Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation, development, and application of microcombs

Jin Xing Xiao Shen-Yu Gong Qi-Huang Yang Qi-Fan

Citation:

Generation, development, and application of microcombs

Jin Xing, Xiao Shen-Yu, Gong Qi-Huang, Yang Qi-Fan
PDF
HTML
Get Citation
  • Optical frequency comb (OFC) has coherently bridged the gap between light and microwave. Its advent has brought revolutionary progress to the accurate measurements of optical frequency and time, and profoundly promoted the technological development of technology of the contemporary world. The earliest optical frequency combs are generated from mode-locked laser systems. However, optical frequency combs based on mode-locked lasers have typically been limited to laboratory applications, due to their complexity, large size, and high cost. In recent years, a new type of optical frequency comb has emerged to address these problems. It is excited by continuous-wave laser coupling into a high-quality optical microresonator, generating equidistant sidebands in the frequency domain through four-wave mixing, and achieving mode locking in the time domain by using nonlinear effects to balance dispersion. This novel optical frequency comb is named "microcombs". Compared with traditional optical frequency combs, microcombs offer advantages such as compact size, integrability, low power consumption, and a wide repetition frequency range. Their occurrence marks the era of the generation of optical frequency combs towards chip-scale size and has aroused increasing attention from the scientific and industrial communities. This paper is ended by summarizing the current challenges faced by microcombs and giving a prospective outlook on their future development.
      Corresponding author: Yang Qi-Fan, leonardoyoung@pku.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFB2800601), the Natural Science Foundation of Beijing, China (Grant No. Z210004), and the National Natural Science Foundation of China (Grant No. 92150108).
    [1]

    Chebotayev V P, Goldort V G, Klementyev V M, et al. 1982 Appl. Phys. B 29 63Google Scholar

    [2]

    Schnatz H, Lipphardt B, Helmcke J, et al. 1996 Phys. Rev. Lett. 76 18Google Scholar

    [3]

    Diddams S A, Jones D J, Ye J, et al. 2000 Phys. Rev. Lett. 84 5102Google Scholar

    [4]

    Fortier T, Baumann E 2019 Commun. Phys. 2 153Google Scholar

    [5]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [6]

    Diddams S A, Vahala K, Udem T 2020 Science 369 eaay3676Google Scholar

    [7]

    Reichert J, Holzwarth R, Udem T, et al. 1999 Opt. Commun. 172 59Google Scholar

    [8]

    Udem T, Diddams S A, Vogel K R, et al. 2001 Phys. Rev. Lett. 86 4996Google Scholar

    [9]

    Holzwarth R, Udem T, Hänsch T W, et al. 2000 Phys. Rev. Lett. 85 2264Google Scholar

    [10]

    Holzwarth R, Nevsky A Y, Zimmermann M, et al. 2001 Appl. Phys. B 73 269Google Scholar

    [11]

    Stenger J, Schnatz H, Tamm C, et al. 2002 Phys. Rev. Lett. 88 073601Google Scholar

    [12]

    Rosenband T, Hume D B, Schmidt P O, et al. 2008 Science 319 1808Google Scholar

    [13]

    Godun R M, Nisbet-Jones P B R, Jones J M, et al. 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [14]

    Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar

    [15]

    Hänsch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [16]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42Google Scholar

    [17]

    Jones D J, Diddams S A, Ranka J K, et al. 2000 Science 288 635Google Scholar

    [18]

    Bartels A, Heinecke D, Diddams S A 2009 Science 326 681Google Scholar

    [19]

    Murata H, Morimoto A, Kobayashi T, et al. 2000 IEEE J. Sel. Top. Quant. 6 1325Google Scholar

    [20]

    Parriaux A, Hammani K, Millot G 2020 Adv. Opt. Photonics. 12 223Google Scholar

    [21]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

    [22]

    Kippenberg T J, Gaeta A L, Lipson M, et al. 2018 Science 361 6402

    [23]

    Herr T, Brasch V, Jost J D, et al. 2014 Nat. Photonics 8 145Google Scholar

    [24]

    Lao C, Jin X, Chang L, et al. 2023 Nat. Commun. 14 1802Google Scholar

    [25]

    Xue X, Xuan Y, Liu Y, et al. 2015 Nat. Photonics 9 594Google Scholar

    [26]

    Lobanov V E, Lihachev G, Kippenberg T J, et al. 2015 Opt. Express 23 7713Google Scholar

    [27]

    Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev. Lett. 93 083904Google Scholar

    [28]

    Savchenkov A A, Matsko A B, Strekalov D, et al. 2004 Phys. Rev. Lett. 93 243905Google Scholar

    [29]

    Del’Haye P, Schliesser A, Arcizet O, et al. 2007 Nature 450 1214Google Scholar

    [30]

    Herr T, Hartinger K, Riemensberger J, et al. 2012 Nat. Photonics 6 480Google Scholar

    [31]

    Carmon T, Yang L, Vahala K J 2004 Opt. Express 12 4742Google Scholar

    [32]

    Brasch V, Geiselmann M, Pfeiffer M H P, et al. 2016 Opt. Express 24 29312Google Scholar

    [33]

    Yi X, Yang Q F, Yang K Y, et al. 2016 Opt. Lett. 41 2037Google Scholar

    [34]

    Zhou H, Geng Y, Cui W, et al. 2019 Light-Sci. Appl. 8 50Google Scholar

    [35]

