Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Axially-distributed bubble-bubble interaction under a coustic excitation in pipeline

Li Xiang Chen Yong Feng Hao Qi Lei

Citation:

Axially-distributed bubble-bubble interaction under a coustic excitation in pipeline

Li Xiang, Chen Yong, Feng Hao, Qi Lei
PDF
HTML
Get Citation
  • Acoustically-excited bubble dynamics is the foundation of pipeline bubble detection based on acoustic technology. Due to the existence of multiple bubbles in pipeline flow, the Bjerknes forces among arbitrary bubbles under acoustic excitation may enforce bubble-bubble interaction and then change the features of bubble dynamics. Based on traditional free bubble’s Rayleigh-Plesset (R-P) model, this paper tries to establish bubble-bubble interaction model in consideration of the second Bjerknes force and bubble distribution in the pipeline axial direction. Meanwhile, the influence of finite wave speed in compressible fluid is considered. The proposed model is numerically calculated by the fourth-order Runge-Kutta method. Firstly, the differences in bubble feature between the free bubble’s R-P model and bubble-bubble interaction model are compared under excitation with different frequencies and amplitudes. Results show that the differences in bubble dynamics are minor when the bubble’s distance is large enough. When the bubble’s distance is fixed, the differences are significant on condition that the frequency of acoustic excitation is nearly the resonant frequency of bubbles. Secondly, through establishing compressible model and incompressible fluid model, we compare the differences between the two models. Numerical calculations show that the second Bjerknes force under the compressible assumption acts as an external force and forces the bubble to vibrate. On the other hand, the second Bjerknes force under the incompressible assumption changes the dynamics of bubble-bubble interaction as well as the resonant features. Finally, we study the effect of bubble-bubble distance and bubble’s axial position on bubble vibration characteristics. The bubble-bubble distance affects the second Bjerknes force and may lead the bubbles to vibrate nonlinearly. The bubble’s axial position changes the phase of external acoustic force and leads to the difference in initial vibration feature. When this difference is coupled with the second Bjerknes force, the bubble-bubble interaction may be changed even into nonlinear vibration, leading the bubble’s oscillation spectrum to differ from linear vibrations significantly. These results demonstrate that the resonant state of a small bubble may be converted into nonlinear vibration state if the second Bjerknes force is present. On the other hand, the resonant state of a large bubble can keep linear vibration when the second Bjerknes force is not obvious.
      Corresponding author: Chen Yong, literature_chen@nudt.edu.cn
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91741107)
    [1]

    Balasubramaniam R, Ramé E, Motil B J 2019 Case Western Reserve University Cleveland, Ohio NASA Report No. 20190001795

    [2]

    Wen W, Zong G, Bi S 2014 Rev. Sci. Instrum. 85 065106Google Scholar

    [3]

    Leighton T G, Ramble D G, Phelps A D 1997 J. Acoust. Soc. Am. 101 2626Google Scholar

    [4]

    Leighton T G, Baik K, Jiang J 2012 Proc. R. Soc. London, Ser. A 468 2461Google Scholar

    [5]

    Hsieh D, Plesset M S 1961 Phys. Fluids 4 970Google Scholar

    [6]

    Sangani A S, Sureshkumar R 1993 J. Fluid Mech. 252 239Google Scholar

    [7]

    Kerboua K, Hamdaoui O 2019 J. Acoust. Soc. Am. 146 2240Google Scholar

    [8]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 75 046304Google Scholar

    [9]

    Jang N W, Gracewski S I, Abrahamsen B, Buttaccio T, Halm R 2009 J. Acoust. Soc. Am. 126 EL34Google Scholar

    [10]

    Prosperetti A 1974 J. Acoust. Soc. Am. 56 878Google Scholar

    [11]

    Feng Z C, Leal L G 1997 Ann. Rev. Fluid Mech. 29 201Google Scholar

    [12]

    Lauterborn W, Kurz T 2010 Rep. Prog. Phys. 73 106501Google Scholar

    [13]

