Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ion momentum distributions from sequential double ionization of Ar in elliptically polarized laser fields

Liao Jian-Ying He Tong-Tong Su Jie Liu Zi-Chao Li Ying-Bin Yu Ben-Hai Huang Cheng

Citation:

Ion momentum distributions from sequential double ionization of Ar in elliptically polarized laser fields

Liao Jian-Ying, He Tong-Tong, Su Jie, Liu Zi-Chao, Li Ying-Bin, Yu Ben-Hai, Huang Cheng
PDF
HTML
Get Citation
  • In this paper, we utilize a classical ensemble model with Heisenberg-core potential to study sequential double ionization (SDI) of Ar atom by an elliptically polarized laser field. The results show that for random laser phases, as the laser wavelength increases, the ion momentum distribution gradually evolves from a six-band structure at 800 nm to an eight-band structure at 1600 nm. When the laser phase is stable, the ion momentum distribution from 1600 nm laser field exhibits a ten-band structure. These multi-band structures directly reflect the subcycle ionization dynamics of electrons in an elliptically polarized laser field. There is a significant shift among the outer three bands of ion momentum distrbutions from different laser phases, which leads to the fact that only one band is observed in the outer region of the ion momentum distribution for the case of random laser phases. By analyzing the ionization times of the two electrons, it is found that for the case of random phases, the inner bands of the ion momentum distributions originate from those combinations of electron ionization bursts with the ionization time difference of 0.5 cycle, and the outer bands arise from those combinations of ionization bursts with the ionization time difference of 1, 2 and 3 cycles. For 800 nm, the middle band corresponds to those combinations of ionization bursts with the ionization time differences of 1.5 and 2.5 cycles. For 1600 nm, there are two bands in middle regime. One is from the combination with the ionization time difference of 1.5 cycles, and the other is from those combinations with the ionization time difference of 2.5 and 3.5 cycles. These results indicate that in the case of long wavelength and phase-stable laser, the subcycle dynamics in sequential double ionization of atoms is more likely to be observed.
      Corresponding author: Li Ying-Bin, liyingbin2008@163.com ; Huang Cheng, huangcheng@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074329, 12004323, 12104389), the Southwest University Training Program of Innovation and Entrepreneurship for Undergraduates, China (Grant No. X202210635104), and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University, China.
    [1]

    L’ Huillier A, Lompre L A, Mainfray G, Manus C 1982 Phys. Rev. Lett. 48 1814Google Scholar

    [2]

    Wang Y L, Xu S P, Quan W, Gong C, Lai X Y, Hu S L, Liu M Q, Chen J, Liu X J 2016 Phys. Rev. A 94 053412Google Scholar

    [3]

    Liu Y Q, Fu L B, Ye D F, Liu J, Li M, Wu C Y, Gong Q H, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003Google Scholar

    [4]

    Ye D F, Li M, Fu L B, Liu J, Gong Q H, Liu Y Q, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [5]

    Lin K, Jia X Y, Yu Z Q, He F, Ma J Y, Li H, Gong X C, Song Q Y, Ji Q Y, Zhang W B, Li H X, Lu P F, Zeng H P, Chen J, Wu J 2017 Phys. Rev. Lett. 119 203202Google Scholar

    [6]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [7]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002Google Scholar

    [8]

    Chen Z J, Liang Y Q, Lin C D 2010 Phys. Rev. Lett. 104 253201Google Scholar

    [9]

    Li B Q, Yang X, Ren X H, Zhang J T 2019 Opt. Express 27 32700Google Scholar

    [10]

    Maharjan C M, Alnaser A S, Tong X M, Ulrich B, Ranitovic P, Ghimire S, Chang Z, Litvinyuk I V, Cocke C L 2005 Phys. Rev. A 72 041403Google Scholar

    [11]

    Wang X, Eberly J H 2009 Phys. Rev. Lett. 103 103007Google Scholar

    [12]

    Pfeiffer A N, Cirelli C, Smolarski M, Döner R, Keller U 2011 Nature Phys. 7 428Google Scholar

    [13]

    Pfeiffer A N, Cirelli C, Smolarski M, Wang X, Eberly J H, Döner R, Keller U 2011 New J. Phys. 13 093008Google Scholar

    [14]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004Google Scholar

    [15]

    Zhou Y M, Zhang Q B, Huang C, Lu P X 2012 Phys. Rev. A 86 043427Google Scholar

    [16]

    Wang X, Eberly J H 2011 arXiv: 1102.0221v1 [physics. atom-ph

    [17]

