Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dirac magnetic monopoles potential in the nonlinear double-soliton interference

Sun Bin Zhao Li-Chen Liu Jie

Citation:

Dirac magnetic monopoles potential in the nonlinear double-soliton interference

Sun Bin, Zhao Li-Chen, Liu Jie
PDF
HTML
Get Citation
  • In this paper, we deeply investigate the phase evolution and the underlying topological vector potential in the nonlinear interference of solitons. Based on the double-soliton solution of 1D nonlinear Schrödinger equation, we find that the density zeros of wave function generally exist in the extended complex space, each density zero corresponds to the vector potential produced by Dirac magnetic monopole. The vector potential field is composed of periodically distributed Dirac magnetic monopole pairs with opposite magnetic charges. By observing the motion of magnetic monopoles, we can conveniently understand the phase evolution characteristics during the interference process. In particular, we find that the collision of a pair of magnetic monopoles with opposite charge on the real axis corresponds exactly to the $ \pm\pi $ jump of the wave function phase at nodes. For comparison, we also discuss Dirac magnetic monopoles and vector potential field in linear wave packet interference case. The results show that the Dirac magnetic monopole potential widely exists in the interference phenomena of wave fields, and the distribution of magnetic monopoles in the extended complex space can be used to distinguish the topological properties behind the linear and nonlinear interference process.
      Corresponding author: Liu Jie, jliu@gscaep.ac.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1930403) and the National Natural Science Foundation of China (Grant No. 12022513)
    [1]

    Dirac P A M 1931 Proc. R. Soc. Lond. A 133 60Google Scholar

    [2]

    Milton K A 2006 Rep. Prog. Phys. 69 1637Google Scholar

    [3]

    Yang C N 1970 Phys. Rev. D 1 2360Google Scholar

    [4]

    Wu T T, Yang C N 1995 Phys. Rev. D 12 3845Google Scholar

    [5]

    Berry M V 1980 Eur. J. Phys. 1 240Google Scholar

    [6]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485Google Scholar

    [7]

    Berry M V 1984 Proc. R. Soc. Lond. A 392 45Google Scholar

    [8]

    Hooft G 1974 Nucl. Phys. B 79 276Google Scholar

    [9]

    Castelnovo C, Moessner R, Sondhi S L 2008 Nature 451 42Google Scholar

    [10]

    Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S, Schütte C, Rosch A 2013 Science 340 1076Google Scholar

    [11]

    Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505 657Google Scholar

    [12]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [13]

    Zhao L C, Qin Y H, Lee C, Liu J 2021 Phys. Rev. E 10 3Google Scholar

    [14]

    Muga J G, Ruschhaupt A, Campo A 2009 Time in Quantum Mechanics (Vol. 2) (Berlin, Heidelberg: Springer Berlin Heidelberg) p305

    [15]

    Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240Google Scholar

    [16]

    Barenblatt G I 1996 Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics (Cambridge: Cambridge University Press)

    [17]

    Karpman V I 1975 Non-Linear Waves in Dispersive Media (New York: Pergamon Press)

    [18]

    Agrawal G 2006 Nonlinear Fiber Optics (Cambridge: Academic Press)

    [19]

    Wu B, Liu J, Niu Q 2002 Phys. Rev. Lett. 88 034101Google Scholar

    [20]

    Rebbi C, Soliani G 1984 Solitons and Particles (Singapore: World Scientific Publishing)

    [21]

    Nguyen J H V, Dyke P, Luo D, Malomed B A, Hulet R G 2014 Nat. Phys. 10 918Google Scholar

    [22]

    Zakharov V E, Shabat A B 1973 Sov. Phys. JETP 37 823

    [23]

    Zhao L C, Ling L, Yang Z Y, Liu J 2016 Nonlinear Dyn. 83 659Google Scholar

    [24]

    Yang C N, Lee T D 1952 Phys. Rev. 87 404Google Scholar

    [25]

    Zhao L C, Meng L Z, Qin Y H, Yang Z Y, Liu J 2021 arXiv: 2102.10914.

