Processing math: 100%

Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Resonance ionization spectrum of autoionization states of lutetium atom

Zhang Jun-Yao Xiong Jing-Yi Wei Shao-Qiang Li Yun-Fei Lu Xiao-Yong

Zhang Jun-Yao, Xiong Jing-Yi, Wei Shao-Qiang, Li Yun-Fei, Lu Xiao-Yong. Resonance ionization spectrum of autoionization states of lutetium atom. Acta Phys. Sin., 2023, 72(19): 193203. doi: 10.7498/aps.72.20230978
Citation: Zhang Jun-Yao, Xiong Jing-Yi, Wei Shao-Qiang, Li Yun-Fei, Lu Xiao-Yong. Resonance ionization spectrum of autoionization states of lutetium atom. Acta Phys. Sin., 2023, 72(19): 193203. doi: 10.7498/aps.72.20230978

Resonance ionization spectrum of autoionization states of lutetium atom

Zhang Jun-Yao, Xiong Jing-Yi, Wei Shao-Qiang, Li Yun-Fei, Lu Xiao-Yong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • 177Lu is an important medical isotope used in imaging-guided radiotherapy, and it can be produced by irradiating 176Lu or 176Yb with high abundance. With an increasing demand for medical isotopes, it is very essential to improve the supply capacity for 177Lu. The multi-step multi-color photoionization method is an effective method to obtain isotopes, and the information of odd-parity autoionization levels is essential. Laser resonance ionization spectroscopy is one of a few spectroscopic experimental methods that can study autoionization levels. An experimental system is developed for the frontier spectroscopic research, and it consists of custom-made tunable lasers and a high-resolution time of flight mass spectrometer. The lifetime of the excited state 35274.5 cm–1 is measured to be (31.6 ± 1.7) ns by the delayed photoionization method for the first time. A three-step three-color photoionization process is used to detect the autoionization levels, with a delay of 30 ns between λ2λ1 and λ3λ2 respectively, in order to avoid any unexpected transitions. Forty-seven odd-parity autoionization levels are obtained, of which 33 levels are discovered for the first time, and the λ2 and λ1 are blocked to exclude possible interference peaks, such as the λ1+λ3+λ3 transition. Several autoionization levels show asymmetrical peak shapes, and the Fano fitting is carried out for all the levels to determine the widths and relative transition strengths of the autoionizing transitions. This study provides critical data for the high-efficient photoionization of lutetium atoms in the visible range. The angular momenta of 21 odd-parity autoionization levels in an energy range of 50650–51650 cm–1 are identified for the first time, which provides a reference for determining the forbidden state of electric dipole transitions from other excited states and ascertaining the electronic configuration.
      Corresponding author: Zhang Jun-Yao, junyao-z18@tsinghua.org.cn
    • Funds: Project supported by the Liaoyuan Project of China Nuclear Energy Industry Corporation.

    癌症和心脑血管病等疾病成为威胁人民健康的主要因素, 利用医用放射性同位素实现早期病变组织的快速诊断和微小病变组织的放射性清除, 逐渐成为重要的医学诊疗手段. 近年来, 得益于以177Lu标记的奥曲肽(177Lu-DOTATATE)为代表的放射性核素偶联药物的研发与应用[1,2], 医用同位素需求量呈现爆发式增长, 供给能力显著不足, 因此医用同位素及其辐照前体的高效生产供应途径成为领域研究热点.

    177Lu是重要的医用同位素[3], 半衰期为6.65 d, 衰变过程中释放β电子和γ光子, 适用于成像引导的放射性治疗, 可用于神经内分泌肿瘤和前列腺癌的靶向治疗, 目前已大量用于新型核药研制工作. 177Lu的主要生产途径有两条[4], 分别利用核反应176Lu(n, γ)177Lu, 或176Yb(n, γ)177Yb(β)177Lu. 尽管辐照176Yb的途径在获取无载体177Lu方面具有显著优势, 但存在热中子俘获截面小(σ = 2.85b)、提取困难等问题, 因此具有俘获截面大(σ = 2090b)优势的辐照176Lu的生产途径能够作为177Lu供应链的重要补充. 由于176Lu天然丰度仅为2.59%, 直接辐照天然镥的177Lu产额偏小, 因此, 通过同位素分离手段获取高丰度的176Lu辐照前体, 是解决世界范围内177Lu供应不足问题的必要途径. 由于镥缺乏常温挥发性化合物, 无法通过离心方法实现同位素分离, 电磁分离方法经济性偏低, 因此以D’yachkov等[5]所提出的三步三色光电离路径为代表, 通过选择性光电离或光电离后电磁分离方式获取高丰度镥同位素成为研究热点, 已发展了多条不同的光电离路径[69]. 2021年, Suryanarayana[10]提出了一条新的获取高丰度176Lu的三步三色光电离路径, 即:

    5d6s22D3/3220cm1573.813nm5d6s6p4F3/217427.28cm1560.3114nm6s6p24P5/235274.50cm1Autoionization state.
    (1)

    该路径前两步跃迁处于高效率激光染料波段, 镥同位素的超精细分裂差异达8 GHz以上, 能够降低激光线宽要求, 简化激光系统设置, 提高176Lu理论产额, 应用优势明显. 然而, 该路径尚无可行的自电离跃迁, 考虑到在激光多步共振电离过程中, 选用自电离态较非共振途径的光电离截面大2—4个数量级[11], 因此受限于激发态 35274.5 cm–1的自电离跃迁谱线未知, 无法评估该路径的电离效率.

