Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Internal disorder of hydrogenic-like atom trapped in dielectric spherical microcavity

Liu Xue Wang De-Hua

Citation:

Internal disorder of hydrogenic-like atom trapped in dielectric spherical microcavity

Liu Xue, Wang De-Hua
PDF
HTML
Get Citation
  • The research on the disorder of quantum system plays a very important role in the field of quantum information, and has received much attention from theoretical and experimental researchers. However, it is very difficult to study the disorder of atoms trapped in microcavity due to their complex nonlocal space-time evolution characteristics. To solve this problem, we present a method to study the internal disorder of hydrogenic atoms trapped in microcavity, that is, to characterize and investigate the disorder of the confined system by using the quantum information entropy and shape complexity of the system. The Shannon information entropy and shape complexity in position space and momentum space (Sr, Sp, C[r], C[p]) are calculated and analyzed for different quantum states of hydrogenic atom in InN dielectric spherical microcavity, and pay special attention to the exploration of the influence of quantum confinement effect on the disorder of the system. The results show that when the radius of the spherical microcavity is very small, the quantum confinement effect is more significant, and a series of extreme points appears in the shape complexity curve of the system, which is caused by the joint interaction of information entropy and spatial inhomogeneity. With the increase of the radius of the spherical cavity, the effect of quantum confinement is weakened, and the Shannon information entropy and shape complexity of the confined hydrogenic atom are similar to the counterparts of the hydrogenic atom in free space. Our work provides an effective method to study the internal disorder of a confined quantum. This work provides an effective method for studying the internal disorder of confined quantum systems and presents some references for the information measurement of confined quantum systems.
      Corresponding author: Wang De-Hua, lduwdh@163.com
    • Funds: Supported by the National Natural Science Foundation of China (Grant No. 11374133) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA066).
    [1]

    Connerade J P, Dolmatov V H, Lakshmi P A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 251Google Scholar

    [2]

    Sabin J R, Brändas E J, Cruz S A 2009 The Theory of Confined Quantum Systems, Parts I and II, Advances in Quantum Chemistry (Vols. 57, 58) (Amsterdam: Academic Press) pp2–19

    [3]

    Sen K D 2014 Electronic Structure of Quantum Confined Atoms and Molecules (Switzerland: Springer) pp1–253

    [4]

    Wang D H, Zhang J, Sun Z P, Zhang S F, Zhao G 2021 Chem. Phys. 551 111331Google Scholar

    [5]

    Martínez-Sánchez M A, Vargas R, Garza J 2019 Quantum Rep. 1 208Google Scholar

    [6]

    Guerra D, Vargas R, Fuentealba P, Garza J 2009 Adv. Quantum Chem. 58 1

    [7]

    Rodriguez-Bautista M, Díaz-García C, Navarrete-López A M, Vargas R, Garza J 2015 J. Chem. Phys. 143 034103Google Scholar

    [8]

    Porras-Montenegro N, Pe´rez-Merchancano S T 1992 Phys. Rev. B 46 9780Google Scholar

    [9]

    Şahin M 2008 Phys. Rev. B 77 045317Google Scholar

    [10]

    Yuan J H, Zhang Y, Guo X X, Zhang J J, Mo H 2015 Physica E 68 232Google Scholar

    [11]

    Wang D H, He X, Liu X, Chu B H, Liu W, Jiao M M 2022 Philos. Mag. 102 2302Google Scholar

    [12]

    Longo G M, Longo S, Giordano D 2015 Phys. Scr. 90 085402Google Scholar

    [13]

    Cottrell T L 1951 Trans. Faraday Soc. 47 337Google Scholar

    [14]

    Zhu J L, Xiong J J, Gu B L 1990 Phys. Rev. B 41 6001Google Scholar

    [15]

    Lopez-Rosa S, Manzano D, Dehesa J S 2009 Physica A 388 3273Google Scholar

    [16]

    Liu S 2007 J. Chem. Phys. 126 191107Google Scholar

    [17]

    Aquino N, Flores-Riveros A, Rivas-Silva J F 2013 Phys. Lett. A 377 2062Google Scholar

    [18]

    Sun G H, Popov D, Camacho-Nieto O, Dong S H 2015 Chin. Phys. B 24 100303Google Scholar

    [19]

    Najafizade S A, Hassanabadi H, Zarrinkamar S 2016 Chin. Phys. B 25 040301Google Scholar

    [20]

