Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Edge states and skin effect dependent electron transport properties of non-Hermitian Su-Schrieffer-Heeger chain

Yang Yan-Li Duan Zhi-Lei Xue Hai-Bin

Citation:

Edge states and skin effect dependent electron transport properties of non-Hermitian Su-Schrieffer-Heeger chain

Yang Yan-Li, Duan Zhi-Lei, Xue Hai-Bin
PDF
HTML
Get Citation
  • In the non-reciprocal Su-Schrieffer-Heeger (SSH) chain, the hopping amplitude of an electron in the intra-cell depends on its hopping direction. Consequently, the non-Hermitian SSH chain has both non-trivial topological edge state and non-Hermitian skin effect. However, how to detect the non-trivial topological edge states and non-Hermitian skin effect has become an important topic in non-Hermitian physics. In this paper, we study the relationships of the non-trivial topological edge states and the non-Hermitian skin effect of non-Hermitian SSH chain with their electron transport properties in the vicinity of the zero energy. It is demonstrated that when the peak value of the electron transmission probability in the vicinity of the zero energy is much smaller than 1, the non-Hermitian SSH chain has a left-non-Hermitian skin effect; while that in the vicinity of the zero energy is much larger than 1, the non-Hermitian SSH chain has a right-non-Hermitian skin effect. In particular, the skin effect of non-Hermitian SSH chain can be further enhanced in the region of non-trivial topological edge states. Moreover, with the increase of the electron tunneling coupling amplitudes between the non-Hermitian SSH chain and the left and right leads from the weak coupling regime to the strong coupling one, the number of the dips of reflection probability in the vicinity of the zero energy will change from two to zero. Therefore, these results theoretically provide an alternative scheme for detecting non-trivial topological edge states and non-Hermitian skin effect types of the non-Hermitian SSH chain.
      Corresponding author: Xue Hai-Bin, xuehaibin@tyut.edu.cn
    • Funds: Project supported by the Applied Basic Research Program of Shanxi Province, China (Grant Nos. 20210302123184, 201601D011015) , the Outstanding Innovative Academic Leader of Higher Learning Institutions of Shanxi Province, China (Grant No. 163220120-S), and the Teaching Reform and Innovation Project of Colleges and Universities in Shanxi Province, China (Grant No. J20221492).
    [1]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249Google Scholar

    [2]

    Bergholtz E J, Budich J C, K Flore K 2021 Rev. Mod. Phys. 93 015005Google Scholar

    [3]

    Zhang X, Zhang T, Lu M H, Chen Y F 2022 Adv. Phys. -X 7 2109431Google Scholar

    [4]

    Li A, Wei H, Cotrufo M, Chen W, Mann S, Ni X, Xu B, Chen J, Wang J, Fan S, Qiu CW, Alù A, Chen L 2023 Nat. Nanotechnol. 18 706Google Scholar

    [5]

    Banerjee A, Sarkar R, Dey S, Narayan A 2023 J. Phys. Condens. Matter 35 333001Google Scholar

    [6]

    Heiss W D 2012 J. Phys. A: Math. Theor. 45 444016Google Scholar

    [7]

    Mandal I, Bergholtz E J, 2021 Phys. Rev. Lett. 127 186601Google Scholar

    [8]

    Wang Q, Chong Y D 2023 J. Opt. Soc. Am. B 40 1443Google Scholar

    [9]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, ThomaleR 2020 Nat. Phys. 16 747Google Scholar

    [10]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [11]

    Ghataka A, Brandenbourgera M, van Wezela J, Coulaisa C 2020 Proc. Natl. Acad. Sci. U. S. A. 117 29561Google Scholar

    [12]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [13]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103(RGoogle Scholar

    [14]

    Wang X R, Guo C X, Kou S P 2020 Phys. Rev. B 101 121116(RGoogle Scholar

    [15]

    Wang X R, Guo C X, Du Q, Kou S P 2020 Chin. Phys. Lett. 37 117303Google Scholar

    [16]

    Jezequel L, Delplace P 2023 Phys. Rev. Lett. 130 066601Google Scholar

    [17]

    Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, SzameitA 2015 Phys. Rev. Lett. 115 040402Google Scholar

    [18]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar

    [19]

    Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311Google Scholar

    [20]

    Liu S, Shao R, Ma S, Zhang L, You O, Wu H, Xiang Y J, Cui T J, Zhang S 2021 Research 2021 5608038Google Scholar

    [21]

    Liang Q, Xie D, Dong Z, Li H, Li H, Gadway B, Yi W, Yan B 2022 Phys. Rev. Lett. 129 070401Google Scholar

    [22]

    Zhou Q, Wu J, Pu Z, Lu J, Huang X, Deng W, Ke M, Liu Z, 2023 Nat. Commun. 14 4569Google Scholar

    [23]

    Feng Y, Liu Z, Liu F, Yu J, Liang S, Li F, Zhang Y, Xiao M, Zhang Z 2023 Phys. Rev. Lett. 131 013802Google Scholar

    [24]

    Zhang H, Chen T, Li L, Lee C H, Zhang X 2023 Phys. Rev. B 107 085426Google Scholar

    [25]

    Lee C H, Thomale R 2019 Phys. Rev. B 99 201103(RGoogle Scholar

    [26]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [27]

    Lin Z, Lin Y, Yi W 2022 Phys. Rev. B 106 063112Google Scholar

    [28]

    Zeng Q B 2022 Phys. Rev. B 106 235411Google Scholar

    [29]

    Li J R, Luo C, Zhang L L, Zhang S F, Zhu P P, Gong W J 2023 Phys. Rev. A 107 022222Google Scholar

    [30]

    Tang C, Yang H, Song L, Yao X, Yan P, Cao Y 2023 Phys. Rev. B 108 035410Google Scholar

    [31]

    Kokhanchik P, Solnyshkov D, MalpuechG 2023 Phys. Rev. B 108 L041403Google Scholar

    [32]

    Su W P, SchriefferJ R, HeegerA J 1980 Phys. Rev. B 22 2099Google Scholar

    [33]

    Li H, Yi W 2022 Phys. Rev. A 106 053311Google Scholar

    [34]

    张蓝云, 薛海斌, 陈彬, 陈建宾, 邢丽丽 2020 物理学报 69 077301Google Scholar

    Zhang L Y, Xue H B, Chen B, Chen J B, Xing L L 2020 Acta Phys. Sin. 69 077301Google Scholar

    [35]

    薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽 2021 物理学报 70 087301Google Scholar

    Xue H B, Duan Z L, Chen B, Chen J B, Xing L L 2021 Acta Phys. Sin. 70 087301Google Scholar

    [36]

    Ye C Z, Zhang L Y, Xue H B 2022 Chin. Phys. B 31 027304Google Scholar

    [37]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

  • 图 1  非厄米SSH链与左、右导线耦合系统的示意图, 其中, 小的实心圆(红色)表示A子格, 大的实心圆(绿色)表示B子格, 空心圆(黑色)表示导线上的原子

    Figure 1.  Schematic diagram of the non-Hermitian SSH chain coupled to the left and right leads. The small solid circles (red) represent the A sublattices, the large solid circles (green) represent the B sublattices, the hollow circles (black) represent atoms on the leads.

    图 2  (a1), (a2)非厄米SSH链的能谱图实部; (b1), (b2)非厄米SSH链的能谱图虚部; (c1), (c2)非厄米SSH链的不同缠绕数随着$ \upsilon $的变化图. 其中, (a1), (b1), (c1) $ \gamma = 0.4 $; (a2), (b2)和(c2) $ \gamma = 1.4 $. 非厄米SSH链的其他参数选取为$ w = 1.0 $, $ N = 20 $

    Figure 2.  (a1), (a2) Real part of the energy spectrum of the non-Hermitian SSH chain; (b1), (b2) imaginary part of the energy spectrum of the non-Hermitian SSH chain; (c1), (c2) the different winding number of the non-Hermitian SSH chain as a function of the value of $\upsilon $. Here, (a1), (b1), (c1) $ \gamma = 0.4 $; (a2), (b2), (c2) $ \gamma = 1.4 $. The other parameters of the non-Hermitian SSH chain are chosen as $ w = 1.0 $ and $ N = 20 $.

