-
177Lu is an important medical isotope used in imaging-guided radiotherapy, and it can be produced by irradiating 176Lu or 176Yb with high abundance. With an increasing demand for medical isotopes, it is very essential to improve the supply capacity for 177Lu. The multi-step multi-color photoionization method is an effective method to obtain isotopes, and the information of odd-parity autoionization levels is essential. Laser resonance ionization spectroscopy is one of a few spectroscopic experimental methods that can study autoionization levels. An experimental system is developed for the frontier spectroscopic research, and it consists of custom-made tunable lasers and a high-resolution time of flight mass spectrometer. The lifetime of the excited state 35274.5 cm–1 is measured to be (31.6 ± 1.7) ns by the delayed photoionization method for the first time. A three-step three-color photoionization process is used to detect the autoionization levels, with a delay of 30 ns between λ2 – λ1 and λ3 – λ2 respectively, in order to avoid any unexpected transitions. Forty-seven odd-parity autoionization levels are obtained, of which 33 levels are discovered for the first time, and the λ2 and λ1 are blocked to exclude possible interference peaks, such as the λ1+λ3+λ3 transition. Several autoionization levels show asymmetrical peak shapes, and the Fano fitting is carried out for all the levels to determine the widths and relative transition strengths of the autoionizing transitions. This study provides critical data for the high-efficient photoionization of lutetium atoms in the visible range. The angular momenta of 21 odd-parity autoionization levels in an energy range of 50650–51650 cm–1 are identified for the first time, which provides a reference for determining the forbidden state of electric dipole transitions from other excited states and ascertaining the electronic configuration.
-
Keywords:
- autoionization levels /
- resonance ionization /
- lutetium atom
[1] Fuoco V, Argiroffi G, Mazzaglia S, Lorenzoni A, Guadalupi V, Franza A, Scalorbi F, Ailberti G, Chiesa C, Procopio G, Seregni E, Maccauro M 2022 Tumori. J. 108 315Google Scholar
[2] Mittra E S 2018 Am. J. Roentgenol. 211 278Google Scholar
[3] Vogel W V, van der Marck S C, Versleijen M W J 2021 Eur. J. Nucl. Med. Mol. I. 48 2329Google Scholar
[4] Dash A, Pillai M R A, Knapp F F 2015 Nucl. Med. Molec. Imag. 49 85Google Scholar
[5] D’yachkov A B, Kovalevich S K, Labozin A V, Labozin V P, Mironov S M, Panchenko V Y, Firsov V A, Tsvetkov G O, Shatalova G G 2012 Quantum Electron 42 953Google Scholar
[6] Gadelshin V, Cocolios T, Fedoseev V, Heinke R, Kieck T, Marsh B, Naubereit P, Rothe S, Stora T, Studer D, van Duppen P, Wendt K 2017 HFI 238 28Google Scholar
[7] Li R, Lassen J, Kunz P, Mostamand M, Reich B B, Teigelhofer A, Yan H, Ames F 2019 Spectrochim. Acta B 158 105633Google Scholar
[8] Gadelshin V, Heinke R, Kieck T, Kron T, Naubereit P, Rosch F, Stora T, Studer D, Wendt K 2019 Radiochim. Acta 107 653Google Scholar
[9] Suryanarayana M V, Sankari M 2021 Sci. Rep-UK 11 18292Google Scholar
[10] Suryanarayana M V 2021 Sci. Rep-UK 11 6118Google Scholar
[11] Wendt K, Trautmann N 2005 Int. J. Mass. Spectrom. 242 161Google Scholar
[12] Xu C B, Xu X Y, Ma H, Li L Q, Huang W, Chen D Y, Zhu F R 1993 J. Phys. B-At. Mol. Opt. 26 2827Google Scholar