    Bialynicki-Birula I, Mycielski J 1975 Comm. Math. Phys. 44 129Google Scholar

    [21]

    Guevara N L, Sagar R P, Esquivel R O, 2003 J. Chem. Phys. 119 7030Google Scholar

    [22]

    Fuentealba P, Melin J 2002 Int. J. Quantum Chem. 90 334Google Scholar

    [23]

    López-Ruiz R, Mancini H L, Calbet X 1995 Phys. Lett. A 209 321Google Scholar

    [24]

    Calbet X, López-Ruiz R 2001 Phys. Rev. E 63 066116Google Scholar

    [25]

    Angulo J C, Antolín J 2008 J. Chem. Phys. 128 164109Google Scholar

    [26]

    Majumdar S, Mukherjee N, Roy A K 2017 Chem. Phys. Lett. 687 322Google Scholar

    [27]

    梁双, 吕燕伍 2007 物理学报 56 1617Google Scholar

    Liang S, Lv Y W 2007 Acta Phys. Sin. 56 1617Google Scholar

    [28]

    Mata M, Zhou X, Furtmayr F, et al. 2013 J. Mater. Chem. C 1 4300Google Scholar

    [29]

    Guo Y, Pan F, Ren Y J, et al. 2018 Phys. Chem. Chem. Phys. 20 24239Google Scholar

    [30]

    Li P, David A, Li H, et al. 2021 Appl. Phys. Lett. 119 231101Google Scholar

    [31]

    Binks D J, Dawson P, Oliver R A, Wallis D J 2022 Appl. Phys. Rev. 9 041309Google Scholar

    [32]

    Chang C, Li X C 2022 Eur. Phys. J. D. 76 134Google Scholar

    [33]

    González-Férez R, Dehesa J S, Patil S H, Sen K D 2009 Physica A 388 4919Google Scholar

  • 图 1  囚禁在InN电介质球形微腔中氢原子的不同的量子态在位置空间和动量空间中的径向概率密度分布, 假设球形微腔的半径ra = 10

    Figure 1.  Position space and momentum space radial probability density for different quantum states of hydrogen atom in the InN dielectric spherical microcavity, suppose the radius of spherical microcavity ra = 10

    图 2  InN电介质球形微腔内氢原子前几个态的本征能 (a) ra = 10; (b) ra = 50; (c) ra = 200; (d) ra = 500

    Figure 2.  Intrinsic energy of the first few states of hydrogen atom in the InN dielectric spherical microcavity: (a) ra = 10; (b) ra = 50; (c) ra = 200; (d) ra = 500.

    图 3  囚禁在InN电介质球形微腔和真空球形微腔中氢原子的1s态的香农信息熵和形状复杂度随半径的变化 (a)位置空间和动量空间中的香农信息熵SrSp; (b) 位置空间和动量空间的平均电子概率密度ln$\langle r \rangle$和ln$ \langle p \rangle $; (c) 位置空间的形状复杂度C [r]; (d)动量空间中的形状复杂度C [p]

    Figure 3.  Shannon information entropy and shape complexity as a function of the radius of the microcavity for the 1 s state of the hydrogen atom confined in the InN dielectric spherical microvavtiy and vacuum spherical microcavity: (a) Shannon information entropy in the position space Sr and in the momentum space Sp; (b) averaging electron probability density in the position space ln$\langle r \rangle$ and in the momentum space ln$ \langle p \rangle $; (c) shape complexity in the position space C [r]; (d) shape complexity in the momentum space C [p].

    图 4  囚禁在InN电介质球形微腔中和真空球形微腔中氢原子的2s态的香农信息熵和形状复杂度随微腔半径的变化曲线 (a) Sr,Sp, ln$\langle r \rangle$和ln$\langle p \rangle $ra的变化曲线; (b)在位置空间和动量空间中形状复杂度C [r]和C [p]随ra的变化曲线

    Figure 4.  Shannon information entropy and shape complexity as a function of the radius of the microcavity for the 2s state of the hydrogen atom confined in the InN dielectric spherical microvavtiy and vacuum spherical microcavity: (a) Variation of Sr, Sp, ln$\langle r \rangle$ and ln$\langle p \rangle $ with ra; (b) variation of shape complexity in the position space C [r] and in the momentum space C [p] with ra.