    Rayleigh L 1917 Philos. Mag. 34 94Google Scholar

    [14]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924Google Scholar

    [15]

    Pelekasis N A, Gaki A, Doinikov A, Tsamopoulos J A 2004 J. Fluid Mech. 500 313Google Scholar

    [16]

    Liang J, Wang X, Yang J, Gong L 2017 Ultrasonics 75 58Google Scholar

    [17]

    Omta R 1987 J. Acoust. Soc. Am. 82 1018Google Scholar

    [18]

    Hamilton M F, Ilinskii Y A, Meegan G D, Zabolotskaya E A 2005 Acoust. Res. Lett. Online 6 207Google Scholar

    [19]

    Doinikov A A 2004 J. Acoust. Soc. Am. 116 821Google Scholar

    [20]

    Maiga M A, Coutier-Delgosha O, Buisine D 2018 Phys. Fluids 30 123301Google Scholar

    [21]

    Yoshida K, Fujikawa T, Watanabe Y 2011 J. Acoust. Soc. Am. 130 135Google Scholar

    [22]

    Jiao J, He Y, Kentish S E, Ashokkumar M, Manasseh R, Lee J 2015 Ultrasonics 58 35Google Scholar

    [23]

    Zilonova E, Solovchuk M, Sheu T W H 2019 Phys. Rev. E 99 023109Google Scholar

    [24]

    Doinikov A A, Bouakaz A 2014 J. Fluid Mech. 742 425Google Scholar

    [25]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [26]

    Leighton T G 1994 The Acoustic Bubble (London: Academic Press) p23

  • 图 1  管道内双气泡位置示意图(二维)

    Figure 1.  Schematic diagram of two-bubble positions in the pipeline (two-dimensional).

    图 2  三种不同频率(2, 15和50 kHz)与两类幅度(1 Pa与1 kPa)声波激励下的自由气泡与双气泡设置下半径振动特征 (a) 1 Pa声波激励下气泡1在三种激励频率工况下自由气泡与双气泡约束对应的气泡半径振动特征; (b) 1 Pa声波激励下气泡2在三种激励频率工况下自由气泡与双气泡约束对应的气泡半径振动特征; (c) 1 kPa声波激励下气泡1在三种激励频率工况下自由气泡与双气泡约束对应的气泡半径振动特征; (d) 1 kPa声波激励下气泡2在三种激励频率工况下自由气泡与双气泡约束对应的气泡半径振动特征; 图例在图(d)中给出

    Figure 2.  Effects of acoustic excitations with different frequencies (2, 15 and 50 kHz) and amplitudes (1 Pa and 1 kPa) on the bubble dynamics under single free and regulated two-bubble vibrations: (a) Relative radius of bubble 1 between two configurations (single free and regulated two-bubble vibrations) with the amplitude of acoustic excitation being 1 Pa; (b) relative radius of bubble 2 between two configurations (single free and regulated two-bubble vibrations) with the amplitude of acoustic excitation being 1 Pa; (c) relative radius of bubble 1 between two configurations (single free and regulated two-bubble vibrations) with the amplitude of acoustic excitation being 1 kPa; (d) relative radius of bubble 2 between two configurations (single free and regulated two-bubble vibrations) with the amplitude of acoustic excitation being 1 kPa. The figure legend is given in panel (d).

    图 3  三种不同频率(2, 15和50 kHz)与两类幅度(1 Pa与1 kPa)声波激励下的不同气泡距离(2与8 mm)对气泡振动动力学特征影响 (a) 1 Pa声波激励下气泡1在三种激励频率工况下不同气泡距离对应的气泡半径振动特征; (b) 1 Pa声波激励下气泡2在三种激励频率工况下不同气泡距离对应的气泡半径振动特征; (c) 1 kPa声波激励下气泡1在三种激励频率工况下不同气泡距离对应的气泡半径振动特征; (d) 1 kPa声波激励下气泡2在三种激励频率工况下不同气泡距离对应的气泡半径振动特征; 图例在图(a)和(c)中给出