    [26]

    王竹溪, 郭敦仁 2012 特殊函数概论 (北京: 北京大学出版社) 第15页

    Wang Z X, Guo D R 2012 Special Functions (Beijing: Peking University Press) p15 (in Chinese)

    [27]

    梁九卿, 韦联福 2011 量子力学新进展 (北京: 科学出版社) 第26页

    Liang J Q, Wei L F 2011 New Developments in Quantum Mechanics (Beijing: Science Press) p26 (in Chinese)

    [28]

    Kivshar Y S, Afansjev V V, Snyder A W 1996 Opt. Commun. 126 348Google Scholar

    [29]

    Triki H, Hamaizi Y, Zhou Q, Biswas A, Ullah M Z, Moshokoa S P, Belic M 2018 Optik 155 329Google Scholar

    [30]

    Busch T, Anglin J R 2001 Phys. Rev. Lett. 87 010401Google Scholar

    [31]

    Alejo M A, Corcho A J 2020 arXiv: 2003.09994

    [32]

    Li J D, Meng L Z, Zhao L C 2023 Phys. Rev. A 107 013511Google Scholar

  • 图 1  坐标空间中高斯波包线性干涉图样 (a)$ xz $空间两个波包干涉随时间演化; (b)波包中心($ z = 0 $) 处波函数密度对时间演化.宽度为a、振幅为S, $ t = 0 $时刻位于$ (0, 0) $处具有相反x方向动量$\pm k\hat{{\boldsymbol{e}}}_x$的高斯波包. 实际参数$S = a = 1, k = 5 $

    Figure 1.  Linear interference of two Gaussian wave packets in position space: (a) Time evolution of Gaussian wave packet interference in $ xz $-space; (b) density plot of wave packet center($ z = 0 $) vs. time t. The wave packets of width a and amplitude S start at $ (0, 0) $ with opposite momentum $\pm k\hat{{\boldsymbol{e}}}_x$ in x-direction. The actual parameters are $S = a = 1, k = 5 $.

    图 2  坐标空间中孤子非线性干涉图样 (a)$ xz $ 空间两个孤子干涉随时间演化; (b)孤子中心($ z = 0 $) 处波函数密度对时间演化. 两个具有相反方向速度$ b_1, b_2 $的完全相同的孤子. 实际参数为$ a_1 = 1, b_1 = 5, g = 1, a_2 = 1, b_2 = -5, c_1 = d_1 = c_2 = d_2 = 0 $, 及$ S= 1, a = 1 $

    Figure 2.  Nonlinear Interference of two solitons in position space: (a) Time evolution of soliton interference in $ xz $-space; (b) density plot of soliton center ($ z = 0 $) vs. time t. Two identical solitons with opposite velocity $ b_1, b_2 $. The actual parameters are $ a_1 = 1, b_1 = 5, g = 1, a_2 = 1, b_2 = -5, c_1 = d_1 = c_2 = d_2 = 0 $, and $ S = 1, a = 1 $.

    图 3  $ t = 0.2 $时刻波函数相对相位导数$ \text{d}\phi/\text{d}x $重构、磁单极分布及产生的矢势A (a) $ t = 0.2 $时刻, 波函数相对相位导数$ \text{d}\phi/\text{d}x $解析解与利用磁单极重构解, 黑色实线为解析解, 红色虚线为磁单极重构解; (b)$ t = 0.2 $时刻复平面上磁单极分布及对应的矢势A, $ \odot, \otimes $分别表示$\mu=\pm\dfrac{1}{2}$的两类磁单极, $ \text{Re}[z], \text{Im}[z] $分别表示实部虚部. 实际参数同图1

    Figure 3.  Derivative of relative phase function $ \text{d}\phi/\text{d}x $, Dirac magnetic monopole distribution and corresponding vector potential A at time $ t = 0.2 $: (a) Analytic solution and reconstruction using magnetic monopoles of phase function derivative $ \text{d}\phi/\text{d}x $ at time $ t = 0.2 $, analytic solution(black solid line), construct using magnetic monopole(red dash line); (b) magnetic monopole distribution and corresponding vector potential A on complex plane at time $ t = 0.2 $, $ \odot, \otimes $ denotes monopoles with $\mu=\pm\dfrac{1}{2}$ and $ \text{Re}[z], \text{Im}[z] $ real part, imaginary part respectively. The actual parameters are same as Fig. 1.