    图 5  囚禁在InN电介质球形微腔中氢原子的3s态和4s态的香农信息熵和形状复杂度随微腔半径的变化曲线 (a) 3s态Sr, Sp, ln$\langle r \rangle$和ln$\langle p \rangle $ra的变化; (b) 3s态的C [r]和C [p]随ra的变化; (c) 4s态Sr, Sp, ln$\langle r \rangle$和ln$ \langle p \rangle $ra的变化; (d) 4s态的C [r]和C [p]随ra的变化

    Figure 5.  Shannon information entropy and shape complexity as a function of the radius of the InN dielectric spherical microcavity for the 3s state and 4s state: (a) Variation of Sr, Sp, ln$\langle r \rangle$ and ln$\langle p \rangle $ with ra for the 3s state; (b) variation of C [r] and C [p] with ra for the 3s state; (c) variation of Sr, Sp, ln$\langle r \rangle$ and ln$\langle p \rangle $ with ra for the 4s state; (d) variation of C [r] and C [p] with ra for the 4s state.

    图 6  囚禁在InN电介质球形微腔中氢原子的2p, 3p和4p态的香农信息熵和形状复杂度随微腔半径的变化 (a) 2p态Sr, Sp, ln$\langle r \rangle$和ln$\langle p \rangle $ra的变化; (b) 2p态C [r]和C [p]随ra的变化; (c) 3p态Sr, Sp, ln$\langle r \rangle$和ln$\langle p\rangle $ra的变化; (d) 3p态C [r]和C [p]随ra的变化; (e) 4p态Sr, Sp, ln$ \langle r \rangle $和ln$\langle p\rangle $ra的变化; (f) 4p态C [r]和C [p]随ra的变化

    Figure 6.  Shannon information entropy and shape complexity as a function of the radius of the InN dielectric spherical microcavity for the 2p, 3p and 4p states: (a) Variation of Sr, Sp, ln$ \langle r \rangle $and ln$\langle p \rangle $ with ra for the 2p state; (b) variation of C [r] and C [p] with ra for the 2p state; (c) variation of Sr, Sp, ln$ \langle r \rangle $and ln$\langle p \rangle $ with ra for the 3p state; (d) variation of C [r] and C [p] with ra for the 3p state; (e) variation of Sr, Sp, ln$ \langle r \rangle $and ln$\langle p \rangle $ with ra for the 4p state; (f) variation of C [r] and C [p] with ra for the 4p state.

    图 7  囚禁在InN电介质球形微腔中氢原子的不同量子态的香农信息熵和St的比较

    Figure 7.  Comparison of Shannon information entropy sum St for different quantum states of hydrogenic atom confined in the InN dielectric spherical microcavity.

    图 8  囚禁在InN电介质球形微腔中氢原子的不同的s态和p态的动量空间的形状复杂度C [r]的比较

    Figure 8.  Comparison of the momentum space shape complexity C [r] for different s and p states of hydrogenic atom confined in the InN dielectric spherical microcavity.

    图 9  囚禁在InN电介质球形微腔中氢原子的不同的s态和p态的动量空间的形状复杂度C [p]的比较

    Figure 9.  Comparison of the momentum space shape complexity C [p] for different s and p states of hydrogenic atom confined in the InN dielectric spherical microcavity.

    表 1  InN电介质球形微腔中氢原子在不同囚禁半径下的前几个态的本征能

    Table 1.  Intrinsic energy of the first few states of hydrogen atoms at different confinement radii in InN dielectric spherical microcavity.

    ra/a.u.0.5103050100200300500
    1s19.420090.03291–0.00042–0.00192–0.00213–0.00214–0.00214–0.00214
    2s78.549490.176800.014930.00365–0.00011–0.00053–0.00053–0.00053
    2p40.139430.088770.007090.00152–0.00032–0.00053–0.00053–0.00053
    3s177.193060.421000.041550.013050.00208–0.00001–0.00021–0.00024
    3p119.051810.282970.027970.008800.00138–0.00007–0.00022–0.00024
    3d66.221350.155380.014860.004470.00056–0.00016–0.00023–0.00024
    4s315.330120.764610.079350.026530.005360.000740.00009–0.00012
    4p237.449380.576930.060170.020230.004150.000570.00005–0.00012
    4d165.172130.400250.041490.013850.002770.00034–0.00001–0.00013
    4f97.464200.234230.023810.007770.001430.00010–0.00008–0.00013
    DownLoad: CSV

