Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interaction of two bubbles with mass transfer heat transfer and diffusion effects

Wurilege Naranmandula

Citation:

Interaction of two bubbles with mass transfer heat transfer and diffusion effects

Wurilege, Naranmandula
PDF
HTML
Get Citation
  • In this paper, the interaction between the two bubbles with the effects of mass transfer, heat transfer and diffusion was investigated under ultrasonic action by using the model combining the modified Keller-Miksis equation with Noble-Abel-Stiffend-Gas equation of state. The maximum normalized radius of cavitation the bubbles and the secondary Bjerknes force (coefficient) of the interaction between the bubbles are calculated respectively, and compared with the maximum normalized radius of the bubbles and the secondary Bjerknes force (coefficient) in the two bubbles system without the effects of mass transfer, heat transfer and diffusion given by Mettin et al [Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924]. The results show that the maximum normalized radius of the bubbles and the secondary Bjerknes forces between the bubbles are larger in the two bubbles system with the effects of mass transfer, heat transfer and diffusion than in the two bubbles system without the effects of mass transfer, heat transfer and diffusion. The main reason for this result is that the effects of mass transfer, heat transfer and diffusion can increase the amount of gas contained in the cavitation bubble. With the increase of the initial radius of a certain the bubble in the two bubbles system, the secondary Bjerknes force will increase and the difference between the secondary Bjerknes forces in the two cases will gradually increase. With the increase of the driving sound pressure amplitude, the secondary Bjerknes force will also increase and the difference between the secondary Bjerknes forces in the two cases will also gradually increase. With the increase of the driving frequency, the secondary Bjerknes force will decrease and the difference between the secondary Bjerknes forces in the two cases will also gradually decrease. Therefore, the effects of mass transfer, heat transfer and diffusion have a significant effect on the secondary Bjerknes force of the interaction between cavitation the bubbles, which is an important factor that cannot be ignored. The research results of this article have positive significance for further understanding of the secondary Bjerknes force of the interaction between the two bubbles under ultrasonic action.
      Corresponding author: Naranmandula, nrmdlbf@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11462019).
    [1]

    Hilgenfeldt S, Lohse D, Brenner M P 1996 Phys. Fluids 8 2808Google Scholar

    [2]

    Yasui K 1997 Phys. Rev. E 56 6750Google Scholar

    [3]

    Toegel R, Lohse D 2003 J. Chem. Phys. 118 1863Google Scholar

    [4]

    Shen Y, Yasui K, Sun Z C, Mei B, You M Y, Zhu T 2016 Ultrason. Sonochem. 29 394Google Scholar

    [5]

    胡静, 林书玉, 王成会, 李锦 2013 物理学报 62 134303Google Scholar

    Hu J, Lin S Y, Wang C H, Li J 2013 Acta Phys. Sin. 62 134303Google Scholar

    [6]

    张鹏利, 林书玉, 朱华泽, 张涛 2019 物理学报 68 134301Google Scholar

    Zhang P L, Lin S Y, Zhu H Z, Zhang T 2019 Acta Phys.Sin. 68 134301Google Scholar

    [7]

    清河美, 那仁满都拉 2020 物理学报 69 184301Google Scholar

    Qinghim, Naranmandula 2020 Acta Phys. Sin. 69 184301Google Scholar

    [8]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924Google Scholar

    [9]

    Doinikov A A 2001 Phys. Rev. E 64 026301Google Scholar

    [10]

    Sadighi-Bonabi R, Rezaee N, Ebrahimi H, Mirheydari M 2010 Phys. Rev. E 82 016316Google Scholar

    [11]

    Zhang Y N, Zhang Y N, Li S C 2016 Ultrason. Sonochem. 29 129Google Scholar

    [12]

    Pandey V 2019 Phys. Rev. E 99 042209Google Scholar

    [13]

    Luo J, Niu Z P 2019 Sci. Rep. 9 1352Google Scholar

    [14]

    Zhang L L, Chen W Z, Zhang Y Y, Wu Y R, Wang X, Zhao G Y 2020 Chin. Phys. B 29 034303Google Scholar

    [15]

    李想, 陈勇, 封皓, 綦磊 2020 物理学报 69 184703Google Scholar

    Li X, Chen Y, Feng H, Qi L 2020 Acta Phys. Sin. 69 184703Google Scholar

    [16]