    图 4  复平面上磁单极分布及相应矢势A随时间演化, $ \odot, \otimes $分别表示$\mu=\pm\dfrac{1}{2}$ 的两类磁单极, $ \text{Re}[{\cal{Z}}], \text{Im}[{\cal{Z}}] $ 分别表示实部虚部. 实际参数同图1

    Figure 4.  Time evolution of Magnetic monopole distribution and corresponding vector potential A on complex plane, $ \odot, \otimes $ denotes monopoles with $\mu=\pm\dfrac{1}{2}$ and $ \text{Re}[{\cal{Z}}], \text{Im}[{\cal{Z}}] $ real part, imaginary part respectively. The actual parameters are same as Fig. 1.

    图 5  $ t = 0.05 $时刻波函数相对相位导数$ \text{d}\phi/\text{d}x $重构、磁单极分布及产生的矢势A (a)$ t = 0.2 $时刻, 波函数相对相位导数$ \text{d}\phi/\text{d}x $解析解与利用磁单极重构解, 黑色实线为解析解, 红色虚线为磁单极重构解; (b)$ t = 0.2 $时刻复平面上磁单极分布及对应的矢势A, $ \odot, \otimes $分别表示$\mu=\pm\dfrac{1}{2}$的两类磁单极, $ \text{Re}[{\cal{Z}}], \text{Im}[{\cal{Z}}] $ 分别表示实部虚部. 实际参数同图2

    Figure 5.  Derivative of relative phase function $ \text{d}\phi/\text{d}x $, Dirac magnetic monopole distribution and corresponding vector potential A at time $ t = 0.05 $: (a) Analytic solution and reconstruction using magnetic monopoles of phase function derivative $ \text{d}\phi/\text{d}x $at time $ t = 0.2 $, analytic solution(black solid line), construct using magnetic monopole(red dash line); (b) magnetic monopole distribution and corresponding vector potential A on complex plane at time $ t = 0.2 $, $ \odot, \otimes $ denotes monopoles with $\mu=\pm\dfrac{1}{2}$ and $ \text{Re}[{\cal{Z}}], \text{Im}[{\cal{Z}}] $ real part, imaginary part respectively. The actual parameters are same as Fig. 2.

    图 6  复平面上磁单极分布及相应矢势A随时间演化. $ \odot, \otimes $分别表示$\mu=\pm\dfrac{1}{2}$ 的两类磁单极, $ \text{Re}[{\cal{Z}}], \text{Im}[{\cal{Z}}] $ 分别表示实部虚部. 实际参数同图2

    Figure 6.  Time evolution of magnetic monopole distribution and corresponding vector potential A on complex plane, $ \odot, \otimes $ denotes monopoles with $\mu=\pm\dfrac{1}{2}$ and $ \text{Re}[{\cal{Z}}], \text{Im}[{\cal{Z}}] $ real part, imaginary part respectively. The actual parameters are same as Fig. 2.

    图 7  完全碰撞时刻波函数相位$ \pm\pi $ 跃变与密度零点 (a)高斯波包线性干涉$ t = 0 $时刻波函数相位与密度零点; (b)双孤子非线性干涉$ t = 0 $时刻波函数相位与密度零点. 线性干涉与非线性干涉情形实际参数分别同图1图2

    Figure 7.  $ \pm\pi $ jump of phase function and zeros of density at complete collision time ($ t = 0 $): (a) Phase jump and density zeros of Gaussian wave packet linear interference at time $ t = 0 $; (b) phase jump and density zeros of double soliton nonlinear interference at time $ t = 0 $. The actual parameters for linear and nonlinear case are same as Fig. 1 and Fig. 2, respectively.