    表 2  囚禁在InN电介质球形微腔中氢原子1s, 2s, 3s和4s态在位置和动量空间中的香农信息熵和形状复杂度随半径的变化

    Table 2.  Variation of Shannon information entropy and shape complexity in the position and momentum spaces of 1s, 2s, 3s and 4s states for hydrogenic atom confined in the InN dielectric spherical microcavity as a function of the radius of the microcavity.

    ra/a.u.0.5246104010040010001500
    1sSr–1.40782.73884.80125.99986.84417.493811.212512.308312.328312.3283
    Sp8.02243.86771.79460.58560.2690–0.9287–4.7199–5.7473–5.7617–5.7617
    C [r]1.32381.33311.34631.36041.37541.39151.77292.47422.51072.5107
    C [p]1.51561.51101.50531.50021.49591.49241.60812.30072.35452.3545
    2sSr–1.61822.53934.61735.83246.69457.363311.560014.501116.294416.2945
    Sp9.81065.65173.57222.35611.49340.8246–3.3163–6.3549–8.9410–8.9411
    C [r]2.31222.33182.35842.38572.41352.44202.88722.69782.58822.5883
    C [p]1.29871.29911.30041.30271.30591.31041.62553.57053.58623.5862
    3sSr–1.69412.46514.54515.76226.62607.296411.486814.374418.418918.6100
    Sp10.76986.61224.53473.32052.45981.7931–2.2946–4.861410.030410.3718
    C [r]3.29653.31833.34763.37723.40713.43723.89124.31502.42492.5897
    C [p]1.29591.29341.29001.28661.28331.28021.25661.61644.92455.3478
    4sSr–1.73322.42644.50685.72426.58837.258911.443514.281618.798420.2300
    Sp11.42167.26385.18573.97103.10982.4425–1.6559–4.1749–8.936011.2692
    C [r]4.27984.30224.33234.36244.39274.42304.87335.48563.30592.5188
    C [p]1.32051.31931.31731.31531.31341.31151.29171.37383.27857.1624
    DownLoad: CSV

    表 3  InN电介质球形微腔中氢原子2p, 3p和4p态位置空间和动量空间中的香农信息熵和形状复杂度

    Table 3.  Shannon information entropy and shape complexity of 2p, 3p and 4p states in the position space and momentum space for hydrogen atom confined in the InN dielectric spherical microcavity.

    ra/a.u.0.5246104010040010001500
    2pSr–1.12793.02875.10506.31817.843911.941414.476515.880415.880415.8804
    Sp9.02144.86332.78511.56970.0398–4.0817–6.5889–7.7092–7.7092–7.7092
    C [r]1.15681.15771.15891.16021.16281.18871.29181.71071.71071.7107
    C [p]1.30841.30681.30491.30241.29821.27491.32811.76391.76391.7639
    3pSr–1.39202.76604.84426.05957.589611.733314.473718.271118.421418.4214
    Sp10.33206.17334.09422.87831.3468–2.7953–5.4546–9.4770–9.6406–9.6406
    C [r]1.60881.61131.61481.61831.62541.68331.81501.82671.96571.9657
    C [p]1.25641.25471.25261.25061.24651.22401.27492.95112.96712.9671
    4pSr–1.51412.64444.72345.93947.471111.626114.379418.762920.148820.1494
    Sp11.11816.95964.88083.66522.1344–2.0027–4.6540–8.772510.815810.8150
    C [r]2.06442.06762.07192.07622.08502.15332.29772.25202.08172.0829
    C [p]1.28781.28621.28451.28271.27911.25421.22882.71233.87463.8744
    DownLoad: CSV
  • [1]

    Connerade J P, Dolmatov V H, Lakshmi P A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 251Google Scholar

    [2]

    Sabin J R, Brändas E J, Cruz S A 2009 The Theory of Confined Quantum Systems, Parts I and II, Advances in Quantum Chemistry (Vols. 57, 58) (Amsterdam: Academic Press) pp2–19

    [3]

    Sen K D 2014 Electronic Structure of Quantum Confined Atoms and Molecules (Switzerland: Springer) pp1–253

    [4]

    Wang D H, Zhang J, Sun Z P, Zhang S F, Zhao G 2021 Chem. Phys. 551 111331Google Scholar

    [5]

    Martínez-Sánchez M A, Vargas R, Garza J 2019 Quantum Rep. 1 208Google Scholar

    [6]

    Guerra D, Vargas R, Fuentealba P, Garza J 2009 Adv. Quantum Chem. 58 1

    [7]

    Rodriguez-Bautista M, Díaz-García C, Navarrete-López A M, Vargas R, Garza J 2015 J. Chem. Phys. 143 034103Google Scholar