    针对镥的光电离过程, 早期研究工作集中于两步两色路径的研究[1215], 获取了大量偶宇称自电离态和里德伯序列, 但无法用于构建三步光电离路径. 关于镥奇宇称自电离态的研究很少, 李志明等[16]提出573.8 nm→642.7 nm→643.7 nm的三步光电离路径, 所用奇宇称自电离态为48522 cm–1. 2018年, D’yachkov等[17]采用的奇宇称自电离态为53375 cm–1, J = 1/2. Rath等[18]扫描了激发态33831.5 cm–1, J = 3/2在50650—51650 cm–1内的自电离跃迁谱线, 共获得19条奇宇称自电离态. 然而, 上述奇宇称自电离态或角动量未知, 由激发态35274.5 cm–1的跃迁可能禁戒, 或远离高效率激光染料波段. 可见, 镥的奇宇称自电离谱研究仍有大量拓展空间, 亟待进一步获取可用于高效光电离的自电离态能级数据.

    自电离态位于原子电离阈以上, 一般只能通过光电流谱或激光共振电离谱方法研究. 激光共振电离质谱结合了激光共振电离谱的高光谱分辨能力与质谱的高同位素分辨能力, 利用多步共振激光将原子泵浦至特定的能级, 实现光电离过程及离子的质谱分析, 可用于研究重元素的复杂能级结构, 特别适用于自电离态的光谱研究工作, 已被广泛应用于镧系、锕系元素的前沿研究工作[1923]. 实验室自主搭建了一套用于原子光谱实验研究的激光共振电离飞行时间质谱系统[24], 可解决重元素自电离态能级等关键光谱数据缺失问题, 为多个研究和应用领域提供基础参数.

    本文将介绍基于激发态35274.5 cm–1的自电离谱线研究工作. 通过共振激发光将基态原子泵浦到激发态, 电离激光在15280—18180 cm–1内扫描, 获取了47条奇宇称自电离谱线, 其中33条为首次发现, 确定了自电离跃迁的峰宽和相对跃迁强度; 首次准确给定了21条自电离谱线的角动量J, 填补了镥奇宇称自电离态能级的研究空白.

    研究镥自电离态的激光共振电离飞行时间质谱系统如图1所示, 主要包括激光系统和飞行时间质谱系统.

    图 1 激光共振电离飞行时间质谱系统. PC为电脑, DG为延时发生器, Nd:YAG为Nd:YAG激光器, Dye为染料激光器, WM为波长计, BS为光束合成器, Lens为镜组, ECB为电控机箱, TOF为飞行时间质谱, BCA为Boxcar平均\r\nFig. 1. Resonance ionization time-of-flight mass spectroscopy system. PC is computer, DG is delay generator, Nd:YAG is Nd:YAG laser, Dye is dye laser, WM is wavelength meter, BS is beam synthesis, Lens is lens, ECB is electronic control box, TOF is time of flight mass spectrometry, BCA is box car averager.
    图 1  激光共振电离飞行时间质谱系统. PC为电脑, DG为延时发生器, Nd:YAG为Nd:YAG激光器, Dye为染料激光器, WM为波长计, BS为光束合成器, Lens为镜组, ECB为电控机箱, TOF为飞行时间质谱, BCA为Boxcar平均
    Fig. 1.  Resonance ionization time-of-flight mass spectroscopy system. PC is computer, DG is delay generator, Nd:YAG is Nd:YAG laser, Dye is dye laser, WM is wavelength meter, BS is beam synthesis, Lens is lens, ECB is electronic control box, TOF is time of flight mass spectrometry, BCA is box car averager.

    激光系统为自主设计研发的固体激光器泵浦的可调谐染料激光器系统. 固体激光器采用波长为532 nm的Nd:YAG激光器, 重复频率为10 kHz, 脉宽小于100 ns, 输出功率可调范围为20—100 W, 可通过延时信号发生器改变固体激光器的触发时序, 以调整泵浦光之间的时间延迟关系. 可调谐染料激光器均采用Littman腔型, 通过3—4种激光染料的组合使用, 波长可调范围能够达到550—660 nm, 设定精度为0.1 pm, 功率可达3 W, 线宽在500 MHz到数GHz范围内可调, 脉宽约为30 ns. 每束激光的一部分在激光器腔内被光纤采集、传输至波长计, 用于定点波长的闭环控制和固定步长的扫描控制, 扫描步长可调, 通常设置为5 pm/s. 为实现多束激光的合成传输, 将激光经多合一光纤合束器入纤、传输, 再通过特制激光镜组整形为直径1 mm的圆形光斑, 内部能量分布符合平顶光束特征, 聚焦到飞行时间质谱的加速区位置.

    飞行时间质谱系统主要包括原子炉和质量分析器两部分, 均安装于真空度优于1×10–4 Pa的真空腔体内. 原子炉利用电阻加热方式, 使盛放在钽质试管中的mg量级固态金属样品蒸发形成原子流, 经直径2 mm小孔束流后进入飞行时间质谱的加速区, 原子束空间角小于2°, 在有效减弱多普勒展宽对谱线分辨的影响的同时, 加热温度在200—1700 ℃内可调, 从而匹配不同元素的蒸发需求, 实验中镥加热温度约为1200 ℃. 质量分析器采用多次反射式设计, 原子束流、聚焦光斑和质谱推斥电压方向上两两正交, 进入加速区的原子经多束染料激光共振激发、电离, 在质量分析器中沿“W”形状的飞行路径经过加速区、无场飞行区和两级反射区, 最终到达离子检测器, 信号经采集、传输、处理后在工控机上呈现为谱峰图, 通过采集软件实现激光波长与谱峰信号的匹配. 由于该系统仅搭配可见光波段的激光多步共振离子源使用, 通常跃迁光子总能量不超过6 eV, 单光子能量低于0.5 mJ, 因而无背景气体谱峰或其他低电荷态离子的干扰峰. 在自电离态扫描过程中, 当扫描激光的能量满足hc/hcλ3λ3=E3E2时, 布居在高激发态上的原子被大量泵浦到自电离态上, 在极短时间内电离, 在质谱谱图上可观察到高强度谱峰, 从而获取跃迁谱线的强度-波长信息, 而当激光能量与能级跃迁波长不能匹配时, 离子信号仅为百mV本底水平, 系统典型信噪比超过1000. 该飞行时间质谱利用三次反射过程大大延长了离子的飞行时间, 质量分辨率可达10000 (FWHM).