    图 3  非厄米SSH链在零能附近的本征值的本征态波函数概率幅的绝对值随子格$n$和$ \upsilon $值变化的相图 (a) $\gamma = $$ 0.4$; (b) $\gamma = 1.4$; 非厄米SSH链的其他参数选取为$ w = $$ 1.0 $, $ N = 20 $

    Figure 3.  Absolute value of probability amplitudes of the wave functions of the nearly zero-energy eigenstates of the non-Hermitian SSH chain as a function of the sublattice $n$and the value of $ \upsilon $: (a) $\gamma = 0.4$; (b) $\gamma = 1.4$. The other parameters of the non-Hermitian SSH chain are chosen as $ w = 1.0 $and $ N = 20 $.

    图 4  非厄米SSH链的本征态波函数在每个子格上的概率分布图 (a1) $ \upsilon = 0.01 $; (a2) $ \upsilon = - 0.01 $; (b1) $ \upsilon = 0.2 $; (b2) $ \upsilon = - 0.2 $; (c1) $ \upsilon = 0.4 $; (c2) $ \upsilon = - 0.4 $; (d1) $ \upsilon = 0.7 $; (d2) $ \upsilon = - 0.7 $; (e1) $ \upsilon = 1.5 $; (e2) $ \upsilon = - 1.5 $; 非厄米SSH链的其他参数选取为$\gamma = $$ 0.4$, $ w = 1.0 $, $ N = 20 $

    Figure 4.  Distribution of probabilities of the wave functions of the non-Hermitian SSH chain: (a1) $ \upsilon = 0.01 $; (a2) $ \upsilon = - 0.01 $; (b1) $ \upsilon = 0.2 $; (b2) $ \upsilon = - 0.2 $; (c1) $ \upsilon = 0.4 $; (c2) $ \upsilon = - 0.4 $; (d1) $ \upsilon = 0.7 $; (d2) $ \upsilon = - 0.7 $; (e1) $ \upsilon = 1.5 $; (e2) $ \upsilon = - 1.5 $. The other parameters of the non-Hermitian SSH chain are chosen as $\gamma = 0.4$, $ w = 1.0 $ and $ N = 20 $.

    图 5  非厄米SSH链的本征态波函数在每个子格上的概率分布图 (a1) $ \upsilon = 0.5 $; (a2) $ \upsilon = - 0.5 $; (b1) $ \upsilon = 1.3 $; (b2) $ \upsilon = - 1.3 $; (c1) $ \upsilon = 1.4 $; (c2) $ \upsilon = - 1.4 $; (d1) $ \upsilon = 1.5 $; (d2) $ \upsilon = - 1.5 $; (e1) $ \upsilon = 2.0 $; (e2) $ \upsilon = - 2.0 $; 非厄米SSH链的其他参数选取为$\gamma = $$ 1.4$, $ w = 1.0 $, $ N = 20 $

    Figure 5.  Distribution of probabilities of the wave functions of the non-Hermitian SSH chain: (a1) $ \upsilon = 0.5 $; (a2) $ \upsilon = - 0.5 $; (b1) $ \upsilon = 1.3 $; (b2) $ \upsilon = - 1.3 $; (c1) $ \upsilon = 1.4 $; (c2) $ \upsilon = - 1.4 $; (d1) $ \upsilon = 1.5 $; (d2) $ \upsilon = - 1.5 $; (e1) $ \upsilon = 2.0 $; (e2) $ \upsilon = - 2.0 $. The other parameters of the non-Hermitian SSH chain are chosen as $\gamma = 1.4$, $ w = 1.0 $ and $ N = 20 $.

    图 6  非厄米SSH链的电子透射率和反射率随不同隧穿耦合振幅和入射电子能量变化的相图 (a1), (b1) $ \upsilon = 0.5 $; (a2), (b2) $ \upsilon = $$ - 0.5 $; 非厄米SSH链的其他参数选取为$\gamma = 0.4$, $ w = 1.0 $, $ N = 20 $

    Figure 6.  Transmission probabilities and reflection probabilities of the non-Hermitian SSH chain as a function of the amplitude of tunneling coupling and the energy of incident electron: (a1), (b1) $ \upsilon = 0.5 $; (a2), (b2) $ \upsilon = - 0.5 $. The other parameters of the non-Hermitian SSH chain are chosen as $\gamma = 0.4$, $ w = 1.0 $ and $ N = 20 $.