    Zhou Y M, Li M, Li Y, Tong A H, Li Q G, Lu P X 2017 Opt. Express 25 8450Google Scholar

    [18]

    Tong A H, Zhou Y M, Lu P X 2015 Opt. Express 23 15774Google Scholar

    [19]

    Schöffler M S, Xie X, Wustelt P, Moller M, Roither S, Kartashov D, Sayler A M, Baltuska A, Paulus G G, Kitzler M 2016 Phys. Rev. A 93 063421Google Scholar

    [20]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001Google Scholar

    [21]

    Chen J, Liu J, Fu L B, Zheng W M 2000 Phys. Rev. A 63 011404(RGoogle Scholar

    [22]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [23]

    Su J, Liu Z C, Liao J Y, Huang X F, Li Y B, Huang C 2022 Opt. Express 30 24898Google Scholar

    [24]

    Xu T T, Zhu Q Y, Chen J H, Ben S, Zhang J, Liu X S 2018 Opt. Express 26 1645Google Scholar

    [25]

    Li Y B, Yu B H, Tang Q B, Wang X, Hua D Y, Tong A H, Jiang C H, Ge G X, Li Y C, Wan J G 2016 Opt. Express 24 6469Google Scholar

    [26]

    苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 193201Google Scholar

    Su J, Liu Z C, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 193201Google Scholar

    [27]

    Wilets L, Henley E M, Kraft M, Mackellar A D 1977 Nucl. Phys. A 282 341Google Scholar

    [28]

    Kirschbaum C L, Wilets L 1980 Phys. Rev. A 21 834

    [29]

    Cohen J S 2006 J. Phys. B 39 1517

    [30]

    Liu S W, Ye D F, Liu J 2020 Phys. Rev. A 101 052704Google Scholar

    [31]

    Huang C, Li Z H, Zhou Y M, Tang Q B, Liao Q, Lu P X 2012 Opt. Express 20 11700Google Scholar

    [32]

    Yuan J Y, Liu S W, Wang X C, Shen Z J, Ma Y X, Ma H Y, Meng Q X, Yan T M, Zhang Y Z, Dorn A, Weidemüller M, Ye D F, Jiang Y H 2020 Phys. Rev. A 102 043112Google Scholar

    [33]

    Jiang H, He F 2021 Phys. Rev. A 104 023113Google Scholar

    [34]

    Sarkadi L 2021 Phys. Rev. A 103 053113Google Scholar

    [35]

    Lötstedt E, Kato T, Yamanouchi K 2011 Phys. Rev. Lett. 106 203001Google Scholar

  • 图 1  不同波长情况下激光偏振平面内的离子动量分布, 其中激光相位随机, 脉宽为14个光周期 (a) 800 nm; (b) 1200 nm; (c) 1600 nm.

    Figure 1.  Ion momentum distributions in the laser polarization plane for different wavelength, where the CEP is randomly chosen for each trajectory, and the pulse duration is 14 cycles: (a) 800 nm; (b) 1200 nm; (c) 1600 nm.

    图 2  不同波长情况下沿椭圆短轴的离子动量分布, 其中分布通过对图1 px, ion∈(–0.5 a.u., 0.5 a.u.)的双电离事件积分获得, 脉宽为14个光周期 (a) 800 nm; (b) 1200 nm; (c) 1600 nm

    Figure 2.  Ion momentum distributions along the minor elliptical axis for different wavelength, where the distribution is obtained by integrating the distributions of Fig. 1 over px, ion from –0.5 a.u. to 0.5 a.u., the pulse duration is 14 cycles: (a) 800 nm; (b) 1200 nm; (c) 1600 nm.

    图 3  相位为0时, 不同波长下激光偏振平面内的离子动量分布(a), (b)和px, ion∈(–0.5 a.u., 0.5 a.u.)的双电离事件对应的沿椭圆短轴的离子动量分布(c), (d), 其中脉宽为14个光周期 (a), (c) 800 nm; (b), (d) 1600 nm

    Figure 3.  Ion momentum distributions in the laser polarization plane (a), (b) and ion momentum distributions along the minor elliptical axis corresponding to px, ion from –0.5 a.u. to 0.5 a.u double ionization events (c), (d) for different wavelength of the CEP is 0, where the pulse duration is 14 cycles: (a), (c) 800 nm; (b), (d) 1600 nm.