    扫描自电离态谱线所用的多步多色光电离路径如图2所示, 利用两台可调谐染料激光器, 将布居于基态0 cm–1上的原子共振激发, 泵浦至激发态35274.5 cm–1. 对镥元素的天然同位素175Lu和176Lu来说, 同一自电离态仅能级位置存在微小差异, 且因天然镥中175Lu丰度可达97.41%, 176Lu仅占2.57%, 因此在激光共振电离质谱实验中直接观察175Lu的离子信号, 既能保证获取的自电离跃迁适用于176Lu的高效光电离, 又可获取高信噪比谱峰, 因此以质谱采集到的175Lu离子信号强度来判定自电离跃迁. 考虑到激发态35274.5 cm–1存在较大的超精细结构分裂, 染料激光器需要在理论波长附近20 pm内小范围扫描, 以确定使175Lu采集信号最大的最优波长. 同时, 镥原子电离阈仅为43762.50 cm–1, 自基态出发, 利用“λ1+λ2+λ2”的双色三步路径即可实现镥原子的光电离, 对三色三步路径形成干扰, 实验中λ1λ2功率均为100 mW, 从而减小非共振电离背景信号, 增大自电离谱峰信噪比.

    图 2 多步多色光电离路径示意图\r\nFig. 2. Schematic representation of the multi-step multi-color photoionization path.
    图 2  多步多色光电离路径示意图
    Fig. 2.  Schematic representation of the multi-step multi-color photoionization path.

    同时, 为避免诸如“λ2+λ1+λ3”、“λ3+λ1+λ2”等可能发生的多步光电离路径干扰能级判读, 三步可调谐染料激光之间需要设置延时. 由于低激发态17427.3 cm–1的能级寿命为554 ns[25], λ2 λ1的延时设置为30 ns, 避免发生“λ2+λ1”类型的干扰跃迁. 激发态35274.5 cm–1的能级寿命尚无文献报道. 为确定扫描过程延时设置, 利用时间延迟光电离方法, 设置多组不同的激发光(λ2)和电离光(λ3)之间的延时, 记录对应的175Lu质谱采集信号, 完成了该激发态的寿命测量. 能级寿命的拟合曲线为

    y=aexτ,
    (2)

    其中τ为能级寿命. 采用最小二乘法拟合, 结果如图3所示. 可见, 激发态35274.5 cm–1的能级寿命为(31.6±1.7) ns, 可将λ3 λ2的延时设置为30 ns, 以避免发生“λ3+λ1”等类型的干扰跃迁.

    图 3 激发态35274.5 cm–1能级寿命曲线\r\nFig. 3. Curve of lifetime of 35274.5 cm–1 excited state.
    图 3  激发态35274.5 cm–1能级寿命曲线
    Fig. 3.  Curve of lifetime of 35274.5 cm–1 excited state.

    自电离态扫描获取的典型谱图如图4所示, 在641.5—649 nm内能够观察到6个明显的谱峰. 为排除可能存在的“λ1+λ3”, “λ2+λ3”形式的干扰峰, 分别遮挡λ2λ1重扫该波段, 能够观察到2个明显的干扰峰①和⑦. 根据扫描激光波长可确定干扰峰的能级位置, 峰①对应激发态6s6p2 4P1/2 32986.62 cm–1, 峰⑦对应李志明等[16]报道的自电离态48522 cm–1, 峰②—⑥均为自电离态能级, 其中峰③表现出明显的Fano峰特征. 为得到峰中心位置和半高宽, 对所有的自电离态峰数据采用Fano拟合[26]:

    图 4 自电离态扫描典型谱图\r\nFig. 4. Typical spectrum of the scanning of autoionization levels.
    图 4  自电离态扫描典型谱图
    Fig. 4.  Typical spectrum of the scanning of autoionization levels.
    I=I0ε+qε2+1+I1,
    (3)

    其中ε=2(EE0)/Γ, E0为峰中心位置, Γ为峰半高宽, I1为非共振电离产生的本底信号, I0为拟合参数, q为Fano参数. 当峰表现为典型的对称峰形时(如峰②, ⑥), 拟合得到的q极大, 即自电离谱峰符合Lorentzian峰形. 两种峰形代表着能级可能存在的相互作用类型, 当峰表现为Fano峰形时, 该自电离态很可能存在与其他自电离态, 特别是高n值自电离态之间的相互作用; 当峰符合Lorentzian峰形时, 自电离态仅与其相同能量处的连续态之间存在相互作用.

    在50650—53450 cm–1内, 共获取了47条具有重复性的自电离态能级, 其中33条为首次发现, 特别是首次开展了51650 cm–1以上区域内自电离态的探索工作, 确认了26条新自电离态能级的存在, 数据见表1.