    [8]

    Porras-Montenegro N, Pe´rez-Merchancano S T 1992 Phys. Rev. B 46 9780Google Scholar

    [9]

    Şahin M 2008 Phys. Rev. B 77 045317Google Scholar

    [10]

    Yuan J H, Zhang Y, Guo X X, Zhang J J, Mo H 2015 Physica E 68 232Google Scholar

    [11]

    Wang D H, He X, Liu X, Chu B H, Liu W, Jiao M M 2022 Philos. Mag. 102 2302Google Scholar

    [12]

    Longo G M, Longo S, Giordano D 2015 Phys. Scr. 90 085402Google Scholar

    [13]

    Cottrell T L 1951 Trans. Faraday Soc. 47 337Google Scholar

    [14]

    Zhu J L, Xiong J J, Gu B L 1990 Phys. Rev. B 41 6001Google Scholar

    [15]

    Lopez-Rosa S, Manzano D, Dehesa J S 2009 Physica A 388 3273Google Scholar

    [16]

    Liu S 2007 J. Chem. Phys. 126 191107Google Scholar

    [17]

    Aquino N, Flores-Riveros A, Rivas-Silva J F 2013 Phys. Lett. A 377 2062Google Scholar

    [18]

    Sun G H, Popov D, Camacho-Nieto O, Dong S H 2015 Chin. Phys. B 24 100303Google Scholar

    [19]

    Najafizade S A, Hassanabadi H, Zarrinkamar S 2016 Chin. Phys. B 25 040301Google Scholar

    [20]

    Bialynicki-Birula I, Mycielski J 1975 Comm. Math. Phys. 44 129Google Scholar

    [21]

    Guevara N L, Sagar R P, Esquivel R O, 2003 J. Chem. Phys. 119 7030Google Scholar

    [22]

    Fuentealba P, Melin J 2002 Int. J. Quantum Chem. 90 334Google Scholar

    [23]

    López-Ruiz R, Mancini H L, Calbet X 1995 Phys. Lett. A 209 321Google Scholar

    [24]

    Calbet X, López-Ruiz R 2001 Phys. Rev. E 63 066116Google Scholar

    [25]

    Angulo J C, Antolín J 2008 J. Chem. Phys. 128 164109Google Scholar

    [26]

    Majumdar S, Mukherjee N, Roy A K 2017 Chem. Phys. Lett. 687 322Google Scholar

    [27]

    梁双, 吕燕伍 2007 物理学报 56 1617Google Scholar

    Liang S, Lv Y W 2007 Acta Phys. Sin. 56 1617Google Scholar

    [28]

    Mata M, Zhou X, Furtmayr F, et al. 2013 J. Mater. Chem. C 1 4300Google Scholar

    [29]

    Guo Y, Pan F, Ren Y J, et al. 2018 Phys. Chem. Chem. Phys. 20 24239Google Scholar

    [30]

    Li P, David A, Li H, et al. 2021 Appl. Phys. Lett. 119 231101Google Scholar

    [31]

    Binks D J, Dawson P, Oliver R A, Wallis D J 2022 Appl. Phys. Rev. 9 041309Google Scholar

    [32]

    Chang C, Li X C 2022 Eur. Phys. J. D. 76 134Google Scholar

    [33]

    González-Férez R, Dehesa J S, Patil S H, Sen K D 2009 Physica A 388 4919Google Scholar