    Shen Y, Zhang L L, Wu Y R, Chen W Z 2021 Ultrason. Sonochem. 73 105535Google Scholar

    [17]

    Qin D, Zou Q Q, Lei S, Wang W, Li Z Y 2021 Ultrason. Sonochem. 78 105712Google Scholar

    [18]

    Zhang X M, Li F, Wang C H, Mo R Y, Hu J, Guo J Z, Lin S Y 2022 Ultrason. 126 106809Google Scholar

    [19]

    王德鑫, 那仁满都拉 2018 物理学报 67 037802Google Scholar

    Wang D X, Naranmandula 2018 Acta Phys.Sin. 67 037802Google Scholar

    [20]

    王寻, 黎奥, 周敏, 梁金福, 张泽坤, 吴伟 2022 应用声学 41 735

    Wang X, Li A, Zhou M, Liang J F, Zhang Z K, Wu W 2022 J. Appl. Acoust. 41 735

    [21]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609Google Scholar

    [22]

    Shen Z Z 2020 Chin. Phys. B 29 014304Google Scholar

    [23]

    徐珂, 许龙, 周光平 2021 物理学报 70 194301Google Scholar

    Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 194301Google Scholar

    [24]

    Métayer O L, Saurel R 2016 Phys. Fluids 28 046102Google Scholar

    [25]

    Toegel R, Gompf B, Pecha R, Lohse D 2000 Phys. Rev. Lett. 85 3165Google Scholar

    [26]

    Longwell P A, Olin J B, Sage B H 1958 Ind. Eng. Chem. Chem. Eng. Data Series 3 175Google Scholar

    [27]

    Hirschfelder J A, Curtiss C F, Bird R B 1954 Molecular Theory of Gases and Liquids (New York: Wiley) pp293–302

    [28]

    Dehane A, Merouani S, Hamdaoui O, Alghyamah A 2021 Ultrason. Sonochem. 73 105511Google Scholar

    [29]

    Yasui K, Tuziuti T, Kanematsu W 2016 Phys. Rev. E 94 013106Google Scholar

    [30]

    Jishnu C R, Salih A M 2018 Fluid Phase Equilib. 483 182Google Scholar

    [31]

    Yasui K 1995 J. Acoust. Soc. Am. 98 2772Google Scholar

  • 图 1  空化气泡内气体最大总分子数$ N_\mathrm{\rm{T}, max} $的变化 (a)当$R_{20}=5 \;\text{μm}$, $ A=1.32 P_{0} $, $ f_{0}=20\;\mathrm{kHz} $时, $ N_\mathrm{\rm{T}, max} $随气泡1初始半径的变化; (b)当$ R_{10}=R_{20}=5 \;\text{μm} $, $ f_{0}=20\;\mathrm{kHz} $时, $ N_\mathrm{\rm{T}, max} $随驱动声压的变化; (c)当$ R_{10}=R_{20}=5 \;\text{μm} $, $ A=1.32 P_{0} $ 时, $ N_\mathrm{\rm{T}, max} $随驱动频率的变化

    Figure 1.  Change of the maximum total molecular number $ N_\mathrm{\rm{T}, max} $ of gas in cavitation bubble: (a) $ N_\mathrm{\rm{T}, max} $ changes with the initial radius of bubble 1 at $ R_{20}=5\; \text{μm} $, $ A=1.32 P_{0} $, $ f_{0}=20\;\mathrm{kHz} $; (b) $ N_\mathrm{\rm{T}, max} $ changes with driving sound pressure at $ R_{10}=R_{20}=5 \;\text{μm} $, $ f_{0}=20\;\mathrm{kHz} $; (c) $ N_\mathrm{\rm{T}, max} $ changes with driving frequency at $ R_{10}=R_{20}=5 \;\text{μm} $, $ A=1.32 P_{0} $.