    表 1  由激发态35274.5 cm–1跃迁的奇宇称自电离态能级
    Table 1.  Odd parity autoionization levels connecting from the excited level 35274.5 cm–1.
    E/cm–1 Width Strength Ref.[18] E/cm–1 Width Strength Ref.[18]
    53408.90 N S New 51873.82 B I New
    53353.74 Ϯ B S New 51724.60 Ϯ M S New
    53330.68 M I New 51642.24 N S 51642.2
    53321.80 N I New 51628.73 N I 51628.9
    53310.02 M S New 51509.40 M S 51509.4
    53298.32 N I New 51494.64 B S New
    53267.79 M S New 51368.06 M S 51386.0
    53259.85 N W New 51295.65 Ϯ B W 51294.1
    53251.30 N I New 51150.11 Ϯ B W 51151.5
    53219.59 Ϯ M S New 51125.54 B I New
    53194.18 Ϯ B I New 51014.87 M W New
    53147.77 M W New 50986.87 N W 50987.0
    53138.94 Ϯ M I New 50974.56 N W 50974.7
    53046.75 Ϯ B I New 50950.65 M I 50950.7
    53033.60 Ϯ M I New 50908.68 Ϯ B I New
    52981.68 Ϯ B I New 50875.33 M W 50875.1
    52806.85 M I New 50872.30 M I 50872.3
    52678.69 Ϯϯ B S New 50834.41 Ϯ B I 50833.3
    52490.86 Ϯ B W New 50804.68 N W New
    52420.31 N W New 50774.92 Ϯ M I 50774.3
    52415.04 N W New 50726.72 Ϯ M S New
    52377.33 Ϯ M I New 50700.60 M S 50700.7
    52280.25 N I New 50657.49 M S 50657.6
    52508.75 B W New
    注: Ϯ 谱线呈现Fano峰形; ϯ 极宽峰, 峰半高宽>100 cm–1.
    下载: 导出CSV 
    | 显示表格

    控制激光功率在1—3 W范围内, 自电离跃迁处于饱和功率曲线的线性段, 根据扫描波段内的激光功率将谱线的光电离信号强度归一化处理, 将其大致分为S (strong), I (intermediate)和W (weak)三档, 后者约为前者强度的一半, 以比较宽波段内自电离跃迁的强度. 同时, 根据Fano[26]拟合获取的峰半高宽Γ的差异, 同样可将自电离态划分为B (borad, Γ>10 cm–1)、M (medium, Γ=1— 10 cm–1)和N (narrow, Γ<1 cm–1)三档. 典型的自电离态峰位置不确定度为0.5 cm–1, 对宽度达到B, N级的部分峰, 不确定度分别可达1, 0.1 cm–1, 峰位置的偏差可能是光电离区域原子数密度的差异、激光脉冲功率的抖动等导致的, 考虑到自电离态峰宽普遍远大于不确定度, 能够确认准确的自电离态能级位置.

    获取的自电离态中, 具有高跃迁截面的能级普遍具有1—10 cm–1的峰宽, 跃迁波长主要在550—560 nm, 605—620 nm和645—650 nm三个范围内, 呈现明显的区域特征. 同时, 部分能级具有10 cm–1以上的峰宽, 有可能为内壳层电子激发形成的自电离态.

    激发态35274.5 cm–1的电子组态为6s6p2, 由电偶极跃迁过程到达的自电离态能级, 其可能的电子组态包括6s6pns, 6s6pnd和6p2np, 即可能为对应Lu+ 6s6p等电子组态的里德伯态序列, 或双价电子跃迁过程形成的自电离态. 为进一步确认上述能级的电子组态, 需要明确角动量标识, 以实现能级分类. 同时, 由于镥同位素的超精细结构尺度可达10 GHz, 采用窄线宽激光实现选择性光电离的过程中, 只能选用部分FlFu超精细跃迁, 因此需要标识自电离态角动量, 以明确可能存在的超精细跃迁过程, 同时也为其他激发态的共振光电离提供参考数据. 表1中列举的47条自电离态能级, 角动量可能为1/2, 3/2或5/2, 一般通过不同J值激发态能级对同一能区进行扫描, 或通过偏振光谱方法标识唯一角动量.

    在基于激发态35274.5 cm–1的自电离态扫描过程中, 获取了3条第2步跃迁干扰峰, 以图4中①为例, 分别对应了J = 1/2的激发态能级32986.62 cm–1(λ = 642.70 nm), 34610.52 cm–1 (λ = 581.95 nm)和J = 3/2的33831.46 cm–1 (λ = 609.60 nm). 由上述能级对同一能区范围的扫描结果, 根据角动量跃迁定则ΔJ = 0, ±1, 可以标识自不同激发态扫描能区重叠范围内的自电离态的角动量数值. 由于Rath等[18]已扫描了激发态33831.5 cm–1在50650—51650 cm–1内的自电离跃迁谱线, 针对同一能区我们补充了由激发态34610.52 cm–1跃迁的自电离态扫描实验, 结果在表2列出, 确认了21条自电离态能级的J值, 首次实现了镥的奇宇称自电离态能级的角动量数值标识. 其中, 仅自激发态35274.5 cm–1扫描获取的自电离态标识为J = 7/2, 为确保上述结果准确可靠, 未来还需通过其他激发态能级扫描同一能区来确认.