[13] Kujirai O, Ogawa Y 1998 J. Phys. Soc. Jpn. 63 1056Google Scholar
[14] Ogawa Y, Kujirai O 1999 J. Phys. Soc. Jpn. 68 428Google Scholar
[15] Li R, Lassen J, Zhong Z P, Jia F D, Mostamand M, Li X K, Reich B B, Teigelhofer A, Yan H 2017 Phys. Rev. A 95 052501Google Scholar
[16] 李志明, 朱凤蓉, 张子斌, 邓虎, 翟利华, 王长海, 任向军, 万可友, 张利兴 2005 质谱学报 26 45Google Scholar
Li Z M, Zhu F R, Zhang Z B, Deng H, Zhai L H, Wang C H, Ren X J, Wan K Y, Zhang L X 2005 J. Chin. Mass. Spectr. Soc. 26 45Google Scholar
[17] D’yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Tsvetkov G O, Panchenko V Y, Firsov V A 2018 Opt. Spectrosc 125 839Google Scholar
[18] Rath A D, Biswal D, Kundu S 2021 J. Quant. Spectrosc. Ra. 270 107696Google Scholar
[19] Voss A, Sonnenschein V, Campbell P, Cheal B, Kron T, Moore I D, Pohjalainen I, Raeder S, Trautmann N, Wendt K 2017 Phys. Rev. A 95 032506Google Scholar
[20] Shen X P, Wang W L, Zhai L H, Deng H, Xu J, Yuan X L, Wei G Y, Wang W, Fang S, Su Y Y, Li Z M 2018 Spectrochim. Acta B 145 96Google Scholar
[21] Kneip N, Dullmann C E, Gadelshin V, Heinke R, Mokry C, Raeder S, Runke J, Studer D, Trautmann N, Weber F, Wendt K 2020 HFI 241 45Google Scholar
[22] Sahoo A C, Mandal P K, Shah M L, Dev V 2020 J. Quant. Spectrosc. Ra. 241 106714Google Scholar
[23] 张钧尧, 薛轶, 周鸿儒 2024 原子与分子物理学报 41 014002Google Scholar
Zhang J Y, Xue Y, Zhou H R 2024 J. Atom. Mol. Phys. 41 014002Google Scholar
[24] 李云飞, 张钧尧, 柴俊杰, 魏少强, 陈晨 2023 真空与低温 29 486Google Scholar
Li Y F, Zhang J Y, Chai J J, Wei S Q, Chen C 2023 Vacuum and Cryogenics 29 486Google Scholar
[25] Fedchak J A, der Hartog E A, Lawler J E, Palmeri P, Quinet P, Biemont E 2000 Astrophys. J. 542 1109Google Scholar
[26] Fano U 1961 Phys. Rev. 124 1866Google Scholar
-
图 1 激光共振电离飞行时间质谱系统. PC为电脑, DG为延时发生器, Nd:YAG为Nd:YAG激光器, Dye为染料激光器, WM为波长计, BS为光束合成器, Lens为镜组, ECB为电控机箱, TOF为飞行时间质谱, BCA为Boxcar平均
Figure 1. Resonance ionization time-of-flight mass spectroscopy system. PC is computer, DG is delay generator, Nd:YAG is Nd:YAG laser, Dye is dye laser, WM is wavelength meter, BS is beam synthesis, Lens is lens, ECB is electronic control box, TOF is time of flight mass spectrometry, BCA is box car averager.
表 1 由激发态35274.5 cm–1跃迁的奇宇称自电离态能级
Table 1. Odd parity autoionization levels connecting from the excited level 35274.5 cm–1.
E/cm–1 Width Strength Ref.[18] E/cm–1 Width Strength Ref.[18] 53408.90 N S New 51873.82 B I New 53353.74 Ϯ B S New 51724.60 Ϯ M S New 53330.68 M I New 51642.24 N S 51642.2 53321.80 N I New 51628.73 N I 51628.9 53310.02 M S New 51509.40 M S 51509.4 53298.32 N I New 51494.64 B S New 53267.79 M S New 51368.06 M S 51386.0 53259.85 N W New 51295.65 Ϯ B W 51294.1 53251.30 N I New 51150.11 Ϯ B W 51151.5 53219.59 Ϯ M S New 51125.54 B I New 53194.18 Ϯ B I New 51014.87 M W New 53147.77 M W New 50986.87 N W 50987.0 53138.94 Ϯ M I New 50974.56 N W 50974.7 53046.75 Ϯ B I New 50950.65 M I 50950.7 53033.60 Ϯ M I New 50908.68 Ϯ B I New 52981.68 Ϯ B I New 50875.33 M W 50875.1 52806.85 M I New 50872.30 M I 50872.3 52678.69 Ϯϯ B S New 50834.41 Ϯ B I 50833.3 52490.86 Ϯ B W New 50804.68 N W New 52420.31 N W New 50774.92 Ϯ M I 50774.3 52415.04 N W New 50726.72 Ϯ M S New 52377.33 Ϯ M I New 50700.60 M S 50700.7 52280.25 N I New 50657.49 M S 50657.6 52508.75 B W New — — — — 注: Ϯ 谱线呈现Fano峰形; ϯ 极宽峰, 峰半高宽>100 cm–1. 表 2 奇宇称自电离态能级的角动量
Table 2. J-values of odd parity autoionization levels.