  • [1] ZHOU Shuai, LIU Kaipeng, DAI Shiwei, GE Lixin. Tunable Casimir equilibria in dual-liquid system. Acta Physica Sinica, 2025, 74(1): 014202. doi: 10.7498/aps.74.20241126
    [2] Gong Long-Yan, Yang Hui, Zhao Sheng-Mei. Influence of intermediated measurements on quantum statistical complexity of single driven qubit. Acta Physica Sinica, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [3] Ren Zhi-Hong, Li Yan, Li Yan-Na, Li Wei-Dong. Development on quantum metrology with quantum Fisher information. Acta Physica Sinica, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [4] Li Jin-Qing, Luo Yun-Rong, Hai Wen-Hua. Quantum damping motion of a single trapped ion. Acta Physica Sinica, 2017, 66(23): 233701. doi: 10.7498/aps.66.233701
    [5] Yang Xiao-Jing, Yang Yang, Li Huai-Zhou, Zhong Ning. Analysis of resting state functional magnetic resonance imaging signal complexity of adult major depressive disorder based on fuzzy approximate entropy. Acta Physica Sinica, 2016, 65(21): 218701. doi: 10.7498/aps.65.218701
    [6] Sun Ke-Hui, He Shao-Bo, Yin Lin-Zi, Duo Li-Kun. Application of FuzzyEn algorithm to the analysis of complexity of chaotic sequence. Acta Physica Sinica, 2012, 61(13): 130507. doi: 10.7498/aps.61.130507
    [7] Chen Xiao-Jun, Li Zan, Bai Bao-Ming, Cai Jue-Ping. New complexity metric of chaotic pseudorandom sequences using fuzzy relationship entropy. Acta Physica Sinica, 2011, 60(6): 064215. doi: 10.7498/aps.60.064215
    [8] Yang Mei-Rong, Hai Wen-Hua, Lu Geng-Biao, Zhong Hong-Hua. Exact quantum motion of a single trapped ion interacting with standing laser pulses in Lamb-Dicke regime. Acta Physica Sinica, 2010, 59(4): 2406-2415. doi: 10.7498/aps.59.2406
    [9] Liu Wang-Yun, Bi Si-Wen, Dou Xi-Bo. Evolution properties of the field quantum entropy in the nonlinear Jaynes-Cummings model of a trapped ion. Acta Physica Sinica, 2010, 59(3): 1780-1785. doi: 10.7498/aps.59.1780
    [10] Wang Tian-Qi, Yu Zhong-Yuan, Liu Yu-Min, Lu Peng-Fei. Analysis of strain energy and relaxation degree in different-shaped quantum dots using finite element method. Acta Physica Sinica, 2009, 58(8): 5618-5623. doi: 10.7498/aps.58.5618
    [11] Zhang Li-Chun, Hu Shuang-Qi, Li Huai-Fan, Zhao Ren. Quantum statistical entropy of axisymmetric black hole. Acta Physica Sinica, 2008, 57(6): 3328-3332. doi: 10.7498/aps.57.3328
    [12] Zhang Miao, Jia Huan-Yu, Ji Xiao-Hui, Si Kun, Wei Lian-Fu. Generation of squeezed quantum states of a single trapped cold ion. Acta Physica Sinica, 2008, 57(12): 7650-7657. doi: 10.7498/aps.57.7650
    [13] He Liang, Du Lei, Zhuang Yi-Qi, Li Wei-Hua, Chen Jian-Ping. Multiscale entropy complexity analysis of metallic interconnection electromigration noise. Acta Physica Sinica, 2008, 57(10): 6545-6550. doi: 10.7498/aps.57.6545
    [14] Shen Jian-Qi, Zhuang Fei. Momentum transfer at quantum-vacuum level inside an anisotropic magnetoelectric medium. Acta Physica Sinica, 2007, 56(5): 2719-2724. doi: 10.7498/aps.56.2719
    [15] Zhang Dian-Zhong. Research on the correlation between the mutual information and Lempel-Ziv complexity of nonlinear time series. Acta Physica Sinica, 2007, 56(6): 3152-3157. doi: 10.7498/aps.56.3152
    [16] Ma Yun, Fu Li-Bin, Yang Zhi-An, Liu Jie. Dynamical phase changes of the self-trapping of Bose-Einstein condensates and its characteristic of entanglement. Acta Physica Sinica, 2006, 55(11): 5623-5628. doi: 10.7498/aps.55.5623
    [17] Wu Yun-Wen, Hai Wen-Hua. Exact quantum motions of two ions in a two-dimensional paul trap. Acta Physica Sinica, 2006, 55(11): 5721-5727. doi: 10.7498/aps.55.5721
    [18] Song Ke-Hui. Scheme for quantum information processing via Λ-type atoms interacting with bimodal cavity field. Acta Physica Sinica, 2005, 54(10): 4730-4735. doi: 10.7498/aps.54.4730
    [19] Xiang Shao-Hua, Song Ke-Hui. Transfer of quantum information via cavity QED technique. Acta Physica Sinica, 2005, 54(3): 1190-1193. doi: 10.7498/aps.54.1190
    [20] Wang Bo-Bo. Entropy of Dirac field in toroidal black hole. Acta Physica Sinica, 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
Metrics
  • Abstract views:  3318
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2022
  • Accepted Date:  21 March 2023
  • Available Online:  23 March 2023
  • Published Online:  20 May 2023

/

返回文章
返回