    图 2  空化气泡归一化最大半径和次Bjerknes力系数随气泡1初始半径的变化 (a)归一化最大半径; (b)次Bjerknes力系数

    Figure 2.  Maximum normalized radius of cavitation the bubbles and the secondary Bjerknes force coefficient change with the initial radius of bubble 1: (a) Maximum normalized radius; (b) the secondary Bjerknes force coefficient

    图 3  空化气泡归一化最大半径和次Bjerknes力系数随驱动声压的变化 (a)归一化最大半径; (b)次Bjerknes力系数

    Figure 3.  Maximum normalized radius of cavitation the bubbles and the secondary Bjerknes force coefficient change with driving sound pressure: (a) Maximum normalized radius; (b) the secondary Bjerknes force coefficient

    图 4  空化气泡归一化最大半径和次Bjerknes力系数随驱动频率的变化 (a) 归一化最大半径; (b) 次Bjerknes力系数

    Figure 4.  Maximum normalized radius of cavitation the bubbles and the secondary Bjerknes force coefficient change with driving frequency: (a) Maximum normalized radius; (b) the secondary Bjerknes force coefficient

    表 1  模型1的相关物理参数

    Table 1.  Related physical parameters of model 1

    参数 单位
    液体密度 $ \rho_{0} $ 998 $ \mathrm{kg{\cdot} m^{-3}} $
    黏性系数 μ 0.001 $ \mathrm{Pa{\cdot} s} $
    表面张力 σ 0.0725 $ \mathrm{N{\cdot} m^{-1}} $
    环境温度 $ T_{\mathrm{0}} $ 300 $ \mathrm{K} $
    液体热容比 $ \gamma_\mathrm{l} $ 1.19 $ - $
    液体热容 $ C_\mathrm{V, l} $ 3610 $ \mathrm{J{\cdot} kg^{-1} {\cdot} K^{-1}} $
    饱和蒸汽压 $ P_\mathrm{v} $ $ 2.3381\times 10^{3} $ $ \mathrm{Pa} $
    液体分子共体积 $ b_\mathrm{l} $ $ 6.7145\times 10^{-4} $ $ \mathrm{m^3{\cdot} kg^{-1}} $
    液体压力常数 $ B_\mathrm{l} $ $ 6.2239\times 10^8 $ $ \mathrm{Pa} $
    气体压力常数 $ B_\mathrm{g} $ 0 $ \mathrm{Pa} $
    气体摩尔质量 $ M_{\mathrm{H_{2}O}} $ 0.018 $ \mathrm{kg{\cdot} mol^{-1}} $
    气体摩尔质量 $ M_{\mathrm{Ar}} $ 0.04 $ \mathrm{kg{\cdot} mol^{-1}} $
    阿伏伽德罗常数 $ N_{\mathrm{A}} $ $ 6.023\times 10^{23} $ $ \mathrm{mol^{-1}} $
    玻尔斯曼常数 $ k_{\mathrm{B}} $ $ 1.38\times 10^{-23} $ $ \mathrm{J{\cdot} K^{-1}} $
    环境压力 $ P_{\mathrm{0}} $ $ 10^{5} $ $ \mathrm{Pa} $
    气泡间距 $d_{ij}$ $ 10^{-3} $ $ \mathrm{m} $
    DownLoad: CSV

    表 2  模型2的相关物理参数

    Table 2.  Related physical parameters of model 2

    参数 单位
    液体密度 $ \rho_{0} $ 998 $ \mathrm{kg{\cdot} m^{-3}} $
    黏性系数 μ 0.001 $ \mathrm{Pa{\cdot} s} $
    表面张力 σ 0.0725 $ \mathrm{N{\cdot} m^{-1}} $
    环境压力 $ P_{\mathrm{0}} $ $ 1\times 10^{5} $ $ \mathrm{Pa} $
    气体热容比 $ \gamma_\mathrm{g} $ 1.67 $ - $
    液体中的声速 $ C_\mathrm{l} $ 1500 $ \mathrm{m{\cdot} s^{-1}} $
    气泡间距 $d_{ij}$ $ 1\times 10^{-3} $ $ \mathrm{m} $
    DownLoad: CSV
  • [1]

    Hilgenfeldt S, Lohse D, Brenner M P 1996 Phys. Fluids 8 2808Google Scholar

    [2]

    Yasui K 1997 Phys. Rev. E 56 6750Google Scholar

    [3]

    Toegel R, Lohse D 2003 J. Chem. Phys. 118 1863Google Scholar

    [4]

    Shen Y, Yasui K, Sun Z C, Mei B, You M Y, Zhu T 2016 Ultrason. Sonochem. 29 394Google Scholar

    [5]

    胡静, 林书玉, 王成会, 李锦 2013 物理学报 62 134303Google Scholar

    Hu J, Lin S Y, Wang C H, Li J 2013 Acta Phys. Sin. 62 134303Google Scholar

    [6]