    图 4  不同波长下第1个电子 (a), (c)和第2个电子(b), (d)的电离时间分布(灰色虚线为y方向的负矢势, 激光相位为0, 脉宽为14个光周期) (a), (b) 800 nm; (c), (d) 1600 nm

    Figure 4.  Distributions of the ionization times for the first electron (a), (c) and the second electron (b), (d) for different wavelength (The gray dashed curves represent the laser negative potential vector in y direction, the CEP is 0, the pulse duration is 14 cycles): (a), (b) 800 nm; (c), (d) 1600 nm.

    图 5  1600 nm情况下第1个电子 (a)和第2个电子 (b)的电离时间分布. 灰色虚线为y方向的负矢势, 激光相位为0.5π, 脉宽为14个光周期

    Figure 5.  Distributions of the ionization times for the first electron (a) and the second electron (b) for the wavelength of 1600 nm. The gray dashed curves represent the laser negative potential vector in y direction, the CEP is 0.5π, the pulse duration is 14 cycles.

    图 6  不同相位情况下沿椭圆短轴的离子动量分布(脉宽为14个光周期) (a) 800 nm; (b) 1600 nm

    Figure 6.  Ion momentum distributions along the minor elliptical axis for different CEPs (Pulse duration is 14 cycles): (a) 800 nm; (b) 1600 nm.

    图 7  1600 nm情况下两电子的电离时间分布, 激光相位为0.5π, 脉宽为14个光周期

    Figure 7.  Ionization time distributions of the first electron versus the second electron for the wavelength of 1600 nm, the CEP is 0.5π, the pulse duration is 14 cycles.

    图 8  不同脉宽情况下激光偏振平面内的离子动量分布 (a) 6个光周期; (b) 10个光周期; (c) 14个光周期; (d) 18个光周期. 激光相位随机, 波长为1600 nm

    Figure 8.  Ion momentum distributions in the laser polarization plane for different pulse durations: (a) 6 cycles; (b) 10 cycles; (c) 14 cycles; (d) 18 cycles. The CEP is randomly chosen for each trajectory, the laser wavelength is 1600 nm.

    图 9  考虑磁场影响时激光偏振平面内的离子动量分布, 波长为1600 nm, 脉宽为14个光周期 (a) 激光相位随机; (b) 相位为0

    Figure 9.  Ion momentum distributions in the laser polarization plane for the wavelength of 1600 nm and the pulse duration of 14 cycles, the laser magnetic field is included: (a) CEP is random; (b) CEP is 0.

    表 1  不同电子电离脉冲组合对应的离子动量

    Table 1.  Ion momentums for different combinations of electron ionization bursts.

    波长/nm $D_3'$
    (F2, S8)
    $D_2'$
    (F2, S6)
    $D_1'$
    (F2, S4)
    $C_3'$
    (F1, S8)
    $C_2' $
    (F1, S6)
    $C_1' $
    (F1, S4)
    C1
    (F2, S3)
    C2
    (F2, S5)
    C3
    (F2, S7)
    D1
    (F1, S3)
    D2
    (F1, S5)
    D3
    (F1, S7)
    800 –6.04 –5.28 –2.18 –1.42 0.51 1.39 1.99 4.38 5.26 5.86
    1600 –12.93 –12.09 –10.57 –5.20 –4.35 –2.83 1.02 2.77 3.99 8.757 10.51 11.73
    DownLoad: CSV
  • [1]

    L’ Huillier A, Lompre L A, Mainfray G, Manus C 1982 Phys. Rev. Lett. 48 1814Google Scholar

    [2]

    Wang Y L, Xu S P, Quan W, Gong C, Lai X Y, Hu S L, Liu M Q, Chen J, Liu X J 2016 Phys. Rev. A 94 053412Google Scholar

    [3]

    Liu Y Q, Fu L B, Ye D F, Liu J, Li M, Wu C Y, Gong Q H, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003Google Scholar

    [4]

    Ye D F, Li M, Fu L B, Liu J, Gong Q H, Liu Y Q, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [5]

    Lin K, Jia X Y, Yu Z Q, He F, Ma J Y, Li H, Gong X C, Song Q Y, Ji Q Y, Zhang W B, Li H X, Lu P F, Zeng H P, Chen J, Wu J 2017 Phys. Rev. Lett. 119 203202Google Scholar

    [6]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [7]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002Google Scholar

    [8]

    Chen Z J, Liang Y Q, Lin C D 2010 Phys. Rev. Lett. 104 253201Google Scholar

    [9]