    Zhang S, Silver J M, Del Bino L, et al. 2019 Optica 6 206Google Scholar

    [36]

    Nishimoto K, Minoshima K, Yasui T, et al. 2022 Opt. Lett. 47 281Google Scholar

    [37]

    Zheng H, Sun W, Ding X, et al. 2023 arXiv: 2309.03586 [physics. optics

    [38]

    Joshi C, Jang J K, Luke K, et al. 2016 Opt. Lett. 41 2565Google Scholar

    [39]

    Xue X, Xuan Y, Wang C, et al. 2016 Opt. Express 24 687Google Scholar

    [40]

    Guo H, Karpov M, Lucas E, et al. 2017 Nat. Phys. 13 94Google Scholar

    [41]

    Shen B, Chang L, Liu J, et al. 2020 Nature 582 365Google Scholar

    [42]

    Voloshin A S, Kondratiev N M, Lihachev G V, et al. 2021 Nat. Commun. 12 235Google Scholar

    [43]

    Jin W, Yang Q F, Chang L, et al. 2021 Nat. Photonics 15 346Google Scholar

    [44]

    Lihachev G, Weng W, Liu J, et al. 2022 Nat. Commun. 13 1771Google Scholar

    [45]

    Brasch V, Geiselmann M, Herr T, et al. 2016 Science 351 357Google Scholar

    [46]

    Li Q, Briles T C, Westly D A, et al. 2017 Optica 4 193Google Scholar

    [47]

    Briles T C, Stone J R, Drake T E, et al. 2018 Opt. Lett. 43 2933Google Scholar

    [48]

    Yi X, Yang Q F, Yang K Y, et al. 2015 Optica 2 1078Google Scholar

    [49]

    Yao L, Liu P, Chen H J, et al. 2022 Optica 9 561Google Scholar

    [50]

    Lee H, Chen T, Li J, et al. 2012 Nat. Photonics 6 369Google Scholar

    [51]

    Yang K Y, Oh D Y, Lee S H, et al. 2018 Nat. Photonics 12 297Google Scholar

    [52]

    Yu M, Okawachi Y, Griffith A G, et al. 2016 Optica 3 854Google Scholar

    [53]

    Wang C, Fang Z, Yi A, et al. 2021 Light-Sci. Appl. 10 139Google Scholar

    [54]

    He Y, Yang Q F, Ling J, et al. 2019 Optica 6 1138Google Scholar

    [55]

    Wang C, Zhang M, Yu M, et al. 2019 Nat. Commun. 10 978Google Scholar

    [56]

    Gong Z, Bruch A, Shen M, et al. 2018 Opt. Lett. 43 4366Google Scholar

    [57]

    Pu M, Ottaviano L, Semenova E, et al. 2016 Optica 3 823Google Scholar

    [58]

    Chang L, Xie W, Shu H, et al. 2020 Nat. Commun. 11 1331Google Scholar

    [59]

    Weng W, Lucas E, Lihachev G, et al. 2019 Phys. Rev. Lett. 122 013902Google Scholar

    [60]

    Jung H, Yu S P, Carlson D R, et al. 2021 Optica 8 811Google Scholar

    [61]

    Shu H, Chang L, Lao C, et al. 2023 Adv. Photonics 5 036007Google Scholar

    [62]

    Stern B, Ji X, Okawachi Y, et al. 2018 Nature 562 401Google Scholar

    [63]

    Matsko A B, Liang W, Savchenkov A A, et al. 2016 Opt. Lett. 41 2907Google Scholar

    [64]

    Yi X, Yang Q F, Zhang X, et al. 2017 Nat. Commun. 8 14869Google Scholar

    [65]

    Yuan Z, Gao M, Yu Y, et al. 2023 Nat. Photonics (Early AccessGoogle Scholar

    [66]

    Anderson M H, Weng W, Lihachev G, et al. 2022 Nat. Commun. 13 4764Google Scholar

    [67]

    Moille G, Perez E F, Stone J R, et al. 2021 Nat. Commun. 12 7275Google Scholar

    [68]

    Chen H J, Ji Q X, Wang H, et al. 2020 Nat. Commun. 11 2336Google Scholar

    [69]

    Xue X, Wang P H, Xuan Y, et al. 2017 Laser Photonics Rev. 11 1600276Google Scholar

    [70]

    Obrzud E, Lecomte S, Herr T 2017 Nat. Photonics 11 600Google Scholar

    [71]

    Bao H, Cooper A, Rowley M, et al. 2019 Nat. Photonics 13 384Google Scholar

    [72]

    Xue X, Zheng X, Zhou B 2019 Nat. Photonics 13 616Google Scholar

    [73]

    Helgason Ó B, Girardi M, Ye Z, et al. 2023 Nat. Photonics (Early AccessGoogle Scholar

    [74]

    Coillet A, Balakireva I, Henriet R, et al. 2013 IEEE Photonics J. 5 6100409Google Scholar

    [75]

    Cole D C, Lamb E S, Del’Haye P, et al. 2017 Nat. Photonics 11 671Google Scholar

    [76]

    Karpov M, Pfeiffer M H P, Guo H, et al. 2019 Nat. Phys. 15 1071Google Scholar

    [77]

    Lu Z, Chen H J, Wang W, et al. 2021 Nat. Commun. 12 3179Google Scholar

    [78]

    Wang H, Shen B, Yu Y, et al. 2022 Phys. Rev. A 106 053508Google Scholar

    [79]