    张鹏利, 林书玉, 朱华泽, 张涛 2019 物理学报 68 134301Google Scholar

    Zhang P L, Lin S Y, Zhu H Z, Zhang T 2019 Acta Phys.Sin. 68 134301Google Scholar

    [7]

    清河美, 那仁满都拉 2020 物理学报 69 184301Google Scholar

    Qinghim, Naranmandula 2020 Acta Phys. Sin. 69 184301Google Scholar

    [8]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924Google Scholar

    [9]

    Doinikov A A 2001 Phys. Rev. E 64 026301Google Scholar

    [10]

    Sadighi-Bonabi R, Rezaee N, Ebrahimi H, Mirheydari M 2010 Phys. Rev. E 82 016316Google Scholar

    [11]

    Zhang Y N, Zhang Y N, Li S C 2016 Ultrason. Sonochem. 29 129Google Scholar

    [12]

    Pandey V 2019 Phys. Rev. E 99 042209Google Scholar

    [13]

    Luo J, Niu Z P 2019 Sci. Rep. 9 1352Google Scholar

    [14]

    Zhang L L, Chen W Z, Zhang Y Y, Wu Y R, Wang X, Zhao G Y 2020 Chin. Phys. B 29 034303Google Scholar

    [15]

    李想, 陈勇, 封皓, 綦磊 2020 物理学报 69 184703Google Scholar

    Li X, Chen Y, Feng H, Qi L 2020 Acta Phys. Sin. 69 184703Google Scholar

    [16]

    Shen Y, Zhang L L, Wu Y R, Chen W Z 2021 Ultrason. Sonochem. 73 105535Google Scholar

    [17]

    Qin D, Zou Q Q, Lei S, Wang W, Li Z Y 2021 Ultrason. Sonochem. 78 105712Google Scholar

    [18]

    Zhang X M, Li F, Wang C H, Mo R Y, Hu J, Guo J Z, Lin S Y 2022 Ultrason. 126 106809Google Scholar

    [19]

    王德鑫, 那仁满都拉 2018 物理学报 67 037802Google Scholar

    Wang D X, Naranmandula 2018 Acta Phys.Sin. 67 037802Google Scholar

    [20]

    王寻, 黎奥, 周敏, 梁金福, 张泽坤, 吴伟 2022 应用声学 41 735

    Wang X, Li A, Zhou M, Liang J F, Zhang Z K, Wu W 2022 J. Appl. Acoust. 41 735

    [21]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609Google Scholar

    [22]

    Shen Z Z 2020 Chin. Phys. B 29 014304Google Scholar

    [23]

    徐珂, 许龙, 周光平 2021 物理学报 70 194301Google Scholar

    Xu K, Xu L, Zhou G P 2021 Acta Phys. Sin. 70 194301Google Scholar

    [24]

    Métayer O L, Saurel R 2016 Phys. Fluids 28 046102Google Scholar

    [25]

    Toegel R, Gompf B, Pecha R, Lohse D 2000 Phys. Rev. Lett. 85 3165Google Scholar

    [26]

    Longwell P A, Olin J B, Sage B H 1958 Ind. Eng. Chem. Chem. Eng. Data Series 3 175Google Scholar

    [27]

    Hirschfelder J A, Curtiss C F, Bird R B 1954 Molecular Theory of Gases and Liquids (New York: Wiley) pp293–302

    [28]

    Dehane A, Merouani S, Hamdaoui O, Alghyamah A 2021 Ultrason. Sonochem. 73 105511Google Scholar

    [29]

    Yasui K, Tuziuti T, Kanematsu W 2016 Phys. Rev. E 94 013106Google Scholar

    [30]

    Jishnu C R, Salih A M 2018 Fluid Phase Equilib. 483 182Google Scholar

    [31]

