scholar

    [19]

    Patera G, Treps N, Fabre C, de Valcárcel G J 2010 Eur. Phys. J. D 56 123Google Scholar

    [20]

    Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645Google Scholar

    [21]

    Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601Google Scholar

    [22]

    Wang S, Xiang X, Treps N, Fabre C, Liu T, Zhang S, Dong R 2018 Phys. Rev. A 98 053821Google Scholar

    [23]

    Cai, Y, Roslund J, Thiel V, Fabre C, Treps N 2021 npj Quantum Inf. 7 82Google Scholar

    [24]

    Wu L, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [25]

    Pinel O, Jian P, de Araujo R M, Feng J, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601Google Scholar

    [26]

    Roslund, J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics 8 109Google Scholar

    [27]

    Cai Y, Xiang Y, Liu Y, He Q, Treps N 2020 Phys. Rev. Res. 2 032046Google Scholar

    [28]

    刘洪雨, 陈立, 刘灵, 明莹, 刘奎, 张俊香, 郜江瑞 2013 物理学报 164206 164206Google Scholar

    Liu H Y, Chen L, Liu L, Ming Y, Liu K, Zhang J X, Gao J R 2013 Acta Phys. Sin. 164206 164206Google Scholar

    [29]

    石顺祥, 陈国夫, 赵卫, 刘继芳 2012 非线性光学 (西安: 电子科技大学出版社) 第105页

    Shi S X, Chen G F, Zhao W, Liu J F 2012 Nonlinear Optics (Xidian: University Press) p105 (in Chinese)

    [30]

    Hellwig H, Liebertz J, Bohaty L 2000 J. Appl. Phys. 88 240Google Scholar

    [31]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [32]

    Gehr R J, Kimmel M W, Smith A V 1998 Opt. Lett. 23 1298Google Scholar

    [33]

    周绪桂, 王燕玲, 吴洪, 丁良恩 2009 光学学报 29 2630Google Scholar

    Zhou X G, Wang Y L, Wu H, Ding L E 2009 Acta Opt. Sin. 29 2630Google Scholar

    [34]

    孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄 2015 物理学报 64 164205Google Scholar

    Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M, Lin W X 2015 Acta Phys. Sin. 64 164205Google Scholar

    [35]

    Perez A M, Just F, Cavanna A, Chekhova M V, Leuchs G 2013 Laser Phys. Lett. 10 125201Google Scholar