    表 2  奇宇称自电离态能级的角动量
    Table 2.  J-values of odd parity autoionization levels.
    From 35274.5 cm–1From 33831.5 cm–1 [18]From 34610.5 cm–1J
    E/cm–1WidthE/cm–1WidthE/cm–1Width
    51642.21N51642.2N51642.06N3/2
    51628.71N51628.9N51629.03N3/2
    51509.42M51509.4N5/2
    51494.66B7/2
    51368.06M51368.0N51368.12M3/2
    51295.65B51294.1B5/2
    51014.87B7/2
    50986.87N50987.0N5/2
    50974.56N50974.7N50974.47M3/2
    50950.65M50950.7N5/2
    50913.3N50913.18N1/2
    50908.68B7/2
    50887.8N50887.65N1/2
    50875.33M50875.1B50875.32M3/2
    50872.30M50872.3N5/2
    50834.41B50833.3B50832.77B3/2
    50804.68N7/2
    50774.92M50774.3M50773.31M3/2
    50726.72M7/2
    50700.60M50700.7N5/2
    50657.49M50657.6N5/2
    下载: 导出CSV 
    | 显示表格

    通过角动量粗略分类后, 结合峰宽数值, 可大致推断能级是否属于自电离里德伯态序列, 例如J = 3/2的自电离态51368.06 cm–1和50774.92 cm–1很可能属于同一里德伯态序列, 同理也包括J = 5/2的自电离态51509.42 cm–1和50700.60 cm–1. 不过, 对确定里德伯序列来说, 由于Lu+ 6s6p电子组态在电离阈上30000 cm–1左右, 本次获取的自电离态能级分布零散, 因此扫描波段仍需进一步拓宽, 获取更多的自电离态能级, 从而明确其电子组态和里德伯态序列.

    通过确定角动量数值, 可确认自其他激发态出发的自电离跃迁过程是否禁戒, 从而用于构建更多的高效光电离路径, 也为镥原子的自电离态理论计算提供了参考数据.

    为获取激发态35274.5 cm–1的自电离跃迁谱线, 构建高效的多步共振光电离路径, 利用实验室搭建的激光共振电离飞行时间质谱系统, 系统性研究了50650—53450 cm–1内的奇宇称自电离态能级, 首次测定激发态35274.5 cm–1的能级寿命为(31.6±1.7) ns, 揭示了47条具有重复性的自电离态, 其中33条为首次发现, 通过Fano拟合和归一化处理明确了自电离态的峰宽和跃迁强度. 本文所获取的自电离跃迁过程, 相较于非共振电离可大幅提升光电离效率, 为构建具有获取高丰度176Lu潜力的三步三色光电离路径提供了关键参考数据. 为确定自电离态能级的电子组态, 结合不同J值激发态能级对同一能区的扫描工作, 首次确认了21条自电离态的角动量, 后续可用于构建更多高效光电离路径, 及镥原子的自电离态理论计算研究. 为确认自电离态的电子组态和里德伯序列, 还需拓宽实验扫描范围, 获取更多自电离态数据.

    [1]

    Fuoco V, Argiroffi G, Mazzaglia S, Lorenzoni A, Guadalupi V, Franza A, Scalorbi F, Ailberti G, Chiesa C, Procopio G, Seregni E, Maccauro M 2022 Tumori. J. 108 315Google Scholar

    [2]

    Mittra E S 2018 Am. J. Roentgenol. 211 278Google Scholar

    [3]

    Vogel W V, van der Marck S C, Versleijen M W J 2021 Eur. J. Nucl. Med. Mol. I. 48 2329Google Scholar

    [4]

    Dash A, Pillai M R A, Knapp F F 2015 Nucl. Med. Molec. Imag. 49 85Google Scholar

    [5]

    D’yachkov A B, Kovalevich S K, Labozin A V, Labozin V P, Mironov S M, Panchenko V Y, Firsov V A, Tsvetkov G O, Shatalova G G 2012 Quantum Electron 42 953Google Scholar

    [6]

    Gadelshin V, Cocolios T, Fedoseev V, Heinke R, Kieck T, Marsh B, Naubereit P, Rothe S, Stora T, Studer D, van Duppen P, Wendt K 2017 HFI 238 28Google Scholar

    [7]

    Li R, Lassen J, Kunz P, Mostamand M, Reich B B, Teigelhofer A, Yan H, Ames F 2019 Spectrochim. Acta B 158 105633Google Scholar

    [8]

    Gadelshin V, Heinke R, Kieck T, Kron T, Naubereit P, Rosch F, Stora T, Studer D, Wendt K 2019 Radiochim. Acta 107 653Google Scholar

    [9]

    Suryanarayana M V, Sankari M 2021 Sci. Rep-UK 11 18292Google Scholar

    [10]

    Suryanarayana M V 2021 Sci. Rep-UK 11 6118Google Scholar

    [11]

    Wendt K, Trautmann N 2005 Int. J. Mass. Spectrom. 242 161Google Scholar

    [12]

    Xu C B, Xu X Y, Ma H, Li L Q, Huang W, Chen D Y, Zhu F R 1993 J. Phys. B-At. Mol. Opt. 26 2827Google Scholar

    [13]

    Kujirai O, Ogawa Y 1998 J. Phys. Soc. Jpn. 63 1056Google Scholar

    [14]

    Ogawa Y, Kujirai O 1999 J. Phys. Soc. Jpn. 68 428Google Scholar

    [15]

    Li R, Lassen J, Zhong Z P, Jia F D, Mostamand M, Li X K, Reich B B, Teigelhofer A, Yan H 2017 Phys. Rev. A 95 052501Google Scholar

    [16]

    李志明, 朱凤蓉, 张子斌, 邓虎, 翟利华, 王长海, 任向军, 万可友, 张利兴 2005 质谱学报 26 45Google Scholar

    Li Z M, Zhu F R, Zhang Z B, Deng H, Zhai L H, Wang C H, Ren X J, Wan K Y, Zhang L X 2005 J. Chin. Mass. Spectr. Soc. 26 45Google Scholar

    [17]

    D’yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Tsvetkov G O, Panchenko V Y, Firsov V A 2018 Opt. Spectrosc 125 839Google Scholar

    [18]

    Rath A D, Biswal D, Kundu S 2021 J. Quant. Spectrosc. Ra. 270 107696Google Scholar

    [19]

    Voss A, Sonnenschein V, Campbell P, Cheal B, Kron T, Moore I D, Pohjalainen I, Raeder S, Trautmann N, Wendt K 2017 Phys. Rev. A 95 032506Google Scholar