    Figure 3.  Effects of acoustic excitations with different frequencies (2, 15 and 50 kHz) and amplitudes (1 Pa and 1 kPa) on the bubble dynamics under different distances, with 2 mm and 8 mm, between the two bubbles: (a) Relative radius of bubble 1 under two different bubble’s distance with the amplitude of acoustic excitation being 1 Pa; (b) relative radius of bubble 2 under two different bubble’s distance with the amplitude of acoustic excitation being 1 Pa; (c) relative radius of bubble 1 under two different bubble’s distance with the amplitude of acoustic excitation being 1 kPa; (d) relative radius of bubble 2 under two different bubble’s distance with the amplitude of acoustic excitation being 1 kPa. The figure legend is given in panel (a) and (c).

    图 4  三种不同频率(2, 15和50 kHz)与两类幅度(1 Pa与1 kPa)声波激励下的不同气泡距离(2与8 mm)形成的次Bjerknes辐射力 (a) 1 Pa声波激励下气泡1在三种激励频率工况下不同气泡距离对应的次Bjerknes辐射力; (b) 1 Pa声波激励下气泡2在三种激励频率工况下不同气泡距离对应的次Bjerknes辐射力; (c) 1 kPa声波激励下气泡1在三种激励频率工况下不同气泡距离对应的次Bjerknes辐射力; (d) 1 kPa声波激励下气泡2在三种激励频率工况下不同气泡距离对应的次Bjerknes辐射力

    Figure 4.  Effects of acoustic excitations with different frequencies (2, 15 and 50 kHz) and amplitudes (1 Pa and 1 kPa) on the second Bjerknes force under different distances, with 2 mm and 8 mm, between the two bubbles: (a) Relative radius of bubble 1 under two different bubble’s distance with the amplitude of acoustic excitation being 1 Pa; (b) relative radius of bubble 2 under two different bubble’s distance with the amplitude of acoustic excitation being 1 Pa; (c) relative radius of bubble 1 under two different bubble’s distance with the amplitude of acoustic excitation being 1 kPa; (d) relative radius of bubble 2 under two different bubble’s distance with the amplitude of acoustic excitation being 1 kPa.

    图 5  2 kHz声波激励下不同气泡位置对气泡振动过程的影响 (a)三种不同相对位置工况下气泡1相对半径动态变化图; (b)三种不同相对位置工况下气泡2相对半径动态变化图

    Figure 5.  Effects of different bubble locations on the bubble’s dynamics with the frequency of acoustic excitation being 2 kHz: (a) The radius dynamics of bubble 1 under three different locations; (b) the radius dynamics of bubble 2 under three different locations

    图 7  50 kHz声波激励下不同气泡位置对气泡振动过程的影响 (a)三种不同相对位置工况下气泡1相对半径动态变化图; (b)三种不同相对位置工况下气泡2相对半径动态变化图

    Figure 7.  Effects of different bubble locations on the bubble’s dynamics with the frequency of acoustic excitation being 50 kHz: (a) The radius dynamics of bubble 1 under three different locations; (b) the radius dynamics of bubble 2 under three different locations.

    图 6  15 kHz声波激励下不同气泡位置对气泡振动过程的影响 (a)三种不同相对位置工况下气泡1相对半径动态变化图; (b)三种不同相对位置工况下气泡2相对半径动态变化图

    Figure 6.  Effects of different bubble locations on the bubble’s dynamics with the frequency of acoustic excitation being 15 kHz: (a) The radius dynamics of bubble 1 under three different locations; (b) the radius dynamics of bubble 2 under three different locations.

    图 8  脉冲激励下气泡幅频响应曲线 (a)自由单气泡对应的幅频响应图; (b)气泡间距离为8 mm下双气泡对应的幅频响应图

    Figure 8.  Amplitude-frequency response chart of bubble dynamics under pulse excitation: (a) Amplitude-frequency response chart of free single bubble system; (b) amplitude-frequency response chart of two-bubble coupled system with bubble distance being 8 mm.