    Li B Q, Yang X, Ren X H, Zhang J T 2019 Opt. Express 27 32700Google Scholar

    [10]

    Maharjan C M, Alnaser A S, Tong X M, Ulrich B, Ranitovic P, Ghimire S, Chang Z, Litvinyuk I V, Cocke C L 2005 Phys. Rev. A 72 041403Google Scholar

    [11]

    Wang X, Eberly J H 2009 Phys. Rev. Lett. 103 103007Google Scholar

    [12]

    Pfeiffer A N, Cirelli C, Smolarski M, Döner R, Keller U 2011 Nature Phys. 7 428Google Scholar

    [13]

    Pfeiffer A N, Cirelli C, Smolarski M, Wang X, Eberly J H, Döner R, Keller U 2011 New J. Phys. 13 093008Google Scholar

    [14]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004Google Scholar

    [15]

    Zhou Y M, Zhang Q B, Huang C, Lu P X 2012 Phys. Rev. A 86 043427Google Scholar

    [16]

    Wang X, Eberly J H 2011 arXiv: 1102.0221v1 [physics. atom-ph

    [17]

    Zhou Y M, Li M, Li Y, Tong A H, Li Q G, Lu P X 2017 Opt. Express 25 8450Google Scholar

    [18]

    Tong A H, Zhou Y M, Lu P X 2015 Opt. Express 23 15774Google Scholar

    [19]

    Schöffler M S, Xie X, Wustelt P, Moller M, Roither S, Kartashov D, Sayler A M, Baltuska A, Paulus G G, Kitzler M 2016 Phys. Rev. A 93 063421Google Scholar

    [20]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001Google Scholar

    [21]

    Chen J, Liu J, Fu L B, Zheng W M 2000 Phys. Rev. A 63 011404(RGoogle Scholar

    [22]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [23]

    Su J, Liu Z C, Liao J Y, Huang X F, Li Y B, Huang C 2022 Opt. Express 30 24898Google Scholar

    [24]

    Xu T T, Zhu Q Y, Chen J H, Ben S, Zhang J, Liu X S 2018 Opt. Express 26 1645Google Scholar

    [25]

    Li Y B, Yu B H, Tang Q B, Wang X, Hua D Y, Tong A H, Jiang C H, Ge G X, Li Y C, Wan J G 2016 Opt. Express 24 6469Google Scholar

    [26]

    苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 193201Google Scholar

    Su J, Liu Z C, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 193201Google Scholar

    [27]

    Wilets L, Henley E M, Kraft M, Mackellar A D 1977 Nucl. Phys. A 282 341Google Scholar

    [28]

    Kirschbaum C L, Wilets L 1980 Phys. Rev. A 21 834

    [29]

    Cohen J S 2006 J. Phys. B 39 1517

    [30]

    Liu S W, Ye D F, Liu J 2020 Phys. Rev. A 101 052704Google Scholar

    [31]

    Huang C, Li Z H, Zhou Y M, Tang Q B, Liao Q, Lu P X 2012 Opt. Express 20 11700Google Scholar

    [32]

    Yuan J Y, Liu S W, Wang X C, Shen Z J, Ma Y X, Ma H Y, Meng Q X, Yan T M, Zhang Y Z, Dorn A, Weidemüller M, Ye D F, Jiang Y H 2020 Phys. Rev. A 102 043112Google Scholar

    [33]

    Jiang H, He F 2021 Phys. Rev. A 104 023113Google Scholar

    [34]

    Sarkadi L 2021 Phys. Rev. A 103 053113Google Scholar

    [35]