  • [1] Li Qing-Hui, Yao Wen-Xiu, Li Fan, Tian Long, Wang Ya-Jun, Zheng Yao-Hui. Manipulations and quantum tomography of bright squeezed states. Acta Physica Sinica, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [2] Wen Xin, Han Ya-Shuai, Liu Jin-Yu, Bai Le-Le, He Jun, Wang Jun-Min. Generation of squeezed states at low analysis frequencies. Acta Physica Sinica, 2018, 67(2): 024207. doi: 10.7498/aps.67.20171767
    [3] Deng Rui-Jie, Yan Zhi-Hui, Jia Xiao-Jun. Analysis of electromagnetically induced transparency based on quantum memory of squeezed state of light. Acta Physica Sinica, 2017, 66(7): 074201. doi: 10.7498/aps.66.074201
    [4] Li Bai-Hong, Wang Dou-Dou, Pang Hua-Feng, Zhang Tao, Xie You, Gao Feng, Dong Rui-Fang, Li Yong-Fang, Zhang Shou-Gang. Compression of correlation time of chirped biphotons by binary phase modulation. Acta Physica Sinica, 2017, 66(4): 044206. doi: 10.7498/aps.66.044206
    [5] Liu Zeng-Jun, Zhai Ze-Hui, Sun Heng-Xin, Gao Jiang-Rui. Generation of low-frequency squeezed states. Acta Physica Sinica, 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [6] Sun Heng-Xin, Liu Kui, Zhang Jun-Xiang, Gao Jiang-Rui. Quantum precision measurement based on squeezed light. Acta Physica Sinica, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [7] Liang Xiu-Dong, Tai Yun-Jiao, Cheng Jian-Min, Zhai Long-Hua, Xu Ye-Jun. Transform relations between squeezed coherent state representation and quantum phase space distribution functions. Acta Physica Sinica, 2015, 64(2): 024207. doi: 10.7498/aps.64.024207
    [8] Xing Shu-Jian, Zhang Fu-Min, Cao Shi-Ying, Wang Gao-Wen, Qu Xing-Hua. Arbitrary and absolute length measurement based on femtosecond optical frequency comb. Acta Physica Sinica, 2013, 62(17): 170603. doi: 10.7498/aps.62.170603
    [9] Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun. Photon squeezing of the Rabi model. Acta Physica Sinica, 2013, 62(16): 160301. doi: 10.7498/aps.62.160301
    [10] Yang Hua-Qian, Liao Xiao-Feng, Kwok-Wo Wong, Zhang Wei, Wei Peng-Cheng. SPIHT-based joint image compression and encryption. Acta Physica Sinica, 2012, 61(4): 040505. doi: 10.7498/aps.61.040505
    [11] Wang Dong. Direct Bell state measurement for optical beams with correlated amplitude quadratures and anticorrelated phase quadratures. Acta Physica Sinica, 2010, 59(11): 7596-7601. doi: 10.7498/aps.59.7596
    [12] Jing Xiao-Dan, Lü Ling. Generalized synchronization of spatiotemporal chaos systems by phase compression. Acta Physica Sinica, 2008, 57(8): 4766-4770. doi: 10.7498/aps.57.4766
    [13] Wang Zhong-Chun. Nonclassical feature of the field in the two-atom Tavis-Cummings model with atomic motion. Acta Physica Sinica, 2006, 55(1): 192-196. doi: 10.7498/aps.55.192
    [14] Wang Ji-Suo, Feng Jian, Liu Tang-Kun, Zhang Ming-Sheng. . Acta Physica Sinica, 2002, 51(11): 2509-2513. doi: 10.7498/aps.51.2509
    [15] LUO XIAO-SHU. USING PHASE SPACE COMPRESSION TO CONTROL CHAOS AND HYPERCHAOS. Acta Physica Sinica, 1999, 48(3): 402-407. doi: 10.7498/aps.48.402
    [16] ZHANG JUN-XIANG, HE LING-XIANG, ZHANG TIAN-CAI, XIE CHANG-DE, PENG KUN-CHI. THE FOURTH-ORDER INTERFERENCE BETWEEN TWO INDEPENDENT SQUEEZED FIELDS. Acta Physica Sinica, 1999, 48(7): 1230-1235. doi: 10.7498/aps.48.1230
    [17] XIE RUI-HUA. STUDY OF DYNAMICAL SYMMETRY BETWEEN THE FIELD AND ATOMIC DIPOLE SQUEEZING IN A TWO-LEVEL SYSTEM. Acta Physica Sinica, 1996, 45(9): 1463-1478. doi: 10.7498/aps.45.1463
    [18] LI GAO-XIANG, PENG JIN-SHENG. . Acta Physica Sinica, 1995, 44(10): 1670-1678. doi: 10.7498/aps.44.1670
    [19] PENG KUN-CHI, HUANG MAO-QUAN, LIU JING, LIAN YI-MIN, ZHANG TIAN-CAI, YU CHEN, XIE CHANG-DE, GUO GUANG-CAN. EXPERIMENTAL INVESTIGATION ABOUT TWO-MODE SQUEEZED STATE GENERATION OF LIGHT FIELD. Acta Physica Sinica, 1993, 42(7): 1079-1085. doi: 10.7498/aps.42.1079
    [20] ZHANG WEI-PING, TAN WEI-HAN. GENERATION OF SQUEEZING LIGHT IN A LASER CAVITY. Acta Physica Sinica, 1988, 37(11): 1767-1774. doi: 10.7498/aps.37.1767
Metrics
  • Abstract views:  3601
  • PDF Downloads:  107
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2022
  • Accepted Date:  04 February 2023
  • Available Online:  28 February 2023
  • Published Online:  20 April 2023

/

返回文章
返回