    Li J, Bao C, Ji Q X, et al. 2022 Optica 9 231Google Scholar

    [80]

    Lucas E, Yu S P, Briles T C, et al. 2023 Nat. Photonics (Early AccessGoogle Scholar

    [81]

    Xue X X, Grelu P, Yang B, et al. 2023 Light-Sci. Appl. 12 19Google Scholar

    [82]

    Wildi T, Gaafar M A, Voumard T, et al. 2023 Optica 10 650Google Scholar

    [83]

    Yang Q F, Ji Q X, Wu L, et al. 2021 Nat. Commun. 12 1442Google Scholar

    [84]

    Bai Y, Zhang M, Shi Q, et al. 2021 Phys. Rev. Lett. 126 063901Google Scholar

    [85]

    Gorodetsky M L, Grudinin I S 2004 JOSA B 21 697Google Scholar

    [86]

    Moille G, Lu X, Rao A, et al. 2019 Phys. Rev. Applied 12 034057Google Scholar

    [87]

    Huang G, Lucas E, Liu J, et al. 2019 Phys. Rev. A 99 061801Google Scholar

    [88]

    Drake T E, Stone J R, Briles T C, et al. 2020 Nat. Photonics 14 480Google Scholar

    [89]

    Matsko A B, Maleki L 2013 Opt. Express 21 28862Google Scholar

    [90]

    Bao C, Suh M G, Shen B, et al. 2021 Nat. Phys. 17 462Google Scholar

    [91]

    Jin X, Lv Z, Yang Q F 2023 arXiv: 2311.06463 [physics. optics

    [92]

    Marin-Palomo P, Kemal J N, Karpov M, et al. 2017 Nature 546 274Google Scholar

    [93]

    Suh M G, Yang Q F, Yang K Y, et al. 2016 Science 354 600Google Scholar

    [94]

    Feldmann J, Youngblood N, Karpov M, et al. 2021 Nature 589 52Google Scholar

    [95]

    Riemensberger J, Lukashchuk A, Karpov M, et al. 2020 Nature 581 164Google Scholar

    [96]

    Kues M, Reimer C, Roztocki P, et al. 2017 Nature 546 622Google Scholar

    [97]

    Liang W, Eliyahu D, Ilchenko V S, et al. 2015 Nat. Commun. 6 1

    [98]

    Tetsumoto T, Nagatsuma T, Fermann M E, et al. 2021 Nat. Photonics 15 516Google Scholar

    [99]

    Newman Z L, Maurice V, Drake T, et al. 2019 Optica 6 680Google Scholar

    [100]

    Spencer D T, Drake T, Briles T C, et al. 2018 Nature 557 81Google Scholar

    [101]

    Trocha P, Karpov M, Ganin D, et al. 2018 Science 359 887Google Scholar

    [102]

    Lukashchuk A, Riemensberger J, Tusnin A, et al. 2023 Nat. Photonics 17 814Google Scholar

    [103]

    Chen R, Shu H, Shen B, et al. 2023 Nat. Photonics 17 306Google Scholar

    [104]

    Yang Q F, Shen B, Wang H, et al. 2019 Science 363 965Google Scholar

    [105]

    Sun S, Wang B, Liu K, et al. 2023 arXiv: 2305.13575 [physics. optics

    [106]

    Kudelin I, Groman W, Ji Q X, et al. 2023 arXiv: 2307.08937 [physics. optics

    [107]

    Kues M, Reimer C, Lukens J M, et al. 2019 Nat. Photonics 13 170Google Scholar

    [108]

    Yang Z, Jahanbozorgi M, Jeong D, et al. 2021 Nat. Commun. 12 4781Google Scholar

    [109]

    Jahanbozorgi M, Yang Z, Sun S, et al. 2023 Optica 10 1100Google Scholar

  • 图 1  光学频率梳简介[5,6] (a) 光学频率梳时域波形图, 相邻脉冲之间的时间间隔与相位偏移分别对应光梳重频频率$ {f}_{{\mathrm{r}}} $与载波偏移频率$ {f}_{{\mathrm{o}}} $; (b)光频梳频谱图与f - 2f自参考示意图, 第n根梳齿经过二倍频后与第2n根梳齿拍频即可得到载波偏移频率$ {f}_{{\mathrm{o}}} $; (c)—(e)锁模光纤激光器、电光频梳与微腔光梳示意图

    Figure 1.  An introduction to optical frequency comb[5,6]: (a) Temporal waveform of optical frequency comb, the time interval and phase shift between adjacent pulses correspond to the repetition rate $ {f}_{{\mathrm{r}}} $ and the carrier frequency offset $ {f}_{{\mathrm{o}}} $ of the optical frequency comb; (b) optical spectra of the optical frequency comb and schematic diagram of f - 2f self-reference, the carrier offset frequency $ {f}_{{\mathrm{o}}} $ can be obtained by doubling the frequency of the nth comb line and then beating with the 2n-th comb tooth; (c) schematic diagram of mode-locked fiber laser, electro-optical comb and microcombs.