    图 7  非厄米SSH链的电子透射率和反射率随不同隧穿耦合振幅和入射电子能量变化的相图 (a1), (b1) $ \upsilon = 1.3 $; (a2), (b2) $ \upsilon = $$ - 1.3 $; 非厄米SSH链的其他参数选取为$\gamma = 1.4$, $ w = 1.0 $, $ N = 20 $

    Figure 7.  Transmission probabilities and reflection probabilities of the non-Hermitian SSH chain as a function of the amplitude of tunneling coupling and the energy of incident electron: (a1), (b1) $ \upsilon = 1.3 $; (a2), (b2) $ \upsilon = - 1.3 $. The other parameters of the non-Hermitian SSH chain are chosen as $\gamma = 1.4$, $ w = 1.0 $ and $ N = 20 $.

    图 8  (a1), (b1)非厄米SSH链在零能级附近的能谱图; (a2), (b2)非厄米SSH链与左导线原子$ j = - 1 $和右导线原子$ j = 1 $耦合的修正系统在零能级附近的能谱图. 其中, (a1) $\gamma = 0.4$, (a2) $\gamma = 0.4$, $ {t_{\text{L}}} = {t_{\text{R}}} = 0.00002 $; (b1) $\gamma = 1.4$, (b2) $\gamma = 1.4$, $ {t_{\text{L}}} = $$ {t_{\text{R}}} = 0.004 $. 非厄米SSH链的其他参数选取为$ w = 1.0 $, $ N = 20 $.

    Figure 8.  (a1), (b1) Real part of the energy spectrum of the non-Hermitian SSH chain in thevicinity of the zero energy; (a2), (b2) real part of the energy spectrum of the non-Hermitian SSH chain coupled to the first sublattice of the left lead $ j = - 1 $ and that of the right lead $ j = 1 $ in the vicinity of the zero energy. Here, (a1) $\gamma = 0.4$, (a2) $\gamma = 0.4$, $ {t_{\text{L}}} = {t_{\text{R}}} = 0.00002 $; (b1) $\gamma = 1.4$, (b2) $\gamma = $$ 1.4$, $ {t_{\text{L}}} = {t_{\text{R}}} = 0.004 $. The other parameters of the non-Hermitian SSH chain are chosen as $ w = 1.0 $ and $ N = 20 $.

  • [1]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249Google Scholar

    [2]

    Bergholtz E J, Budich J C, K Flore K 2021 Rev. Mod. Phys. 93 015005Google Scholar

    [3]

    Zhang X, Zhang T, Lu M H, Chen Y F 2022 Adv. Phys. -X 7 2109431Google Scholar

    [4]

    Li A, Wei H, Cotrufo M, Chen W, Mann S, Ni X, Xu B, Chen J, Wang J, Fan S, Qiu CW, Alù A, Chen L 2023 Nat. Nanotechnol. 18 706Google Scholar

    [5]

    Banerjee A, Sarkar R, Dey S, Narayan A 2023 J. Phys. Condens. Matter 35 333001Google Scholar

    [6]

    Heiss W D 2012 J. Phys. A: Math. Theor. 45 444016Google Scholar

    [7]

    Mandal I, Bergholtz E J, 2021 Phys. Rev. Lett. 127 186601Google Scholar

    [8]

    Wang Q, Chong Y D 2023 J. Opt. Soc. Am. B 40 1443Google Scholar

    [9]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, ThomaleR 2020 Nat. Phys. 16 747Google Scholar

    [10]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [11]

    Ghataka A, Brandenbourgera M, van Wezela J, Coulaisa C 2020 Proc. Natl. Acad. Sci. U. S. A. 117 29561Google Scholar

    [12]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [13]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103(RGoogle Scholar

    [14]

    Wang X R, Guo C X, Kou S P 2020 Phys. Rev. B 101 121116(RGoogle Scholar

    [15]

    Wang X R, Guo C X, Du Q, Kou S P 2020 Chin. Phys. Lett. 37 117303Google Scholar

    [16]

    Jezequel L, Delplace P 2023 Phys. Rev. Lett. 130 066601Google Scholar

    [17]

    Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, SzameitA 2015 Phys. Rev. Lett. 115 040402Google Scholar

