Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low-loss integrated dynamic polarization controller based on silicon photonics

Zhao Qian-Ru Wang Xu-Yang Jia Yan-Xiang Zhang Yun-Jie Lu Zhen-Guo Qian Yi Zou Jun Li Yong-Min

Citation:

Low-loss integrated dynamic polarization controller based on silicon photonics

Zhao Qian-Ru, Wang Xu-Yang, Jia Yan-Xiang, Zhang Yun-Jie, Lu Zhen-Guo, Qian Yi, Zou Jun, Li Yong-Min
PDF
HTML
Get Citation
  • A dynamic polarization controller (DPC) is an important component in fiber optic communication, optical imaging, and quantum technologies. The DPC can transform any input state of polarization (SOP) into any desired SOP to overcome polarization-related impairments resulting from high internally and externally induced birefringence. In this work, a low-loss silicon photonics-integrated DPC is designed and demonstrated experimentally. The whole chip is fabricated by using industry-standard silicon-on-insulator technology. Using the edge-coupling method, the coupler loss is reduced to less than 2 dB, and the total loss of DPC is reduced to 5.7 dB. Using a variable-step simulated annealing method, for a low-noise photodetector and high-static-extinction-ratio device, a dynamic polarization extinction ratio can reach more than 30 dB. The size of the DPC on the chip is 5.20 mm × 0.12 mm × 0.80 mm.The DPC utilizes a 0°/45°/0°/45° structure, which can realize arbitrary polarization-based coordinate conversion with endless polarization control. The 0° and 45° transform structures and matrices are presented, and the principle of the 0° and 45° structures is explained in detail by using the Poincaré sphere.A simulation using Lumerical is conducted to optimize the polarization rotator-splitter, which can transform the TM0 mode light in one waveguide into the TE0 mode light in the other waveguide while the TE0 mode light in one waveguide remains unchanged. Based on the optimized structure, the static polarization extinction ratio of DPC can be measured to be a value greater than 40 dB.The thermal phase shift (TPS) is characterized by using a Mach–Zehnder modulator. The length of the TPS is 400 μm, and the resistance of the metal heater is 2.00 kΩ. The maximum power consumed by the four TPSs is a total of 0.2 W. The modulation bandwidth of the DPC designed by our group is approximately 30 kHz. By considering an applied voltage of 5.6 V in the case of the TPS, the bandwidth–voltage product is 5.6 × 30 = 168 kHz·V.To optimize the DPC parameters, such as the step length, electronic noise, and static polarization extinction ratio, numerical simulation results of the simulated annealing approach are analyzed in detail.In conclusion, a low-loss silicon photonics-integrated DPC is designed and demonstrated experimentally. A dynamic polarization extinction ratio is obtained to be greater than 30 dB by using the variable-step simulated annealing method. The DPC is expected to be utilized in fiber or quantum communication systems to minimize size and further decrease costs.
      Corresponding author: Wang Xu-Yang, wangxuyang@sxu.edu.cn ; Li Yong-Min, yongmin@sxu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 202103021224010), the Shanxi Provincial Foundation for Returned Scholars, China (Grant No. 2022-016), the Aeronautical Science Foundation of China (Grant No. 20200020115001), the National Natural Science Foundation of China (Grant Nos. 62175138, 62205188, 11904219), the Open Fund of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. KF202006), and the “1331 Project” for Key Subject Construction of Shanxi Province, China.
    [1]

    Wang J, He S L, Dai D X 2014 Laser Photonics Rev. 8 L18Google Scholar

    [2]

    Dai D X, Li C L, Wang S P, Wu H, Shi Y C, Wu Z H, Gao S M, Dai T G, Yu H, Tsang H K 2018 Laser Photonics Rev. 12 1700109Google Scholar

    [3]

    Chen Z Y, Yan L S, Pan Y, Jiang L, Yi A L, Pan W, Luo B 2016 Light-Sci. Appl. 6 e16207Google Scholar

    [4]

    殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠 2019 物理学报 68 024203Google Scholar

    Yin Y L, Sun X B, Song M X, Chen W, Chen F N 2019 Acta Phys. Sin. 68 024203Google Scholar

    [5]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332Google Scholar

    [6]

    Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492Google Scholar

    [7]

    陈烈裕, 李占成, 程化, 田建国, 陈树琪 2021 光学学报 41 0823106Google Scholar

    Chen L Y, Li Z C, Chen H, Tian J G, Chen S Q 2021 Acta Opt. Sin. 41 0823106Google Scholar

    [8]

    Wang X Y, Liu W Y, Wang P, Li Y M 2017 Phys. Rev. A 95 062330Google Scholar

    [9]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [10]

    Liu S S, Lu Z G, Wang P, Tian Y, Wang X Y, Li Y M 2023 NPJ Quantum Inf. 9 92Google Scholar

    [11]

    Xin G F, Shen L, Pi H Y, Chen D J, Cai H W, Feng H Z, Geng J X, Qu R H, Chen G T, Fang Z J, Chen W B 2012 Chin. Opt. Lett. 10 101403Google Scholar

    [12]

    Zhang P Y, Lu L L, Qu F C, Jiang X H, Zheng X D, Lu Y Q, Zhu S N, Ma X S 2020 Chin. Opt. Lett. 18 082701Google Scholar

    [13]

    李申, 马海强, 吴令安, 翟光杰 2013 物理学报 62 084214Google Scholar

    Li S, Ma H Q, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 084214Google Scholar

    [14]

    Ma C X, Sacher W D, Tang Z Y, Mikkelsen J C, Yang Y, Xu F H, Thiessen T, Lo H K, Poon J K S 2016 Optica 3 1274Google Scholar

    [15]

    Sibson P, Kennard J E, Stanisic S, Erven C, O’Brien J L, Thompson M G 2017 Optica 4 172Google Scholar