    图 2  微腔光梳产生的装置和原理图[21,22,24] (a)产生微腔光梳的实验装置图, 连续可调激光经过放大器放大后泵浦微腔产生光梳, 同时用光电探测器探测拍频信号; (b)微腔光梳产生的频域原理图, 泵浦激光经过简并和非简并四波混频产生一系列等间隔的边带; (c)孤子锁模原理图, 孤子脉冲由于增益与损耗, 色散和非线性之间的双重平衡而保持稳态; (d) 亮孤子(左)和暗脉冲(右)的时域波形图

    Figure 2.  The device and schematic diagram of microcombs generation[21,22,24]: (a) Experimental setup for generating microcombs, tunable continuously laser pumps the microresonators to generate microcombs, at the same time, a photodetector is used to detect the beat frequency signal; (b) schematic diagram for microcombs generation in frequency domain, the pump laser produces a series of equally spaced sidebands through degenerate and non-degenerate four-wave mixing process; (c) schematic diagram of soliton mode-locking, the soliton pulse remains stable due to a double balance between gain and loss, dispersion and nonlinearity; (d) temporal waveform of bright soliton (left) and dark pulse (right).

    图 3  微腔光梳的产生过程[23,33,40] (a) 泵浦激光由腔模蓝失谐向红失谐扫频过程中腔内光场总功率演化过程, 不同颜色区域代表腔内光场处于不同的态, 其中绿色区域为孤子存在区域, 黄色为呼吸子区域, 红色区域孤子不能存在; (b) 图(a)中标注的不同状态区域腔内光场分布及对应光谱图; (c)“功率踢”方法产生孤子光梳激光器频率与功率、光梳功率以及激光与腔模失谐时序变化图; (d)热辅助激光稳定微腔温度原理图; (e)反向扫频方法产生单孤子光梳原理示意图

    Figure 3.  Generation process of microcombs[23,33,40]: (a) The intracavity power’s evolution process during pump laser frequency scanning from the blue to red detuning of the cavity mode, various color regions represent different states of the optical field within the cavity, the green region is the solitons-exiting region, the yellow region is the breathers’ region, and the red region is the region where solitons cannot exist; (b) temporal intracavity power and optical power spectra of different state regions marked in Fig. (a); (c) timing series of the pump laser frequency and power, optical frequency comb power and the detuning between the pump laser and cavity mode in power kick method; (d) schematic diagram of thermal assisted laser stabilizing temperature of the microresonator; (e) schematic diagram of generating single-soliton optical frequency comb by backward tuning method.

    图 4  自注入锁定方法产生微腔光梳[41,43] (a)自注入锁定原理示意图, 激光器与微腔之间没有光隔离器, 微腔散射的光可以原路返回激光器腔中反馈腔内光场; (b)自注入锁定过程相图以及动力学曲线, 红色为孤子光梳存在区域, 绿色为调制不稳定态区域, 黑色的线为自注入锁定过程态的演化轨迹; (c)自注入锁定过程光梳功率与拍频信号演化过程; (d), (e)自注入锁定产生的亮孤子光梳和暗脉冲光梳频谱图

    Figure 4.  Generate microcombs via self-injection locking[41,43]: (a) Schematic diagram of self-injection locking, there is no optical isolator between the laser and the microresonator, the light scattered by the microresonator can return to the laser cavity in the original path to feedback the light field in the laser cavity; (b) phase diagram and dynamic curve of self-injection locking, the red region is the soliton-exiting region, and the green region is modulation instability region, the black curve is the evolution trajectory of self-injection locking; (c) the evolution of comb line power and beat note signal in self-injection locking process; (d), (e) the optical spectra of bright soliton and dark pulse optical frequency comb generated by self-injection locking method.

    图 5  产生微腔光梳的各种材料平台[46,4954,5860]

    Figure 5.  Various material platforms to generate micocombs[46,4954,5860].

    图 6  微腔光梳的频谱宽度[45] (a) 集成氮化硅微腔扫描电子显微镜及其横截面图像; (b)利用色散波来拓展微腔光梳频谱宽度, 1930 nm处的色散波大大拓宽了频谱范围; (c)图(a)中腔的集成色散

    Figure 6.  The spectra bandwidth of microcombs[45]: (a) The scanning electron microscopy images and cross section of integrated Si3N4 microresonator; (b) expand the bandwidth of microcombs using dispersive waves, the dispersive waves located at 1930 nm greatly broaden the spectrum range; (c) integrated dispersion of the microresonator in Fig. (a).

    图 7  微腔光梳的效率[6973] (a) 微腔光梳产生过程中能量流动示意图; (b) 暗脉冲光梳频谱图, 插图为耦合出腔的暗脉冲时域波形图; (c) 脉冲泵浦产生微腔光梳示意图; (d) 激光腔孤子光梳示意图; (e) 使用辅助腔回收泵浦光示意图; (f) 使用耦合腔偏移泵浦模式频率

    Figure 7.  Efficiency of microcombs[6973]: (a) Energy flow chart of microcombs generation; (b) optical spectra of dark pulse optical frequency comb, the inset is the temporal waveform of dark pulse emitted out of the microresonator; (c) schematic diagram of pulse pumping microcombs; (d) schematic diagram of laser-cavity soliton; (e) schematic diagram of recycling pump by using auxiliary cavity; (f) shift the frequency of pump mode using auxiliary cavity.