    [20]

    Shen X P, Wang W L, Zhai L H, Deng H, Xu J, Yuan X L, Wei G Y, Wang W, Fang S, Su Y Y, Li Z M 2018 Spectrochim. Acta B 145 96Google Scholar

    [21]

    Kneip N, Dullmann C E, Gadelshin V, Heinke R, Mokry C, Raeder S, Runke J, Studer D, Trautmann N, Weber F, Wendt K 2020 HFI 241 45Google Scholar

    [22]

    Sahoo A C, Mandal P K, Shah M L, Dev V 2020 J. Quant. Spectrosc. Ra. 241 106714Google Scholar

    [23]

    张钧尧, 薛轶, 周鸿儒 2024 原子与分子物理学报 41 014002Google Scholar

    Zhang J Y, Xue Y, Zhou H R 2024 J. Atom. Mol. Phys. 41 014002Google Scholar

    [24]

    李云飞, 张钧尧, 柴俊杰, 魏少强, 陈晨 2023 真空与低温 29 486Google Scholar

    Li Y F, Zhang J Y, Chai J J, Wei S Q, Chen C 2023 Vacuum and Cryogenics 29 486Google Scholar

    [25]

    Fedchak J A, der Hartog E A, Lawler J E, Palmeri P, Quinet P, Biemont E 2000 Astrophys. J. 542 1109Google Scholar

    [26]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

  • 图 1  激光共振电离飞行时间质谱系统. PC为电脑, DG为延时发生器, Nd:YAG为Nd:YAG激光器, Dye为染料激光器, WM为波长计, BS为光束合成器, Lens为镜组, ECB为电控机箱, TOF为飞行时间质谱, BCA为Boxcar平均

    Figure 1.  Resonance ionization time-of-flight mass spectroscopy system. PC is computer, DG is delay generator, Nd:YAG is Nd:YAG laser, Dye is dye laser, WM is wavelength meter, BS is beam synthesis, Lens is lens, ECB is electronic control box, TOF is time of flight mass spectrometry, BCA is box car averager.

    图 2  多步多色光电离路径示意图

    Figure 2.  Schematic representation of the multi-step multi-color photoionization path.

    图 3  激发态35274.5 cm–1能级寿命曲线

    Figure 3.  Curve of lifetime of 35274.5 cm–1 excited state.

    图 4  自电离态扫描典型谱图

    Figure 4.  Typical spectrum of the scanning of autoionization levels.

    表 1  由激发态35274.5 cm–1跃迁的奇宇称自电离态能级

    Table 1.  Odd parity autoionization levels connecting from the excited level 35274.5 cm–1.

    E/cm–1 Width Strength Ref.[18] E/cm–1 Width Strength Ref.[18]
    53408.90 N S New 51873.82 B I New
    53353.74 Ϯ B S New 51724.60 Ϯ M S New
    53330.68 M I New 51642.24 N S 51642.2
    53321.80 N I New 51628.73 N I 51628.9
    53310.02 M S New 51509.40 M S 51509.4
    53298.32 N I New 51494.64 B S New
    53267.79 M S New 51368.06 M S 51386.0
    53259.85 N W New 51295.65 Ϯ B W 51294.1
    53251.30 N I New 51150.11 Ϯ B W 51151.5
    53219.59 Ϯ M S New 51125.54 B I New
    53194.18 Ϯ B I New 51014.87 M W New
    53147.77 M W New 50986.87 N W 50987.0
    53138.94 Ϯ M I New 50974.56 N W 50974.7
    53046.75 Ϯ B I New 50950.65 M I 50950.7
    53033.60 Ϯ M I New 50908.68 Ϯ B I New
    52981.68 Ϯ B I New 50875.33 M W 50875.1
    52806.85 M I New 50872.30 M I 50872.3
    52678.69 Ϯϯ B S New 50834.41 Ϯ B I 50833.3
    52490.86 Ϯ B W New 50804.68 N W New
    52420.31 N W New 50774.92 Ϯ M I 50774.3
    52415.04 N W New 50726.72 Ϯ M S New
    52377.33 Ϯ M I New 50700.60 M S 50700.7
    52280.25 N I New 50657.49 M S 50657.6
    52508.75 B W New
    注: Ϯ 谱线呈现Fano峰形; ϯ 极宽峰, 峰半高宽>100 cm–1.
    DownLoad: CSV

    表 2  奇宇称自电离态能级的角动量

    Table 2.  J-values of odd parity autoionization levels.

    From 35274.5 cm–1From 33831.5 cm–1 [18]From 34610.5 cm–1J
    E/cm–1WidthE/cm–1WidthE/cm–1Width
    51642.21N51642.2N51642.06N3/2
    51628.71N51628.9N51629.03N3/2
    51509.42M51509.4N5/2
    51494.66B7/2
    51368.06M51368.0N51368.12M3/2
    51295.65B51294.1B5/2
    51014.87B7/2
    50986.87N50987.0N5/2
    50974.56N50974.7N50974.47M3/2
    50950.65M50950.7N5/2
    50913.3N50913.18N1/2
    50908.68B7/2
    50887.8N50887.65N1/2
    50875.33M50875.1B50875.32M3/2
    50872.30M50872.3N5/2
    50834.41B50833.3B50832.77B3/2
    50804.68N7/2
    50774.92M50774.3M50773.31M3/2
    50726.72M7/2
    50700.60M50700.7N5/2
    50657.49M50657.6N5/2
    DownLoad: CSV
  • [1]

    Fuoco V, Argiroffi G, Mazzaglia S, Lorenzoni A, Guadalupi V, Franza A, Scalorbi F, Ailberti G, Chiesa C, Procopio G, Seregni E, Maccauro M 2022 Tumori. J. 108 315Google Scholar