    [18]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar

    [19]

    Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311Google Scholar

    [20]

    Liu S, Shao R, Ma S, Zhang L, You O, Wu H, Xiang Y J, Cui T J, Zhang S 2021 Research 2021 5608038Google Scholar

    [21]

    Liang Q, Xie D, Dong Z, Li H, Li H, Gadway B, Yi W, Yan B 2022 Phys. Rev. Lett. 129 070401Google Scholar

    [22]

    Zhou Q, Wu J, Pu Z, Lu J, Huang X, Deng W, Ke M, Liu Z, 2023 Nat. Commun. 14 4569Google Scholar

    [23]

    Feng Y, Liu Z, Liu F, Yu J, Liang S, Li F, Zhang Y, Xiao M, Zhang Z 2023 Phys. Rev. Lett. 131 013802Google Scholar

    [24]

    Zhang H, Chen T, Li L, Lee C H, Zhang X 2023 Phys. Rev. B 107 085426Google Scholar

    [25]

    Lee C H, Thomale R 2019 Phys. Rev. B 99 201103(RGoogle Scholar

    [26]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [27]

    Lin Z, Lin Y, Yi W 2022 Phys. Rev. B 106 063112Google Scholar

    [28]

    Zeng Q B 2022 Phys. Rev. B 106 235411Google Scholar

    [29]

    Li J R, Luo C, Zhang L L, Zhang S F, Zhu P P, Gong W J 2023 Phys. Rev. A 107 022222Google Scholar

    [30]

    Tang C, Yang H, Song L, Yao X, Yan P, Cao Y 2023 Phys. Rev. B 108 035410Google Scholar

    [31]

    Kokhanchik P, Solnyshkov D, MalpuechG 2023 Phys. Rev. B 108 L041403Google Scholar

    [32]

    Su W P, SchriefferJ R, HeegerA J 1980 Phys. Rev. B 22 2099Google Scholar

    [33]

    Li H, Yi W 2022 Phys. Rev. A 106 053311Google Scholar

    [34]

    张蓝云, 薛海斌, 陈彬, 陈建宾, 邢丽丽 2020 物理学报 69 077301Google Scholar

    Zhang L Y, Xue H B, Chen B, Chen J B, Xing L L 2020 Acta Phys. Sin. 69 077301Google Scholar

    [35]

    薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽 2021 物理学报 70 087301Google Scholar

    Xue H B, Duan Z L, Chen B, Chen J B, Xing L L 2021 Acta Phys. Sin. 70 087301Google Scholar

    [36]