    Yasui K 1995 J. Acoust. Soc. Am. 98 2772Google Scholar

  • [1] Xu Long, Wang Yao. Simulation of dynamic process of double bubble coupled acoustic cavitation. Acta Physica Sinica, 2023, 72(2): 024303. doi: 10.7498/aps.72.20221571
    [2] Huang Chen-Yang, Li Fan, Tian Hua, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong, Mo Run-Yang. Analysis of suppressive effect of large bubbles on oscillation of cavitation bubble in cavitation field. Acta Physica Sinica, 2023, 72(6): 064302. doi: 10.7498/aps.72.20221955
    [3] Li Fan, Zhang Xian-Mei, Tian Hua, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong, Mo Run-Yang. Structure stability of cyclic chain-like cavitation cloud in thin liquid layer. Acta Physica Sinica, 2022, 71(8): 084303. doi: 10.7498/aps.71.20212257
    [4] Qin Dui, Zou Qing-Qin, Li Zhang-Yong, Wang Wei, Wan Ming-Xi, Feng Yi. Acoustic cavitation of encapsulated microbubble and its mechanical effect in soft tissue. Acta Physica Sinica, 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [5] Li Xiang, Chen Yong, Feng Hao, Qi Lei. Axially-distributed bubble-bubble interaction under a coustic excitation in pipeline. Acta Physica Sinica, 2020, 69(18): 184703. doi: 10.7498/aps.69.20200546
    [6] Qinghim, Naranmandula. Influence of large bubbles on cavitation effect of small bubbles in cavitation multi-bubbles. Acta Physica Sinica, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [7] Wang De-Xin, Naranmandula. Theoretical study of coupling double-bubbles ultrasonic cavitation characteristics. Acta Physica Sinica, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [8] Ma Yan, Lin Shu-Yu, Xu Jie, Tang Yi-Fan. Influnece of nonspherical effects on the secondary Bjerknes force in a strong acoustic field. Acta Physica Sinica, 2017, 66(1): 014302. doi: 10.7498/aps.66.014302
    [9] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [10] Ma Yan, Lin Shu-Yu, Xian Xiao-Jun. Volume pulsation and scattering of bubbles under the second Bjerknes force. Acta Physica Sinica, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [11] Yao Hong-Bin, Zheng Yu-Jun. The non-adiabatic effects of NaI molecule. Acta Physica Sinica, 2011, 60(12): 128201. doi: 10.7498/aps.60.128201
    [12] Lu Yi-Gang, Wu Xiong-Hui. Computational analysis of double-bubble ultrasonic cavitation. Acta Physica Sinica, 2011, 60(4): 046202. doi: 10.7498/aps.60.046202
    [13] Cui Hu, Zhang Bing-Zhi, She Wei-Long. Deflection characteristics of incoherent coupled bright and dark photovoltaic spatial soliton pairs. Acta Physica Sinica, 2010, 59(3): 1823-1830. doi: 10.7498/aps.59.1823
    [14] Dong Hao, Ren Min, Zhang Lei, Deng Ning, Chen Pei-Yi. Thermal effect in current induced magnetic switching. Acta Physica Sinica, 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [15] Zhu Zhang-Ming, Hao Bao-Tian, Qian Li-Bo, Zhong Bo, Yang Yin-Tang. A compact interconnect temperature distribution model considering the via effect and the heat fringing effect. Acta Physica Sinica, 2009, 58(10): 7130-7135. doi: 10.7498/aps.58.7130
    [16] Yan Li-Fen, Wang Hong-Cheng, Zhang Bing-Zhi, She Wei-Long. Self-deflection of dark and gray photovoltaic solitons. Acta Physica Sinica, 2007, 56(8): 4627-4634. doi: 10.7498/aps.56.4627
    [17] Yan Li-Fen, Wang Hong-Cheng, She Wei-Long. Influence of diffusion on the interaction between photovoltaic spatial solitons. Acta Physica Sinica, 2006, 55(10): 5257-5262. doi: 10.7498/aps.55.5257
    [18] ZHANG JIAN-HUA, MENG QING-MIAO, LI CHUAN-AN. THE QUANTUM THERMAL AND NON-THERMAL EFFECTS IN THE SPACE-TIME DETERMINED BY GSSEC BLACK HOLE. Acta Physica Sinica, 1996, 45(2): 177-184. doi: 10.7498/aps.45.177
    [19] SHEN HONG-YUAN. THERMAL EFFECTS IN ORTHORHOMBIC YAP CRYSTALS. Acta Physica Sinica, 1981, 30(8): 1075-1099. doi: 10.7498/aps.30.1075
    [20] XIA MENG-FEN. THE ANOMALOUS DIFFUSION EFFECT IN A STOCHASTIC MAGNETIC FIELD. Acta Physica Sinica, 1981, 30(9): 1275-1278. doi: 10.7498/aps.30.1275
Metrics
  • Abstract views:  2599
  • PDF Downloads:  65
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2023
  • Accepted Date:  17 July 2023
  • Available Online:  18 July 2023
  • Published Online:  05 October 2023

/

返回文章
返回