    图 9  双气泡非线性振动对应的频谱响应曲线

    Figure 9.  Amplitude-frequency response chart of nonlinear two-bubble dynamics under pulse excitation.

  • [1]

    Balasubramaniam R, Ramé E, Motil B J 2019 Case Western Reserve University Cleveland, Ohio NASA Report No. 20190001795

    [2]

    Wen W, Zong G, Bi S 2014 Rev. Sci. Instrum. 85 065106Google Scholar

    [3]

    Leighton T G, Ramble D G, Phelps A D 1997 J. Acoust. Soc. Am. 101 2626Google Scholar

    [4]

    Leighton T G, Baik K, Jiang J 2012 Proc. R. Soc. London, Ser. A 468 2461Google Scholar

    [5]

    Hsieh D, Plesset M S 1961 Phys. Fluids 4 970Google Scholar

    [6]

    Sangani A S, Sureshkumar R 1993 J. Fluid Mech. 252 239Google Scholar

    [7]

    Kerboua K, Hamdaoui O 2019 J. Acoust. Soc. Am. 146 2240Google Scholar

    [8]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 75 046304Google Scholar

    [9]

    Jang N W, Gracewski S I, Abrahamsen B, Buttaccio T, Halm R 2009 J. Acoust. Soc. Am. 126 EL34Google Scholar

    [10]

    Prosperetti A 1974 J. Acoust. Soc. Am. 56 878Google Scholar

    [11]

    Feng Z C, Leal L G 1997 Ann. Rev. Fluid Mech. 29 201Google Scholar

    [12]

    Lauterborn W, Kurz T 2010 Rep. Prog. Phys. 73 106501Google Scholar

    [13]

    Rayleigh L 1917 Philos. Mag. 34 94Google Scholar

    [14]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924Google Scholar

    [15]

    Pelekasis N A, Gaki A, Doinikov A, Tsamopoulos J A 2004 J. Fluid Mech. 500 313Google Scholar

    [16]

    Liang J, Wang X, Yang J, Gong L 2017 Ultrasonics 75 58Google Scholar

    [17]

    Omta R 1987 J. Acoust. Soc. Am. 82 1018Google Scholar

    [18]

    Hamilton M F, Ilinskii Y A, Meegan G D, Zabolotskaya E A 2005 Acoust. Res. Lett. Online 6 207Google Scholar

    [19]

    Doinikov A A 2004 J. Acoust. Soc. Am. 116 821Google Scholar

    [20]

    Maiga M A, Coutier-Delgosha O, Buisine D 2018 Phys. Fluids 30 123301Google Scholar

    [21]

    Yoshida K, Fujikawa T, Watanabe Y 2011 J. Acoust. Soc. Am. 130 135Google Scholar

    [22]

    Jiao J, He Y, Kentish S E, Ashokkumar M, Manasseh R, Lee J 2015 Ultrasonics 58 35Google Scholar

    [23]

    Zilonova E, Solovchuk M, Sheu T W H 2019 Phys. Rev. E 99 023109Google Scholar

    [24]

    Doinikov A A, Bouakaz A 2014 J. Fluid Mech. 742 425Google Scholar

    [25]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [26]