    图 8  光谱顶部平坦的微腔光梳[80,81] (a) 多频率光子晶体微腔示意图, 微腔内部刻蚀了不同空间周期的光栅结构来调节色散; (b) 多频率光子晶体微腔色散曲线, 图(a)中的光栅结构导致了模式分裂成蓝移和红移的模式; (c), (d) 多频率光子晶体微腔中产生的亮孤子和暗脉冲光梳光谱图; (e) 通过滤波产生奈奎斯特孤子光梳的原理示意图; (f) 不同滤波阶数产生的奈奎斯特孤子光梳光谱图

    Figure 8.  Flat-top micocommbs[80,81]: (a) Schematic diagram of multi-frequency photonic crystal microresonators, grating structures with different spatial periods are etched inside the microresonator to adjust the dispersion; (b) dispersion curve of multi frequency photonic crystal microcavities, where the grating structures in fig. (a) leads to single mode splitting to blue- and redshifted modes; (c), (d) the optical spectra of bright soliton and dark pulse generated in multi-frequency photonic crystal microresonators; (e) schematic diagram of generating Nyquist soliton by spectral filtering; (f) the optical spectra of the Nyquist soliton optical frequency comb generated by various spectral filtering order.

    图 9  微腔光梳的噪声研究[59,83,84] (a) 微腔光梳合成微波的原理示意图, 连续激光在微腔中产生孤子脉冲, 随后将脉冲序列耦合到高速光电探测器上, 即可产生频率为光梳重频的微波信号, 这也是常用的光梳重频测量方法; (b)“安静点”操作抑制光梳噪声示意图, 在特定失谐下, 孤子重频对失谐变化敏感度最小, 相应光梳重频噪声最低; (c) 布里渊克尔孤子原理图, 泵浦激光先在微腔中激发布里渊激光, 再用布里渊激光泵浦微腔产生孤子光梳; (d) 注入锁定原理图, 泵浦激光通过电光调制器产生边带, 利用注入锁定效应将光梳梳齿锁定在调制产生的边带上

    Figure 9.  Research on the noise of microcombs[59,83,84]: (a) Schematic diagram of synthesizing microwave signal using microcombs, a continuous laser generates soliton pulses within a microresonator, and this pulse sequence is subsequently coupled to a high-speed photodetector to generate microwave signals with a frequency equaling to the repetition rate of the microcombs, this process also serves as a conventional method for measuring the repetition rate of optical frequency combs; (b) schematic illustration of noise suppression in microcombs through "quiet point" operation, the microcomb's repetition rate exhibits minimal sensitivity to detuning under a specific detuning condition, which coincides with the microcomb state characterized by the lowest repetition rate noise; (c) schematic diagram of Brillouin Kerr soliton, the pump laser generates Brillouin laser in the microresonator, and then the Brillouin laser pump the microresonator to generate soliton comb; (d) schematic diagram of injection locking, the pump laser is modulated by electro-optic modulator to generate a pair of sidebands, the comb lines are locked to the modulated sidebands via injection locking effects.

    图 10  微腔光梳的应用[92100]. 微腔光梳被广泛应用于通信、微波合成、激光雷达、光谱学、光计算、光钟、光学频率合成、光学频率分频与量子光源等领域

    Figure 10.  Applications of microcombs[92100]: Microcombs can be widely applied to communication, microwave synthesis, Lidar, spectroscopy, optical computing, optical-frequency synthesizer, optical frequency division, quantum light source, and other fields.

  • [1]

    Chebotayev V P, Goldort V G, Klementyev V M, et al. 1982 Appl. Phys. B 29 63Google Scholar

    [2]

    Schnatz H, Lipphardt B, Helmcke J, et al. 1996 Phys. Rev. Lett. 76 18Google Scholar

    [3]

    Diddams S A, Jones D J, Ye J, et al. 2000 Phys. Rev. Lett. 84 5102Google Scholar

    [4]

    Fortier T, Baumann E 2019 Commun. Phys. 2 153Google Scholar

    [5]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [6]

    Diddams S A, Vahala K, Udem T 2020 Science 369 eaay3676Google Scholar

    [7]

    Reichert J, Holzwarth R, Udem T, et al. 1999 Opt. Commun. 172 59Google Scholar

    [8]

    Udem T, Diddams S A, Vogel K R, et al. 2001 Phys. Rev. Lett. 86 4996Google Scholar

    [9]

    Holzwarth R, Udem T, Hänsch T W, et al. 2000 Phys. Rev. Lett. 85 2264Google Scholar

    [10]

    Holzwarth R, Nevsky A Y, Zimmermann M, et al. 2001 Appl. Phys. B 73 269Google Scholar

    [11]

    Stenger J, Schnatz H, Tamm C, et al. 2002 Phys. Rev. Lett. 88 073601Google Scholar

    [12]

    Rosenband T, Hume D B, Schmidt P O, et al. 2008 Science 319 1808Google Scholar

    [13]

    Godun R M, Nisbet-Jones P B R, Jones J M, et al. 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [14]

    Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar

    [15]

    Hänsch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [16]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42Google Scholar

    [17]

    Jones D J, Diddams S A, Ranka J K, et al. 2000 Science 288 635Google Scholar

    [18]

    Bartels A, Heinecke D, Diddams S A 2009 Science 326 681Google Scholar

    [19]

    Murata H, Morimoto A, Kobayashi T, et al. 2000 IEEE J. Sel. Top. Quant. 6 1325Google Scholar

    [20]

    Parriaux A, Hammani K, Millot G 2020 Adv. Opt. Photonics. 12 223Google Scholar

    [21]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

    [22]

    Kippenberg T J, Gaeta A L, Lipson M, et al. 2018 Science 361 6402

    [23]