From 35274.5 cm–1 From 33831.5 cm–1 [18] From 34610.5 cm–1 J E/cm–1 Width E/cm–1 Width E/cm–1 Width 51642.21 N 51642.2 N 51642.06 N 3/2 51628.71 N 51628.9 N 51629.03 N 3/2 51509.42 M 51509.4 N — — 5/2 51494.66 B — — — — 7/2 51368.06 M 51368.0 N 51368.12 M 3/2 51295.65 B 51294.1 B — — 5/2 51014.87 B — — — — 7/2 50986.87 N 50987.0 N — — 5/2 50974.56 N 50974.7 N 50974.47 M 3/2 50950.65 M 50950.7 N — — 5/2 — — 50913.3 N 50913.18 N 1/2 50908.68 B — — — — 7/2 — — 50887.8 N 50887.65 N 1/2 50875.33 M 50875.1 B 50875.32 M 3/2 50872.30 M 50872.3 N — — 5/2 50834.41 B 50833.3 B 50832.77 B 3/2 50804.68 N — — — — 7/2 50774.92 M 50774.3 M 50773.31 M 3/2 50726.72 M — — — — 7/2 50700.60 M 50700.7 N — — 5/2 50657.49 M 50657.6 N — — 5/2 -
[1] Fuoco V, Argiroffi G, Mazzaglia S, Lorenzoni A, Guadalupi V, Franza A, Scalorbi F, Ailberti G, Chiesa C, Procopio G, Seregni E, Maccauro M 2022 Tumori. J. 108 315Google Scholar
[2] Mittra E S 2018 Am. J. Roentgenol. 211 278Google Scholar
[3] Vogel W V, van der Marck S C, Versleijen M W J 2021 Eur. J. Nucl. Med. Mol. I. 48 2329Google Scholar
[4] Dash A, Pillai M R A, Knapp F F 2015 Nucl. Med. Molec. Imag. 49 85Google Scholar
[5] D’yachkov A B, Kovalevich S K, Labozin A V, Labozin V P, Mironov S M, Panchenko V Y, Firsov V A, Tsvetkov G O, Shatalova G G 2012 Quantum Electron 42 953Google Scholar
[6] Gadelshin V, Cocolios T, Fedoseev V, Heinke R, Kieck T, Marsh B, Naubereit P, Rothe S, Stora T, Studer D, van Duppen P, Wendt K 2017 HFI 238 28Google Scholar
[7] Li R, Lassen J, Kunz P, Mostamand M, Reich B B, Teigelhofer A, Yan H, Ames F 2019 Spectrochim. Acta B 158 105633Google Scholar
[8] Gadelshin V, Heinke R, Kieck T, Kron T, Naubereit P, Rosch F, Stora T, Studer D, Wendt K 2019 Radiochim. Acta 107 653Google Scholar
[9] Suryanarayana M V, Sankari M 2021 Sci. Rep-UK 11 18292Google Scholar
[10] Suryanarayana M V 2021 Sci. Rep-UK 11 6118Google Scholar
[11] Wendt K, Trautmann N 2005 Int. J. Mass. Spectrom. 242 161Google Scholar
[12] Xu C B, Xu X Y, Ma H, Li L Q, Huang W, Chen D Y, Zhu F R 1993 J. Phys. B-At. Mol. Opt. 26 2827Google Scholar
[13] Kujirai O, Ogawa Y 1998 J. Phys. Soc. Jpn. 63 1056Google Scholar
[14] Ogawa Y, Kujirai O 1999 J. Phys. Soc. Jpn. 68 428Google Scholar
[15] Li R, Lassen J, Zhong Z P, Jia F D, Mostamand M, Li X K, Reich B B, Teigelhofer A, Yan H 2017 Phys. Rev. A 95 052501Google Scholar
[16] 李志明, 朱凤蓉, 张子斌, 邓虎, 翟利华, 王长海, 任向军, 万可友, 张利兴 2005 质谱学报 26 45Google Scholar
Li Z M, Zhu F R, Zhang Z B, Deng H, Zhai L H, Wang C H, Ren X J, Wan K Y, Zhang L X 2005 J. Chin. Mass. Spectr. Soc. 26 45Google Scholar
[17] D’yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Tsvetkov G O, Panchenko V Y, Firsov V A 2018 Opt. Spectrosc 125 839Google Scholar
[18] Rath A D, Biswal D, Kundu S 2021 J. Quant. Spectrosc. Ra. 270 107696Google Scholar
[19] Voss A, Sonnenschein V, Campbell P, Cheal B, Kron T, Moore I D, Pohjalainen I, Raeder S, Trautmann N, Wendt K 2017 Phys. Rev. A 95 032506Google Scholar
[20] Shen X P, Wang W L, Zhai L H, Deng H, Xu J, Yuan X L, Wei G Y, Wang W, Fang S, Su Y Y, Li Z M 2018 Spectrochim. Acta B 145 96Google Scholar
[21] Kneip N, Dullmann C E, Gadelshin V, Heinke R, Mokry C, Raeder S, Runke J, Studer D, Trautmann N, Weber F, Wendt K 2020 HFI 241 45Google Scholar
[22] Sahoo A C, Mandal P K, Shah M L, Dev V 2020 J. Quant. Spectrosc. Ra. 241 106714Google Scholar
[23] 张钧尧, 薛轶, 周鸿儒 2024 原子与分子物理学报 41 014002Google Scholar
Zhang J Y, Xue Y, Zhou H R 2024 J. Atom. Mol. Phys. 41 014002Google Scholar
[24] 李云飞, 张钧尧, 柴俊杰, 魏少强, 陈晨 2023 真空与低温 29 486Google Scholar
Li Y F, Zhang J Y, Chai J J, Wei S Q, Chen C 2023 Vacuum and Cryogenics 29 486Google Scholar
[25] Fedchak J A, der Hartog E A, Lawler J E, Palmeri P, Quinet P, Biemont E 2000 Astrophys. J. 542 1109Google Scholar
[26] Fano U 1961 Phys. Rev. 124 1866Google Scholar
Catalog
Metrics
- Abstract views: 3282
- PDF Downloads: 82
- Cited By: 0