    [2]

    Mittra E S 2018 Am. J. Roentgenol. 211 278Google Scholar

    [3]

    Vogel W V, van der Marck S C, Versleijen M W J 2021 Eur. J. Nucl. Med. Mol. I. 48 2329Google Scholar

    [4]

    Dash A, Pillai M R A, Knapp F F 2015 Nucl. Med. Molec. Imag. 49 85Google Scholar

    [5]

    D’yachkov A B, Kovalevich S K, Labozin A V, Labozin V P, Mironov S M, Panchenko V Y, Firsov V A, Tsvetkov G O, Shatalova G G 2012 Quantum Electron 42 953Google Scholar

    [6]

    Gadelshin V, Cocolios T, Fedoseev V, Heinke R, Kieck T, Marsh B, Naubereit P, Rothe S, Stora T, Studer D, van Duppen P, Wendt K 2017 HFI 238 28Google Scholar

    [7]

    Li R, Lassen J, Kunz P, Mostamand M, Reich B B, Teigelhofer A, Yan H, Ames F 2019 Spectrochim. Acta B 158 105633Google Scholar

    [8]

    Gadelshin V, Heinke R, Kieck T, Kron T, Naubereit P, Rosch F, Stora T, Studer D, Wendt K 2019 Radiochim. Acta 107 653Google Scholar

    [9]

    Suryanarayana M V, Sankari M 2021 Sci. Rep-UK 11 18292Google Scholar

    [10]

    Suryanarayana M V 2021 Sci. Rep-UK 11 6118Google Scholar

    [11]

    Wendt K, Trautmann N 2005 Int. J. Mass. Spectrom. 242 161Google Scholar

    [12]

    Xu C B, Xu X Y, Ma H, Li L Q, Huang W, Chen D Y, Zhu F R 1993 J. Phys. B-At. Mol. Opt. 26 2827Google Scholar

    [13]

    Kujirai O, Ogawa Y 1998 J. Phys. Soc. Jpn. 63 1056Google Scholar

    [14]

    Ogawa Y, Kujirai O 1999 J. Phys. Soc. Jpn. 68 428Google Scholar

    [15]

    Li R, Lassen J, Zhong Z P, Jia F D, Mostamand M, Li X K, Reich B B, Teigelhofer A, Yan H 2017 Phys. Rev. A 95 052501Google Scholar

    [16]

    李志明, 朱凤蓉, 张子斌, 邓虎, 翟利华, 王长海, 任向军, 万可友, 张利兴 2005 质谱学报 26 45Google Scholar

    Li Z M, Zhu F R, Zhang Z B, Deng H, Zhai L H, Wang C H, Ren X J, Wan K Y, Zhang L X 2005 J. Chin. Mass. Spectr. Soc. 26 45Google Scholar

    [17]

    D’yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Tsvetkov G O, Panchenko V Y, Firsov V A 2018 Opt. Spectrosc 125 839Google Scholar

    [18]

    Rath A D, Biswal D, Kundu S 2021 J. Quant. Spectrosc. Ra. 270 107696Google Scholar

    [19]

    Voss A, Sonnenschein V, Campbell P, Cheal B, Kron T, Moore I D, Pohjalainen I, Raeder S, Trautmann N, Wendt K 2017 Phys. Rev. A 95 032506Google Scholar

    [20]

    Shen X P, Wang W L, Zhai L H, Deng H, Xu J, Yuan X L, Wei G Y, Wang W, Fang S, Su Y Y, Li Z M 2018 Spectrochim. Acta B 145 96Google Scholar

    [21]

    Kneip N, Dullmann C E, Gadelshin V, Heinke R, Mokry C, Raeder S, Runke J, Studer D, Trautmann N, Weber F, Wendt K 2020 HFI 241 45Google Scholar

    [22]

    Sahoo A C, Mandal P K, Shah M L, Dev V 2020 J. Quant. Spectrosc. Ra. 241 106714Google Scholar

    [23]

    张钧尧, 薛轶, 周鸿儒 2024 原子与分子物理学报 41 014002Google Scholar

    Zhang J Y, Xue Y, Zhou H R 2024 J. Atom. Mol. Phys. 41 014002Google Scholar

    [24]

    李云飞, 张钧尧, 柴俊杰, 魏少强, 陈晨 2023 真空与低温 29 486Google Scholar

    Li Y F, Zhang J Y, Chai J J, Wei S Q, Chen C 2023 Vacuum and Cryogenics 29 486Google Scholar

    [25]

    Fedchak J A, der Hartog E A, Lawler J E, Palmeri P, Quinet P, Biemont E 2000 Astrophys. J. 542 1109Google Scholar