    Herr T, Brasch V, Jost J D, et al. 2014 Nat. Photonics 8 145Google Scholar

    [24]

    Lao C, Jin X, Chang L, et al. 2023 Nat. Commun. 14 1802Google Scholar

    [25]

    Xue X, Xuan Y, Liu Y, et al. 2015 Nat. Photonics 9 594Google Scholar

    [26]

    Lobanov V E, Lihachev G, Kippenberg T J, et al. 2015 Opt. Express 23 7713Google Scholar

    [27]

    Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev. Lett. 93 083904Google Scholar

    [28]

    Savchenkov A A, Matsko A B, Strekalov D, et al. 2004 Phys. Rev. Lett. 93 243905Google Scholar

    [29]

    Del’Haye P, Schliesser A, Arcizet O, et al. 2007 Nature 450 1214Google Scholar

    [30]

    Herr T, Hartinger K, Riemensberger J, et al. 2012 Nat. Photonics 6 480Google Scholar

    [31]

    Carmon T, Yang L, Vahala K J 2004 Opt. Express 12 4742Google Scholar

    [32]

    Brasch V, Geiselmann M, Pfeiffer M H P, et al. 2016 Opt. Express 24 29312Google Scholar

    [33]

    Yi X, Yang Q F, Yang K Y, et al. 2016 Opt. Lett. 41 2037Google Scholar

    [34]

    Zhou H, Geng Y, Cui W, et al. 2019 Light-Sci. Appl. 8 50Google Scholar

    [35]

    Zhang S, Silver J M, Del Bino L, et al. 2019 Optica 6 206Google Scholar

    [36]

    Nishimoto K, Minoshima K, Yasui T, et al. 2022 Opt. Lett. 47 281Google Scholar

    [37]

    Zheng H, Sun W, Ding X, et al. 2023 arXiv: 2309.03586 [physics. optics

    [38]

    Joshi C, Jang J K, Luke K, et al. 2016 Opt. Lett. 41 2565Google Scholar

    [39]

    Xue X, Xuan Y, Wang C, et al. 2016 Opt. Express 24 687Google Scholar

    [40]

    Guo H, Karpov M, Lucas E, et al. 2017 Nat. Phys. 13 94Google Scholar

    [41]

    Shen B, Chang L, Liu J, et al. 2020 Nature 582 365Google Scholar

    [42]

    Voloshin A S, Kondratiev N M, Lihachev G V, et al. 2021 Nat. Commun. 12 235Google Scholar

    [43]

    Jin W, Yang Q F, Chang L, et al. 2021 Nat. Photonics 15 346Google Scholar

    [44]

    Lihachev G, Weng W, Liu J, et al. 2022 Nat. Commun. 13 1771Google Scholar

    [45]

    Brasch V, Geiselmann M, Herr T, et al. 2016 Science 351 357Google Scholar

    [46]

    Li Q, Briles T C, Westly D A, et al. 2017 Optica 4 193Google Scholar

    [47]

    Briles T C, Stone J R, Drake T E, et al. 2018 Opt. Lett. 43 2933Google Scholar

    [48]

    Yi X, Yang Q F, Yang K Y, et al. 2015 Optica 2 1078Google Scholar

    [49]

    Yao L, Liu P, Chen H J, et al. 2022 Optica 9 561Google Scholar

    [50]

    Lee H, Chen T, Li J, et al. 2012 Nat. Photonics 6 369Google Scholar

    [51]

    Yang K Y, Oh D Y, Lee S H, et al. 2018 Nat. Photonics 12 297Google Scholar

    [52]

    Yu M, Okawachi Y, Griffith A G, et al. 2016 Optica 3 854Google Scholar

    [53]

    Wang C, Fang Z, Yi A, et al. 2021 Light-Sci. Appl. 10 139Google Scholar

    [54]

    He Y, Yang Q F, Ling J, et al. 2019 Optica 6 1138Google Scholar

    [55]

    Wang C, Zhang M, Yu M, et al. 2019 Nat. Commun. 10 978Google Scholar

    [56]

    Gong Z, Bruch A, Shen M, et al. 2018 Opt. Lett. 43 4366Google Scholar

    [57]

    Pu M, Ottaviano L, Semenova E, et al. 2016 Optica 3 823Google Scholar

    [58]

    Chang L, Xie W, Shu H, et al. 2020 Nat. Commun. 11 1331Google Scholar

    [59]

    Weng W, Lucas E, Lihachev G, et al. 2019 Phys. Rev. Lett. 122 013902Google Scholar

    [60]

    Jung H, Yu S P, Carlson D R, et al. 2021 Optica 8 811Google Scholar

    [61]

    Shu H, Chang L, Lao C, et al. 2023 Adv. Photonics 5 036007Google Scholar

    [62]

    Stern B, Ji X, Okawachi Y, et al. 2018 Nature 562 401Google Scholar

    [63]

    Matsko A B, Liang W, Savchenkov A A, et al. 2016 Opt. Lett. 41 2907Google Scholar

    [64]

    Yi X, Yang Q F, Zhang X, et al. 2017 Nat. Commun. 8 14869Google Scholar

    [65]

    Yuan Z, Gao M, Yu Y, et al. 2023 Nat. Photonics (Early AccessGoogle Scholar

    [66]

    Anderson M H, Weng W, Lihachev G, et al. 2022 Nat. Commun. 13 4764Google Scholar

    [67]