    Ye C Z, Zhang L Y, Xue H B 2022 Chin. Phys. B 31 027304Google Scholar

    [37]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

  • [1] Huang Ze-Xin, Sheng Zong-Qiang, Cheng Le-Le, Cao San-Zhu, Chen Hua-Jun, Wu Hong-Wei. Steering non-Hermitian skin states by engineering interface in 1D nonreciprocal acoustic crystal. Acta Physica Sinica, 2024, 73(21): 214301. doi: 10.7498/aps.73.20241087
    [2] Xu Can-Hong, Xu Zhi-Cong, Zhou Zi-Yu, Cheng En-Hong, Lang Li-Jun. Electrical circuit simulation of non-Hermitian lattice models. Acta Physica Sinica, 2023, 72(20): 200301. doi: 10.7498/aps.72.20230914
    [3] Hou Bo, Zeng Qi-Bo. Non-Hermitian mosaic dimerized lattices. Acta Physica Sinica, 2022, 71(13): 130302. doi: 10.7498/aps.71.20220890
    [4] Chen Shu-Yue, Jiang Chuang, Ke Shao-Lin, Wang Bing, Lu Pei-Xiang. Suppression of non-Hermitian skin effect via Aharonov-Bohm cage. Acta Physica Sinica, 2022, 71(17): 174201. doi: 10.7498/aps.71.20220978
    [5] Deng Tian-Shu. Non-Hermitian skin effect in a domain-wall system. Acta Physica Sinica, 2022, 71(17): 170306. doi: 10.7498/aps.71.20221087
    [6] Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling. Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger. Acta Physica Sinica, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [7] Hu Yu-Min, Song Fei, Wang Zhong. Generalized Brillouin zone and non-Hermitian band theory. Acta Physica Sinica, 2021, 70(23): 230307. doi: 10.7498/aps.70.20211908
    [8] Xue Hai-Bin, Duan Zhi-Lei, Chen Bin, Chen Jian-Bin, Xing Li-Li. Electron transport through Su-Schrieffer-Heeger chain with spin-orbit coupling. Acta Physica Sinica, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [9] Zhang Lan-Yun, Xue Hai-Bin, Chen Bin, Chen Jian-Bin, Xing Li-Li. Electron transport through a quantum-dot-Su-Schrieffer-Heeger-chain system. Acta Physica Sinica, 2020, 69(7): 077301. doi: 10.7498/aps.69.20191871
    [10] Xu Nan, Zhang Yan. Topological edge states with skin effect in a trimerized non-Hermitian lattice. Acta Physica Sinica, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [11] Huang Ya-Ping, Yun Feng, Ding Wen, Wang Yue, Wang Hong, Zhao Yu-Kun, Zhang Ye, Guo Mao-Feng, Hou Xun, Liu Shuo. The reflectivity and ohmic contact resistivity of Ni/Ag/Ti/Au in contact with p-GaN. Acta Physica Sinica, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [12] Wang Zhen-De, Liu Nian-Hua. Reflectivity of semi-infinite one-dimensional photonic crystal composed of alternate layers of ordinary material and negative refraction material. Acta Physica Sinica, 2009, 58(1): 559-564. doi: 10.7498/aps.58.559
    [13] Liu Shi-Yuan, Gu Hua-Yong, Zhang Chuan-Wei, Shen Hong-Wei. A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation. Acta Physica Sinica, 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [14] Du Juan, Zhang Chun-Min, Zhao Bao-Chang, Sun Yao. Analysis of the transmittance of modified Savart polariscope in the static large field of view polarization interference imaging spectrometer. Acta Physica Sinica, 2008, 57(10): 6311-6318. doi: 10.7498/aps.57.6311
    [15] Xu Min, Zhang Yue-Heng, Shen Wen-Zhong. Reflectivity and phase shift of semiconductor far-infrared mirrors. Acta Physica Sinica, 2007, 56(4): 2415-2421. doi: 10.7498/aps.56.2415
    [16] Feng Su-Juan, Shang Liang, Mao Qing-He. Continuously adjusting the reflectivity of fiber loop mirror using a polarization controller. Acta Physica Sinica, 2007, 56(8): 4677-4685. doi: 10.7498/aps.56.4677
    [17] Wang Xiao-Hui, Lü Zhi-Wei, Lin Dian-Yang, Wang Chao, Tang Xiu-Zhang, Gong Kun, Shan Yu-Sheng. Stimulated Brillouin scattering reflection pumped by broadband KrF laser. Acta Physica Sinica, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [18] Peng Zhi-Hong, Zhang Chun-Min, Zhao Bao-Chang, Li Ying-Cai, Wu Fu-Quan. The transmittance of Savart polariscope in polarization interference imaging spectrometer. Acta Physica Sinica, 2006, 55(12): 6374-6381. doi: 10.7498/aps.55.6374
    [19] Sun Ke-Xu, Yi Rong-Qing, Yang Guo-Hong, Jiang Shao-En, Cui Yan-Li, Liu Shen-Ye, Ding Yong-Kun, Cui Ming-Qi, Zhu Pei-Ping, Zhao Yi-Dong, Zhu Jie, Zheng Lei, Zhang Jing-He. The reflectance calibration of soft x-ray planar mirror with different grazing angle. Acta Physica Sinica, 2004, 53(4): 1099-1104. doi: 10.7498/aps.53.1099
    [20] Lü Zhi-Wei, Wang Xiao-Hui, Lin Dian-Yang, Wang Chao, Zhao Xiao-Yan, Tang Xiu-Zhang, Zhang Hai-Feng, Shan Yu-Sheng. A study on the stability of stimulated Brillouin scattering for KrF laser. Acta Physica Sinica, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
Metrics
  • Abstract views:  2978
  • PDF Downloads:  246
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2023
  • Accepted Date:  13 September 2023
  • Available Online:  18 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回