  • [1]

    Dirac P A M 1931 Proc. R. Soc. Lond. A 133 60Google Scholar

    [2]

    Milton K A 2006 Rep. Prog. Phys. 69 1637Google Scholar

    [3]

    Yang C N 1970 Phys. Rev. D 1 2360Google Scholar

    [4]

    Wu T T, Yang C N 1995 Phys. Rev. D 12 3845Google Scholar

    [5]

    Berry M V 1980 Eur. J. Phys. 1 240Google Scholar

    [6]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485Google Scholar

    [7]

    Berry M V 1984 Proc. R. Soc. Lond. A 392 45Google Scholar

    [8]

    Hooft G 1974 Nucl. Phys. B 79 276Google Scholar

    [9]

    Castelnovo C, Moessner R, Sondhi S L 2008 Nature 451 42Google Scholar

    [10]

    Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S, Schütte C, Rosch A 2013 Science 340 1076Google Scholar

    [11]

    Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505 657Google Scholar

    [12]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [13]

    Zhao L C, Qin Y H, Lee C, Liu J 2021 Phys. Rev. E 10 3Google Scholar

    [14]

    Muga J G, Ruschhaupt A, Campo A 2009 Time in Quantum Mechanics (Vol. 2) (Berlin, Heidelberg: Springer Berlin Heidelberg) p305

    [15]

    Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240Google Scholar

    [16]

    Barenblatt G I 1996 Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics (Cambridge: Cambridge University Press)

    [17]

    Karpman V I 1975 Non-Linear Waves in Dispersive Media (New York: Pergamon Press)

    [18]

    Agrawal G 2006 Nonlinear Fiber Optics (Cambridge: Academic Press)

    [19]

    Wu B, Liu J, Niu Q 2002 Phys. Rev. Lett. 88 034101Google Scholar

    [20]

    Rebbi C, Soliani G 1984 Solitons and Particles (Singapore: World Scientific Publishing)

    [21]

    Nguyen J H V, Dyke P, Luo D, Malomed B A, Hulet R G 2014 Nat. Phys. 10 918Google Scholar

    [22]

    Zakharov V E, Shabat A B 1973 Sov. Phys. JETP 37 823

    [23]

    Zhao L C, Ling L, Yang Z Y, Liu J 2016 Nonlinear Dyn. 83 659Google Scholar

    [24]

    Yang C N, Lee T D 1952 Phys. Rev. 87 404Google Scholar

    [25]

    Zhao L C, Meng L Z, Qin Y H, Yang Z Y, Liu J 2021 arXiv: 2102.10914.

    [26]

    王竹溪, 郭敦仁 2012 特殊函数概论 (北京: 北京大学出版社) 第15页

    Wang Z X, Guo D R 2012 Special Functions (Beijing: Peking University Press) p15 (in Chinese)

    [27]

    梁九卿, 韦联福 2011 量子力学新进展 (北京: 科学出版社) 第26页

    Liang J Q, Wei L F 2011 New Developments in Quantum Mechanics (Beijing: Science Press) p26 (in Chinese)

    [28]

    Kivshar Y S, Afansjev V V, Snyder A W 1996 Opt. Commun. 126 348Google Scholar

    [29]

    Triki H, Hamaizi Y, Zhou Q, Biswas A, Ullah M Z, Moshokoa S P, Belic M 2018 Optik 155 329Google Scholar

    [30]

    Busch T, Anglin J R 2001 Phys. Rev. Lett. 87 010401Google Scholar

    [31]

    Alejo M A, Corcho A J 2020 arXiv: 2003.09994

    [32]