    Moille G, Perez E F, Stone J R, et al. 2021 Nat. Commun. 12 7275Google Scholar

    [68]

    Chen H J, Ji Q X, Wang H, et al. 2020 Nat. Commun. 11 2336Google Scholar

    [69]

    Xue X, Wang P H, Xuan Y, et al. 2017 Laser Photonics Rev. 11 1600276Google Scholar

    [70]

    Obrzud E, Lecomte S, Herr T 2017 Nat. Photonics 11 600Google Scholar

    [71]

    Bao H, Cooper A, Rowley M, et al. 2019 Nat. Photonics 13 384Google Scholar

    [72]

    Xue X, Zheng X, Zhou B 2019 Nat. Photonics 13 616Google Scholar

    [73]

    Helgason Ó B, Girardi M, Ye Z, et al. 2023 Nat. Photonics (Early AccessGoogle Scholar

    [74]

    Coillet A, Balakireva I, Henriet R, et al. 2013 IEEE Photonics J. 5 6100409Google Scholar

    [75]

    Cole D C, Lamb E S, Del’Haye P, et al. 2017 Nat. Photonics 11 671Google Scholar

    [76]

    Karpov M, Pfeiffer M H P, Guo H, et al. 2019 Nat. Phys. 15 1071Google Scholar

    [77]

    Lu Z, Chen H J, Wang W, et al. 2021 Nat. Commun. 12 3179Google Scholar

    [78]

    Wang H, Shen B, Yu Y, et al. 2022 Phys. Rev. A 106 053508Google Scholar

    [79]

    Li J, Bao C, Ji Q X, et al. 2022 Optica 9 231Google Scholar

    [80]

    Lucas E, Yu S P, Briles T C, et al. 2023 Nat. Photonics (Early AccessGoogle Scholar

    [81]

    Xue X X, Grelu P, Yang B, et al. 2023 Light-Sci. Appl. 12 19Google Scholar

    [82]

    Wildi T, Gaafar M A, Voumard T, et al. 2023 Optica 10 650Google Scholar

    [83]

    Yang Q F, Ji Q X, Wu L, et al. 2021 Nat. Commun. 12 1442Google Scholar

    [84]

    Bai Y, Zhang M, Shi Q, et al. 2021 Phys. Rev. Lett. 126 063901Google Scholar

    [85]

    Gorodetsky M L, Grudinin I S 2004 JOSA B 21 697Google Scholar

    [86]

    Moille G, Lu X, Rao A, et al. 2019 Phys. Rev. Applied 12 034057Google Scholar

    [87]

    Huang G, Lucas E, Liu J, et al. 2019 Phys. Rev. A 99 061801Google Scholar

    [88]

    Drake T E, Stone J R, Briles T C, et al. 2020 Nat. Photonics 14 480Google Scholar

    [89]

    Matsko A B, Maleki L 2013 Opt. Express 21 28862Google Scholar

    [90]

    Bao C, Suh M G, Shen B, et al. 2021 Nat. Phys. 17 462Google Scholar

    [91]

    Jin X, Lv Z, Yang Q F 2023 arXiv: 2311.06463 [physics. optics

    [92]

    Marin-Palomo P, Kemal J N, Karpov M, et al. 2017 Nature 546 274Google Scholar

    [93]

    Suh M G, Yang Q F, Yang K Y, et al. 2016 Science 354 600Google Scholar

    [94]

    Feldmann J, Youngblood N, Karpov M, et al. 2021 Nature 589 52Google Scholar

    [95]

    Riemensberger J, Lukashchuk A, Karpov M, et al. 2020 Nature 581 164Google Scholar

    [96]

    Kues M, Reimer C, Roztocki P, et al. 2017 Nature 546 622Google Scholar

    [97]

    Liang W, Eliyahu D, Ilchenko V S, et al. 2015 Nat. Commun. 6 1

    [98]

    Tetsumoto T, Nagatsuma T, Fermann M E, et al. 2021 Nat. Photonics 15 516Google Scholar

    [99]

    Newman Z L, Maurice V, Drake T, et al. 2019 Optica 6 680Google Scholar

    [100]

    Spencer D T, Drake T, Briles T C, et al. 2018 Nature 557 81Google Scholar

    [101]

    Trocha P, Karpov M, Ganin D, et al. 2018 Science 359 887Google Scholar

    [102]

    Lukashchuk A, Riemensberger J, Tusnin A, et al. 2023 Nat. Photonics 17 814Google Scholar

    [103]

    Chen R, Shu H, Shen B, et al. 2023 Nat. Photonics 17 306Google Scholar

    [104]

    Yang Q F, Shen B, Wang H, et al. 2019 Science 363 965Google Scholar

    [105]

    Sun S, Wang B, Liu K, et al. 2023 arXiv: 2305.13575 [physics. optics

    [106]

    Kudelin I, Groman W, Ji Q X, et al. 2023 arXiv: 2307.08937 [physics. optics

    [107]

    Kues M, Reimer C, Lukens J M, et al. 2019 Nat. Photonics 13 170Google Scholar

    [108]

    Yang Z, Jahanbozorgi M, Jeong D, et al. 2021 Nat. Commun. 12 4781Google Scholar

    [109]