    Leighton T G 1994 The Acoustic Bubble (London: Academic Press) p23

  • [1] Wang Meng-Sha, Xu Qiang, Nie Teng-Fei, Luo Xin-Yi, Guo Lie-Jin. Effect of electrolyte concentration on bubble evolution and mass transfer characteristics on surface of photoelectrode. Acta Physica Sinica, 2024, 73(18): 188201. doi: 10.7498/aps.73.20240533
    [2] Zhang Xin-Yi, Wu Wen-Hua, Wang Jian-Yuan, Zhang Ying, Zhai Wei, Wei Bing-Bo. Motion law of cavitation bubbles in ultrasonic field and mechanism of their interaction with dendrites. Acta Physica Sinica, 2024, 73(18): 184301. doi: 10.7498/aps.73.20240721
    [3] Shen Xiao-Zhuo, Wu Peng-Fei, Lin Wei-Jun. Acoustic emission of pulsating bubbles in viscous media. Acta Physica Sinica, 2024, 73(17): 174701. doi: 10.7498/aps.73.20240826
    [4] Xu Xin-Meng, Lou Qin. Lattice Boltzmann method for studying dynamics of single rising bubble in shear-thickening power-law fluids. Acta Physica Sinica, 2024, 73(13): 134701. doi: 10.7498/aps.73.20240394
    [5] Wurilege, Naranmandula. Interaction of two bubbles with mass transfer heat transfer and diffusion effects. Acta Physica Sinica, 2023, 72(19): 194703. doi: 10.7498/aps.72.20230863
    [6] Zheng Ya-Xin, Naranmandula. Acoustic cavitation characteristics of bubble in compressible liquid. Acta Physica Sinica, 2022, 71(1): 014301. doi: 10.7498/aps.71.20211266
    [7] Li Fan, Zhang Xian-Mei, Tian Hua, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong, Mo Run-Yang. Structure stability of cyclic chain-like cavitation cloud in thin liquid layer. Acta Physica Sinica, 2022, 71(8): 084303. doi: 10.7498/aps.71.20212257
    [8] Acoustic cavitation characteristics of bubble in compressible liquid. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211266
    [9] Qin Dui, Zou Qing-Qin, Li Zhang-Yong, Wang Wei, Wan Ming-Xi, Feng Yi. Acoustic cavitation of encapsulated microbubble and its mechanical effect in soft tissue. Acta Physica Sinica, 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [10] Qinghim, Naranmandula. Influence of large bubbles on cavitation effect of small bubbles in cavitation multi-bubbles. Acta Physica Sinica, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [11] Wang De-Xin, Naranmandula. Theoretical study of coupling double-bubbles ultrasonic cavitation characteristics. Acta Physica Sinica, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [12] Ma Yan, Lin Shu-Yu, Xu Jie, Tang Yi-Fan. Influnece of nonspherical effects on the secondary Bjerknes force in a strong acoustic field. Acta Physica Sinica, 2017, 66(1): 014302. doi: 10.7498/aps.66.014302
    [13] Ma Yan, Lin Shu-Yu, Xian Xiao-Jun. Volume pulsation and scattering of bubbles under the second Bjerknes force. Acta Physica Sinica, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [14] Sun Peng-Nan, Li Yun-Bo, Ming Fu-Ren. Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [15] Miao Bo-Ya, An Yu. Cavitation of two kinds of bubble mixtures. Acta Physica Sinica, 2015, 64(20): 204301. doi: 10.7498/aps.64.204301
    [16] Qiu Liu-Chao. Numerical simulation of deformation process of viscous liquid drop based on the incompressible smoothed particle hydrodynamics. Acta Physica Sinica, 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [17] Liu Yun-Long, Wang Yu, Zhang A-Man. Interaction between bubble and free surface near vertical wall with inclination. Acta Physica Sinica, 2013, 62(21): 214703. doi: 10.7498/aps.62.214703
    [18] Shen Zhuang-Zhi, Wu Sheng-Ju. Dynamical behaviors of a bubble cluster under ultrasound field. Acta Physica Sinica, 2012, 61(24): 244301. doi: 10.7498/aps.61.244301
    [19] Shen Zhuang-Zhi, Lin Shu-Yu. Dynamical behaviors of hydrodynamic cavitation bubble under ultrasound field. Acta Physica Sinica, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [20] Wang Li-Feng, Ye Wen-Hua, Fan Zheng-Feng, Sun Yan-Qian, Zheng Bing-Song, Li Ying-Jun. Kelvin-Helmholtz instability in compressible fluids. Acta Physica Sinica, 2009, 58(9): 6381-6386. doi: 10.7498/aps.58.6381
Metrics
  • Abstract views:  6847
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2020
  • Accepted Date:  11 May 2020
  • Available Online:  07 June 2020
  • Published Online:  20 September 2020

/

返回文章
返回