    Lötstedt E, Kato T, Yamanouchi K 2011 Phys. Rev. Lett. 106 203001Google Scholar

  • [1] He Tong-Tong, Liu Zi-Chao, Li Ying-Bin, Huang Cheng. Manipulating nonsequential double ionization of atoms by parallel polarized three-color laser fields. Acta Physica Sinica, 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [2] Li Ying-Bin, Zhang Ke, Chen Hong-Mei, Kang Shuai-Jie, Li Zheng-Fa, Cheng Jian-Guo, Wu Yin-Meng, Zhai Chun-Yang, Tang Qing-Bin, Xu Jing-Kun, Yu Ben-Hai. Nonsequential double ionization of atoms driven by spatially inhomogeneous laser fields. Acta Physica Sinica, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [3] Huang Xue-Fei, Su Jie, Liao Jian-Ying, Li Ying-Bin, Huang Cheng. Photoelectron holography in tunneling ionization of atoms by counter-rotating two-color elliptically polarized laser field. Acta Physica Sinica, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [4] Su Jie, Liu Zi-Chao, Liao Jian-Ying, Li Ying-Bin, Huang Cheng. Intensity-dependent electron correlation in nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields. Acta Physica Sinica, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [5] Zeng Xue, Su Jie, Huang Xue-Fei, Pang Hui-Ling, Huang Cheng. Frequency-ratio-dependent ultrafast dynamics in nonsequential double ionization by co-rotating two-color circularly polarized laser fields. Acta Physica Sinica, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [6] Li Xiang, Chen Yong, Feng Hao, Qi Lei. Axially-distributed bubble-bubble interaction under a coustic excitation in pipeline. Acta Physica Sinica, 2020, 69(18): 184703. doi: 10.7498/aps.69.20200546
    [7] Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao. Intensity-dependent recollision dynamics in strong-field nonsequential double ionization. Acta Physica Sinica, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [8] Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao. Nonsequential double ionization of aligned molecules by few-cycle laser pulses at low intensity. Acta Physica Sinica, 2016, 65(8): 083301. doi: 10.7498/aps.65.083301
    [9] Liu Yu-Zhu, Gerber Thomas, Knopp Gregor. Optical control of the vibrational excitation of the polyatomic ions via strong field multi-photon ionization. Acta Physica Sinica, 2014, 63(24): 244208. doi: 10.7498/aps.63.244208
    [10] Yu Ben-Hai, Li Ying-Bin, Tang Qing-Bin. The nonsequential double ionization of argon atoms with elliptically polarized laser pulse. Acta Physica Sinica, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [11] Tong Ai-Hong, Feng Guo-Qiang, Deng Yong-Ju. Dependence of nonsequential double ionization of He on intensity ratio of orthogonal two-color field. Acta Physica Sinica, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [12] Tong Ai-Hong, Liao Qing, Zhou Yue-Ming, Lu Pei-Xiang. Internuclear-distance dependence of nonsequential double ionization of H2 in different alignments. Acta Physica Sinica, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [13] Zhang Dong-Ling, Tang Qing-Bin, Yu Ben-Hai, Chen Dong. Nonsequential double ionization of argon atom below the recollision threshold. Acta Physica Sinica, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [14] Wang Shuai, Zhang Bing-Yun, Zhang Yun-Hai. Husimi function and Wehrl entropy in thermo field dynamics. Acta Physica Sinica, 2010, 59(3): 1775-1779. doi: 10.7498/aps.59.1775
    [15] Tang Qing-Bin, Zhang Dong-Ling, Yu Ben-Hai, Chen Dong. Three-dimensional classical micro-canonical simulation of nonsequential double ionization with a few-cycle laser pulse. Acta Physica Sinica, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [16] Hu Hong-Wei, Dong Chen-Zhong, Shi Ying-Long. Cascade decays and final charge-state distribution of single K-vacancy and double K-vacancy magnesium ions. Acta Physica Sinica, 2007, 56(7): 3887-3892. doi: 10.7498/aps.56.3887
    [17] Jiang Chun-Lei, Fang Mao-Fa, Wu Zhen-Zhen. The entanglement dynamics of two entangled atoms in the dissipative cavity. Acta Physica Sinica, 2006, 55(9): 4647-4651. doi: 10.7498/aps.55.4647
    [18] WANG XUN-CHUN, QIU XI-JUN, ZHENG LI-PING. INFLUENCE OF RELATIVE PHASE ON THE ENHANCED IONIZATION BEHAVIOUR OF LINEAR MULTIATOMIC MOLECULAR IONS IN TWO-COLOR LASER FIELDS. Acta Physica Sinica, 2001, 50(11): 2155-2158. doi: 10.7498/aps.50.2155
    [19] Wang Zhong-Jie, Lu Yi-Qun, Lu Tong-Xing. . Acta Physica Sinica, 2000, 49(4): 670-673. doi: 10.7498/aps.49.670
    [20] WANG ZHONG-JIE, LU YI-QUN, LU TONG-XING. DYNAMICAL INVESTIGATION ON MOMENTUM SPREAD OF TWO-LEVEL ATOMS BY A MODULATED STANDING LIGHT WAVE. Acta Physica Sinica, 1999, 48(11): 2015-2021. doi: 10.7498/aps.48.2015
Metrics
  • Abstract views:  2320
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2023
  • Accepted Date:  23 August 2023
  • Available Online:  24 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回