    Jahanbozorgi M, Yang Z, Sun S, et al. 2023 Optica 10 1100Google Scholar

  • [1] Wang Yong-Bo, Tang Xi, Zhao Le-Han, Zhang Xin, Deng Jin, Wu Zheng-Mao, Yang Jun-Bo, Zhou Heng, Wu Jia-Gui, Xia Guang-Qiong. A Tbit/s parallel real-time physical random number scheme based on chaos optical frequency comb of Si3N4 micro-ring. Acta Physica Sinica, 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [2] Guo Zhuang, Ouyang Feng, Lu Zhi-Zhou, Wang Meng-Yu, Tan Qing-Gui, Xie Cheng-Feng, Wei Bin, He Xing-Dao. Analysis and optimization of optical frequency comb spectra of magnesium fluoride microbottle resonator. Acta Physica Sinica, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [3] Xu Fan, Zhao Yan, Wu Yu-Hang, Wang Wen-Chi, Jin Xue-Ying. Stability and non-linear dynamic analysis of Kerr optical frequencycombs in dual-coupled microcavities with high-order dispersion. Acta Physica Sinica, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [4] Ren Bo, She Yan-Chao, Xu Xiao-Feng, Ye Fu-Qiu. Stability of optical soliton in symmetrical three-quantum-dot system under high-order effects. Acta Physica Sinica, 2021, 70(22): 224205. doi: 10.7498/aps.70.20210942
    [5] Meng Ling-Jun, Wang Meng-Yu, Shen Yuan, Yang Yu, Xu Wen-Bin, Zhang Lei, Wang Ke-Yi. Triple-layer-coated microspheres for refractive index sensor with internally referenced self-compensated thermal effect. Acta Physica Sinica, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [6] Wang Meng-Yu, Meng Ling-Jun, Yang Yu, Zhong Hui-Kai, Wu Tao, Liu Bin, Zhang Lei, Fu Yan-Jun, Wang Ke-Yi. Selection of whispering-gallery modes and Fano resonance of prolate microbottle resonators. Acta Physica Sinica, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [7] Xu Xin, Jin Xue-Ying, Gao Hao-Ran, Cheng Jie, Lu Yang, Chen Dong, Yu Lian-Dong. Analysis of frequency tuning process of dual coupled optical microcavities. Acta Physica Sinica, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [8] Liao Xiao-Yu, Cao Jun-Cheng, Li Hua. Research progress of terahertz semiconductor optical frequency combs. Acta Physica Sinica, 2020, 69(18): 189501. doi: 10.7498/aps.69.20200399
    [9] Xu Xin, Jin Xue-Ying, Hu Xiao-Hong, Huang Xin-Ning. Spatiotemporal evolution and spectral character of second harmonic generation in optical microresonator. Acta Physica Sinica, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [10] Gu Hong-Ming, Huang Yong-Qing, Wang Huan-Huan, Wu Gang, Duan Xiao-Feng, Liu Kai, Ren Xiao-Min. Theoretical analysis of new optical microcavity. Acta Physica Sinica, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [11] Liu Ting-Yang, Zhang Fu-Min, Wu Han-Zhong, Li Jian-Shuang, Shi Yong-Qiang, Qu Xing-Hua. Absolute distance ranging by means of chirped pulse interferometry. Acta Physica Sinica, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [12] Qiu Kang-Sheng, Zhao Yan-Hui, Liu Xiang-Bo, Feng Bao-Hua, Xu Xiu-Lai. Whispering gallery modes in a bent ZnO microwire. Acta Physica Sinica, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [13] Zhu Min-Hao, Wu Xue-Jian, Wei Hao-Yun, Zhang Li-Qiong, Zhang Ji-Tao, Li Yan. Closed-loop displacement control system for piezoelectric transducer based on optical frequency comb. Acta Physica Sinica, 2013, 62(7): 070702. doi: 10.7498/aps.62.070702
    [14] Zhang Ji-Tao, Wu Xue-Jian, Li Yan, Wei Hao-Yun. Method for improving the accuracy of step height measurement based on optical frequency comb. Acta Physica Sinica, 2012, 61(10): 100601. doi: 10.7498/aps.61.100601
    [15] Wu Xue-Jian, Wei Hao-Yun, Zhu Min-Hao, Zhang Ji-Tao, Li Yan. Frequency measurement of dual frequency He-Ne laser based on a femtosecond optical frequency comb. Acta Physica Sinica, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [16] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. Influence of temperature on the Bose condensation of photons and excitons in optic microcavity. Acta Physica Sinica, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [17] Deng Yu-Qiang, Wang Qing-Yue, Wu Zu-Bin, Zhang Zhi-Gang. Influence of carrier-envelope phase on synthesizing of fundamental and its second-harmonic pulses. Acta Physica Sinica, 2006, 55(2): 737-742. doi: 10.7498/aps.55.737
    [18] Liu Tao, Zhang Tian-Cai, Wang Jun-Min, Peng Kun-Chi. Optical dipole trap in a high-finesse micro-cavity. Acta Physica Sinica, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [19] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Solitons formed by ultrashort laser pulses propagating in a plasma. Acta Physica Sinica, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [20] Liu Shan-Liang. Propagation of pulses obtained by modulating spatial optical solitons in planar optical waveguide. Acta Physica Sinica, 2003, 52(11): 2825-2830. doi: 10.7498/aps.52.2825
Metrics
  • Abstract views:  8190
  • PDF Downloads:  558
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2023
  • Accepted Date:  01 December 2023
  • Available Online:  04 December 2023
  • Published Online:  05 December 2023

/

返回文章
返回