    Li J D, Meng L Z, Zhao L C 2023 Phys. Rev. A 107 013511Google Scholar

  • [1] Jiao Jing, Luo Huan-Bo, Li Lu. Isolated Dirac string induced by interaction between positive and negative monopoles. Acta Physica Sinica, 2021, 70(7): 071401. doi: 10.7498/aps.70.20201744
    [2] Wen Lin, Liang Yi, Zhou Jing, Yu Peng, Xia Lei, Niu Lian-Bin, Zhang Xiao-Fei. Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [3] Cai Qi-Sheng, Huang Min, Han Wei, Cong Lin-Xiao, Lu Xiang-Ning. Heterodyne polarization interference imaging spectroscopy. Acta Physica Sinica, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [4] Liu Hao-Hua, Wang Shao-Hua, Li Bo-Bo, Li Hua-Lin. Defect induced asymmetric soliton transmission in the nonlinear circuit. Acta Physica Sinica, 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [5] Tang Wei, Wang Xiao-Pu, Cao Jing-Jun. Modeling and analysis of piezoelectric vibration energy harvesting system using permanent magnetics. Acta Physica Sinica, 2014, 63(24): 240504. doi: 10.7498/aps.63.240504
    [6] Lu Da-Quan, Hu Wei. Breather for weak beam induced by strong beam in strongly nonlocal nonlinear medium. Acta Physica Sinica, 2013, 62(3): 034205. doi: 10.7498/aps.62.034205
    [7] Tao Feng, Chen Wei-Zhong, Xu Wen, Du Si-Dan. The study of asymmetric energy transmission based on the nonlinear supratransmission. Acta Physica Sinica, 2012, 61(13): 134103. doi: 10.7498/aps.61.134103
    [8] Lin Wan-Tao, Chen Li-Hua, Ouyang Cheng, Mo Jia-Qi. Asymptotic solving method of soliton for El Nio/La Nia-southern oscillation nonlinear disturbed model. Acta Physica Sinica, 2012, 61(8): 080204. doi: 10.7498/aps.61.080204
    [9] Wu Qin-Kuan. Variational iteration solution method of soliton for a class of nonlinear disturbed Burgers equation. Acta Physica Sinica, 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [10] Hua Wei, Liu Xue-Shen. Dynamics of cubic and quintic nonlinear Schrdinger equations. Acta Physica Sinica, 2011, 60(11): 110210. doi: 10.7498/aps.60.110210
    [11] Li Yang-Yue, Chen Zi-Yang, Liu Hui, Pu Ji-Xiong. Generation and interference of vortex beams. Acta Physica Sinica, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [12] Shi Lan-Fang, Zhou Xian-Chun. Homotopic mapping solution of soliton for a class of disturbed Burgers equation. Acta Physica Sinica, 2010, 59(5): 2915-2918. doi: 10.7498/aps.59.2915
    [13] Shi Lan-Fang, Mo Jia-Qi. Soliton-like homotopic approximate analytic solution for a class of disturbed nonlinear evolution equation. Acta Physica Sinica, 2009, 58(12): 8123-8126. doi: 10.7498/aps.58.8123
    [14] Xu Zhi-Jun, Wang Dong-Mei, Li Zhen. Interference of Bose-condensed gas in a 1D optical lattice. Acta Physica Sinica, 2007, 56(6): 3076-3082. doi: 10.7498/aps.56.3076
    [15] Yao Zhi-Xin, Zhong Jian-Wei, Mao Bang-Ning, Chen Gang, Pan Bai-Liang. Quantum description of interference effect with two holes. Acta Physica Sinica, 2007, 56(6): 3185-3191. doi: 10.7498/aps.56.3185
    [16] Mo Jia-Qi, Zhang Wei-Jiang, He Ming. The variational iteration method for the soliton solution of nonlinear generalized Landau-Ginzburg-Higgs equation. Acta Physica Sinica, 2007, 56(4): 1847-1850. doi: 10.7498/aps.56.1847
    [17] Weng Zi-Mei, Chen Hao. Solitons in a one-dimensional ferromagnetic chain under the influence of single-ion anisotropy. Acta Physica Sinica, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [18] Ren Guo-Bin, Wang Zhi, Jian Shui-Sheng, Lou Shu-Qin. Modal interference in dual-core photonic crystal fibers. Acta Physica Sinica, 2004, 53(8): 0-0. doi: 10.7498/aps.53.0
    [19] Xu Yan, Xue De-Sheng, Zuo Wei, Li Fa-Shen. Nonlinear surface spin waves on ferromagnetic media with inhomogeneous exchange anisotropy. Acta Physica Sinica, 2003, 52(11): 2896-2900. doi: 10.7498/aps.52.2896
    [20] Wei Qing, Wang Qi, Shi Jie-Long, Chen Yuan-Yuan. . Acta Physica Sinica, 2002, 51(1): 99-103. doi: 10.7498/aps.51.99
Metrics
  • Abstract views:  3440
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2022
  • Accepted Date:  31 January 2023
  • Available Online:  28 February 2023
  • Published Online:  20 May 2023

/

返回文章
返回