-
Quantum optical frequency combs are of great significance in the fields of quantum computing, quantum information, and high precision quantum measurement, which can be produced by using a degenerate type-I synchronously pumped optical parametric oscillator (SPOPO). When anisotropic crystal is used as a nonlinear medium in the SPOPO, the spatial walk-off effect will occur due to the birefringence effect, which cannot be ignored and will adversely affect the generation of squeezed state. In this work, we investigate the influence of spatial walk-off effect on the squeezing level of quantum optical frequency combs both theoretically and experimentally. A Ti∶sapphire mode-locked femtosecond pulsed laser which produces 130 fs pulse trains at 815 nm with a repetition rate of 76 MHz is utilized as a fundamental source. Its second harmonic at 407.5 nm is used to pump the collinear BiB3O6 (BIBO) crystal for generating the squeezed vacuum frequency comb. It is indicated that as the crystal length increases, the area of interaction between pump light and signal light decreases gradually. Thus the enhancement of squeezing is eventually limited by the spatial walk-off effect. According to the simulations, the squeezing level reaches a maximum value when the crystal length is 1.49 mm. The quantum properties of squeezed vacuum optical frequency combs obtained for four crystal lengths (0.5, 1.0, 1.5 and 2.0 mm) are subsequently measured experimentally. When the length of BIBO is 1.5 mm, the maximum vacuum squeezing of (3.6±0.2) dB is obtained, which is (7.0±0.2) dB after being corrected for detection loss. The experimental results are consistent with the numerical simulations. This study demonstrates that the spatial walk-off effect in nonlinear crystal is a significant factor affecting the quantum optical frequency comb, and the theoretical model presented in this paper can be used to provide a guideline for optimizing the experimental implementation.
-
Keywords:
- quantum optical frequency comb /
- squeezed state /
- spatial walk-off
[1] Walls D F 1983 Nature 306 141Google Scholar
[2] Xiao M, Wu L, Kimble H J 1987 Phys. Rev. Lett. 59 278Google Scholar
[3] Kong J, Ou Z, Zhang W 2013 Phys. Rev. A 87 023825Google Scholar
[4] Ou Z 2012 Phys. Rev. A 85 023815Google Scholar
[5] Xin J, Liu J, Jing J 2017 Opt. Express 25 1350Google Scholar
[6] Liu S, Lou Y, Xin J, Jing J 2018 Phys. Rev. Appl. 10 064046Google Scholar
[7] Li Y, Guzun D, Xiao M 1999 Phys. Rev. Lett. 82 5225Google Scholar
[8] Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar
[9] Shi S, Wang Y, Yang W, Zheng Y, Peng K 2018 Opt. Lett. 43 5411Google Scholar
[10] Zheng S, Lin Q, Cai Y, Zeng X, Li Y, Xu S, Fan D 2018 Photonics Res. 6 177Google Scholar
[11] Menicucci N C 2014 Phys. Rev. Lett. 112 120504Google Scholar
[12] Chen H, Liu J 2009 Chin. Opt. Lett. 7 440Google Scholar
[13] Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Schnabel R 2008 Phys. Rev. Lett. 100 033602Google Scholar
[14] Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763Google Scholar
[15] Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar
[16] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar
[17] Driel H M V 1995 Appl. Phys. B 60 411
[18] de Valcárcel G J, Patera G, Treps N, Fabre C 2006 Phys. Rev. A 74 061801Google Scholar
[19] Patera G, Treps N, Fabre C, de Valcárcel G J 2010 Eur. Phys. J. D 56 123Google Scholar
[20] Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645Google Scholar
[21] Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601Google Scholar
[22] Wang S, Xiang X, Treps N, Fabre C, Liu T, Zhang S, Dong R 2018 Phys. Rev. A 98 053821Google Scholar
[23] Cai, Y, Roslund J, Thiel V, Fabre C, Treps N 2021 npj Quantum Inf. 7 82Google Scholar
[24] Wu L, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520Google Scholar
[25] Pinel O, Jian P, de Araujo R M, Feng J, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601Google Scholar
[26] Roslund, J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics 8 109Google Scholar
[27] Cai Y, Xiang Y, Liu Y, He Q, Treps N 2020 Phys. Rev. Res. 2 032046Google Scholar
[28] 刘洪雨, 陈立, 刘灵, 明莹, 刘奎, 张俊香, 郜江瑞 2013 物理学报 164206 164206Google Scholar
Liu H Y, Chen L, Liu L, Ming Y, Liu K, Zhang J X, Gao J R 2013 Acta Phys. Sin. 164206 164206Google Scholar
[29] 石顺祥, 陈国夫, 赵卫, 刘继芳 2012 非线性光学 (西安: 电子科技大学出版社) 第105页
Shi S X, Chen G F, Zhao W, Liu J F 2012 Nonlinear Optics (Xidian: University Press) p105 (in Chinese)
[30] Hellwig H, Liebertz J, Bohaty L 2000 J. Appl. Phys. 88 240Google Scholar
[31] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97
[32] Gehr R J, Kimmel M W, Smith A V 1998 Opt. Lett. 23 1298Google Scholar
[33] 周绪桂, 王燕玲, 吴洪, 丁良恩 2009 光学学报 29 2630Google Scholar
Zhou X G, Wang Y L, Wu H, Ding L E 2009 Acta Opt. Sin. 29 2630Google Scholar
[34] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄 2015 物理学报 64 164205Google Scholar
Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M, Lin W X 2015 Acta Phys. Sin. 64 164205Google Scholar
[35] Perez A M, Just F, Cavanna A, Chekhova M V, Leuchs G 2013 Laser Phys. Lett. 10 125201Google Scholar
-
图 1 系统阈值(a)和压缩(b)随晶体长度的理论变化曲线. 黑色虚线和红色实线分别是无空间走离和有空间走离的结果.