    [26]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

  • [1] Wang Pin-Yi, Jia Xin-Yan, Fan Dai-He, Chen Jing. Resonance-like enhancement in high-order above-threshold ionzation of argon at different wavelengths. Acta Physica Sinica, 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [2] Deng Shan-Hong, Gao Song, Li Yong-Ping, Pei Yun-Chang, Lin Sheng-Lu. A semiclassical analyses on the auto-ionization of lithium atom in parallel electric and magnetic fields. Acta Physica Sinica, 2010, 59(2): 826-831. doi: 10.7498/aps.59.826
    [3] Xiao Ying, Dai Chang-Jian, Zhao Hong-Ying, Qin Wen-Jie. Investigation of odd-parity excited states of europium atoms by resonant photoionization spectroscopy. Acta Physica Sinica, 2009, 58(5): 3071-3077. doi: 10.7498/aps.58.3071
    [4] Qin Wen-Jie, Dai Chang-Jian, Zhao Hong-Ying, Xiao Ying. Spectra of Rydberg states of Sm atom measured with autoionization detection method. Acta Physica Sinica, 2009, 58(1): 209-214. doi: 10.7498/aps.58.209
    [5] Zhao Hong-Ying, Dai Chang-Jian, Guan Feng. Two-step resonant photoionization spectra of Sm atom. Acta Physica Sinica, 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [6] Yuan Wei-Guo, Dai Chang-Jian, Jin Song, Zhao Hong-Ying, Guan Feng. Study of Ba 6pnd(J=1, 3)autoionizing states. Acta Physica Sinica, 2008, 57(7): 4076-4082. doi: 10.7498/aps.57.4076
    [7] Yang Zhi-Hu, Du Shu-Bin, Zeng Xian-Tang, Ren Shou-Tian, Song Zhang-Yong, Su Hong, Wang You-De. Research on EUV spectra of highly ionized titanium. Acta Physica Sinica, 2006, 55(5): 2206-2209. doi: 10.7498/aps.55.2206
    [8] ZHANG LI-MIN, CHEN JUN, XU HAI-FENG, DAI JING-HUA, LIU SHI-LIN, CHEN CONG-XIANG, MA XING-XIAO. (2+1) REMPI SPECTRUM OF RYDBERG STATES OF S ATOMS IN THE 243—263 nm REGION. Acta Physica Sinica, 1999, 48(7): 1204-1209. doi: 10.7498/aps.48.1204
    [9] LI QUAN-XIN, RAN QIN, CHEN CONG-XIANG, SHENG LIU-SI, YU SHU-QIN, ZHANG YUN-WU, MA XING-XIAO. PHOTOIONIZATION STUDIES OF DIBROMOMETHANE USING SYNCHROTRON RADIATION: A STUDY OF VIBRATIONAL AUTOIONIZATION STATES FOR CH2Br2 IN 10-12eV. Acta Physica Sinica, 1996, 45(11): 1800-1806. doi: 10.7498/aps.45.1800
    [10] Dai Chang-Jian, Shu Xiao-Wu, Li Qian, Zhang Sen, Fang Da-Wei. . Acta Physica Sinica, 1995, 44(5): 678-684. doi: 10.7498/aps.44.678
    [11] DAI CHANG-JIAN. INTERACTIONS OF AUTOIONIZING SERIES. Acta Physica Sinica, 1994, 43(3): 369-379. doi: 10.7498/aps.43.369
    [12] ZHANG LI, SHANG REN-CHENG, XU SI-DA. ESTIMATION OF LASER RESONANCE IONIZATION EFFICIENCY. Acta Physica Sinica, 1992, 41(3): 379-386. doi: 10.7498/aps.41.379
    [13] HU SU-FEN, ZHANG SEN, CHEN XING. OBSERVATION AND MEASUREMENT OF THE AUTOIO-NIZATION SPECTRA FOR 4f76s(7S)np SERIES OF Eu. Acta Physica Sinica, 1990, 39(9): 1370-1378. doi: 10.7498/aps.39.1370
    [14] WU BI-RU, XU YUN-FEI, ZHENG YOU-FENG, HU YONG-YAN, LU JIE. THE ODD PARITY AUTOIONIZING SPECTRA OF YBI. Acta Physica Sinica, 1990, 39(7): 48-53. doi: 10.7498/aps.39.48
    [15] ZHANG SEN, QIU JI-ZHEN, MEI SHI-MIN, CHEN XING. LINEAR STARK EFFECT OF THE n′dnl AUTOIONIZATION STATES OF Ca AND Sr ATOMS IN THE LOW-FIELD REGION. Acta Physica Sinica, 1990, 39(8): 32-37. doi: 10.7498/aps.39.32
    [16] ZHANG LIAN-FANG, ZHAO WEN-ZHENG, SHANG REN-CHENG, PAN LI, WANG SHI-LIANG, WEN KE-LING, CHEN DIE-YAN. STUDY OF Ne AUTOIONISING STATES WITH PULSED ELECTRIC FIELD OPTOGALVANIC SPECTROSCOPY. Acta Physica Sinica, 1990, 39(12): 1870-1876. doi: 10.7498/aps.39.1870
    [17] DING GANG-JIAN, SHANG REN-CHENG, ZHANG LIAN-FANG, WEN KE-LING, HUI QIN, CHEN DIE-YAN. EXPERIMENTAL STUDY OF RYDBERG STATES OF AU ATOM. Acta Physica Sinica, 1989, 38(7): 1048-1055. doi: 10.7498/aps.38.1048
    [18] QIU JI-ZHEN, ZHANG SEN, WANG GANG. RESONANCES OF PHOTOIONIZATION OF Ca AND Sr ATOMS IN AN ELECTRIC FIELD. Acta Physica Sinica, 1989, 38(7): 1172-1176. doi: 10.7498/aps.38.1172
    [19] LIU LEI, TONG XIAO-MIN, LI JIA-MING. PHOTOIONIZATION OF IONIZED IRON ATOMS. Acta Physica Sinica, 1988, 37(11): 1800-1806. doi: 10.7498/aps.37.1800
    [20] LU JIE, HU SU-FEN, FENG RONG, LENG GUANG-YAO, SUN JlA-ZHEN, XU YUN-FEI. OBSERVATION AND MEASURMENT OF AUTOIONIZATION SPECTRA FOR 5p1/2ns SERIES OF Sr. Acta Physica Sinica, 1985, 34(12): 1567-1572. doi: 10.7498/aps.34.1567
Metrics
  • Abstract views:  3949
  • PDF Downloads:  93
Publishing process
  • Received Date:  13 June 2023
  • Accepted Date:  18 August 2023
  • Available Online:  19 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回