$ {n_0} = 1.82 $ ,$\chi = 3.54~ \rm pm/V$ ,$ \delta = 0.0468 $ ,$ T = 0.1 $ Figure 1. System threshold (a) and squeezing noise levels (b) as a function of crystal length, respectively. The black dotted line and red line are the results without/with spatial walk-off respectively.
$ {n_0} = 1.82 $ ,$\chi = 3.54~\rm pm/V$ ,$ \delta = 0.0468 $ ,$ T = 0.1 $ .图 2 量子光频梳产生和测量的实验装置图. HWP, 半波片; PBS, 偏振分束器; DBS, 双色镜; SPOPO, 同步泵浦光学参量振荡器; PZT, 压电陶瓷; SA, 频谱分析仪器
Figure 2. Experimental setup for the generation and measurement of squeezed frequency comb states. HWP, half-wave plate; PBS, polarizing beam splitter; DBS, dichroic beamsplitter; SPOPO, synchronously pumped optical parametric oscillator; PZT, piezoelectric transducer; SA, spectrum analyzer.
图 6 在三种不同透过率下, 真空压缩随晶体长度变化的结果. 方块为实验测量结果, 曲线为理论计算结果. RBW = 100 kHz, VBW = 100 Hz
Figure 6. Dependence of squeezing noise levels on the crystal length under three different transmission. The square is the experimental measurement result, and the curve is the theoretical calculation result. RBW = 100 kHz, VBW = 100 Hz
-
[1] Walls D F 1983 Nature 306 141Google Scholar
[2] Xiao M, Wu L, Kimble H J 1987 Phys. Rev. Lett. 59 278Google Scholar
[3] Kong J, Ou Z, Zhang W 2013 Phys. Rev. A 87 023825Google Scholar
[4] Ou Z 2012 Phys. Rev. A 85 023815Google Scholar
[5] Xin J, Liu J, Jing J 2017 Opt. Express 25 1350Google Scholar
[6] Liu S, Lou Y, Xin J, Jing J 2018 Phys. Rev. Appl. 10 064046Google Scholar
[7] Li Y, Guzun D, Xiao M 1999 Phys. Rev. Lett. 82 5225Google Scholar
[8] Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar
[9] Shi S, Wang Y, Yang W, Zheng Y, Peng K 2018 Opt. Lett. 43 5411Google Scholar
[10] Zheng S, Lin Q, Cai Y, Zeng X, Li Y, Xu S, Fan D 2018 Photonics Res. 6 177Google Scholar
[11] Menicucci N C 2014 Phys. Rev. Lett. 112 120504Google Scholar
[12] Chen H, Liu J 2009 Chin. Opt. Lett. 7 440Google Scholar
[13] Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Schnabel R 2008 Phys. Rev. Lett. 100 033602Google Scholar
[14] Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763Google Scholar
[15] Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar
[16] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar
[17] Driel H M V 1995 Appl. Phys. B 60 411
[18] de Valcárcel G J, Patera G, Treps N, Fabre C 2006 Phys. Rev. A 74 061801Google Scholar
[19] Patera G, Treps N, Fabre C, de Valcárcel G J 2010 Eur. Phys. J. D 56 123Google Scholar
[20] Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645Google Scholar
[21] Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601Google Scholar
[22] Wang S, Xiang X, Treps N, Fabre C, Liu T, Zhang S, Dong R 2018 Phys. Rev. A 98 053821Google Scholar
[23] Cai, Y, Roslund J, Thiel V, Fabre C, Treps N 2021 npj Quantum Inf. 7 82Google Scholar
[24] Wu L, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520Google Scholar
[25] Pinel O, Jian P, de Araujo R M, Feng J, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601Google Scholar
[26] Roslund, J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics 8 109Google Scholar
[27] Cai Y, Xiang Y, Liu Y, He Q, Treps N 2020 Phys. Rev. Res. 2 032046Google Scholar
[28] 刘洪雨, 陈立, 刘灵, 明莹, 刘奎, 张俊香, 郜江瑞 2013 物理学报 164206 164206Google Scholar
Liu H Y, Chen L, Liu L, Ming Y, Liu K, Zhang J X, Gao J R 2013 Acta Phys. Sin. 164206 164206Google Scholar
[29] 石顺祥, 陈国夫, 赵卫, 刘继芳 2012 非线性光学 (西安: 电子科技大学出版社) 第105页
Shi S X, Chen G F, Zhao W, Liu J F 2012 Nonlinear Optics (Xidian: University Press) p105 (in Chinese)
[30] Hellwig H, Liebertz J, Bohaty L 2000 J. Appl. Phys. 88 240Google Scholar
[31] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97
[32] Gehr R J, Kimmel M W, Smith A V 1998 Opt. Lett. 23 1298Google Scholar
[33] 周绪桂, 王燕玲, 吴洪, 丁良恩 2009 光学学报 29 2630Google Scholar
Zhou X G, Wang Y L, Wu H, Ding L E 2009 Acta Opt. Sin. 29 2630Google Scholar
[34] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄 2015 物理学报 64 164205Google Scholar
Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M, Lin W X 2015 Acta Phys. Sin. 64 164205Google Scholar
[35] Perez A M, Just F, Cavanna A, Chekhova M V, Leuchs G 2013 Laser Phys. Lett. 10 125201Google Scholar
Catalog
Metrics
- Abstract views: 3601
- PDF Downloads: 107
- Cited By: 0