    [16]

    Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625Google Scholar

    [17]

    Tian Y, Zhang Y, Liu S S, Wang P, Lu Z G, Wang X Y, Li Y M 2023 Opt. Lett 48 2953Google Scholar

    [18]

    Tomohiro N, Takefumi N, Mamoru E, Ruofan H, Takahiro K, Takeshi U, Akira F 2023 Opt. Express 31 19236Google Scholar

    [19]

    Sarmiento-Merenguel J D, Halir R, Le Roux X, Alonso-Ramos C, Vivien L, Cheben P, Durán-Valdeiglesias E, Molina-Fernández I, Marris-Morini D, Xu D X, Schmid J H 2015 Optica 2 1019Google Scholar

    [20]

    Kim J W, Park S H, Chu W S, Oh M C 2012 Opt. Express 20 12443Google Scholar

    [21]

    Velha P, Sorianello V, Preite M V, De Angelis G, Cassese T, Bianchi A, Testa A, Romagnoli M 2016 Opt. Lett. 41 5656Google Scholar

    [22]

    Zhou H L, Zhao Y H, Wei Y X, Li F, Dong J J, Zhang X L 2019 Nanophotonics 8 2257Google Scholar

    [23]

    Wang X Y, Jia Y X, Guo X B, Liu J Q , Wang S F , Liu W Y , Sun F Y, Li Y M 2022 Chin. Opt. Lett. 20 041301Google Scholar

    [24]

    Sacher W. D, Barwicz T, Taylor B. J. F, Poon J. K. S 2014 Opt. Express 22 3777Google Scholar

    [25]

    Zou J, Ma X, Xia X, Wang C H, Zhang M, Hu J H, Wang X Y, He J J 2021 J. Lightwave Technol. 39 2431Google Scholar

    [26]

    张晓光, 段高燕, 席丽霞 2009 光学学报 29 1173Google Scholar

    Zhang X G, Duan G Y, Xi L X 2009 Acta Opt. Sin. 29 1173Google Scholar

    [27]

    L. Moller 2001 IEEE Photonics Technol. Lett. 13 585Google Scholar

    [28]

    Yassin B, Zeriab E S M, Lahcen A 2023 J. Optim. Theory Appl. 197 438Google Scholar

    [29]

    Shen Y D, Dong Y C, Han X X, Wu J D, Xue K, Jin M Z, Xie G, Xu X Y 2023 Int. J. Hydrogen Energy 48 24560Google Scholar

    [30]

    Kuznetsov A, Karpinski M, Ziubina R, Kandiy S, Frontoni E, Peliukh O, Veselska O, Kozak R 2023 Information 14 259Google Scholar

    [31]

    Wang Z S, Wu Y H 2023 Processes 11 861Google Scholar

    [32]

    Siew S Y, Li B, Gao F, Zheng H Y, Zhang W, Guo P, Xie S W, Song A, Dong B, Luo L W, Li C, Luo X, Lo G Q 2021 J. Light. Technol. 39 4374Google Scholar

    [33]

    Cheben P, Schmid J H, Wang S R, Xu D X, Vachon M, Janz S, Lapointe J, Painchaud Y, Picard M J 2015 Opt. Express 23 22553Google Scholar

  • 图 1  端面耦合结构及模场分布 (a) 端面耦合结构图; (b) A端模场分布图; (c) B端模场分布图

    Figure 1.  Edge-coupling structure and mode fields: (a) Edge-coupling structure; (b) mode field at position A; (c) mode fields at position B.

    图 2  偏振旋转分束结构示意图

    Figure 2.  The structure of polarization rotator-splitter.

    图 3  各种模式光场传输效率与偏振旋转分束结构长度的关系 (a) TE0, TM0和TE1模式的光场传输效率与偏振旋转结构的长度$ {L_{\text{r}}} $的关系; (b) TE0和TE1模式的光场传输效率与偏振分束结构的长度$ {L_{\text{s}}} $的关系

    Figure 3.  The relationships between the transmission efficiencies of different modes and the polarization rotator-splitter length: (a) The relationships between the transmission efficiencies of TE0, TM0 and TE1 modes and the length of polarization rotator structure $ {L_{\text{r}}} $; (b) the relationships between the transmission efficiencies of TE0 , TE1 mode and the length of polarization splitter structure $ {L_{\mathrm{s}}} $.

    图 4  传递矩阵对应的等效波导结构 (a) 矩阵$ {{\boldsymbol{M}}_0} $的等效波导结构; (b) 矩阵$ {{\boldsymbol{M}}_{45}} $的等效波导结构; (c) 矩阵$ {{\boldsymbol{M}}_0} $和$ {{\boldsymbol{M}}_{45}} $对任意偏振态$ P $在庞加莱球上的变换轨迹; TPS: 热相移器

    Figure 4.  Equivalent waveguide structures of transfer matrices: (a) Equivalent waveguide structure of matrix ${{\boldsymbol{M}}_0} $; (b) equivalent waveguide structure of matrix $ {{\boldsymbol{M}}_{45}} $; (c) the transform traces of matrix $ {{\boldsymbol{M}}_0} $and matrix $ {{\boldsymbol{M}}_{45}} $ on arbitrary polarization state $ P $ in Poincare sphere; TPS: Thermal phase shift.

    图 5  基于硅基光电子芯片的动态偏振控制器结构 (a) 与波导0°/45°/0°/45°结构对应的片上动态偏振控制器结构; (b) 实际片上动态偏振控制器结构

    Figure 5.  The structures of dynamic polarization controller on silicon photonics chip: (a) The structure of dynamic polarization controller corresponding to 0°/45°/0°/45° structure; (b) the simplified structure of dynamic polarization controller on chip.

    图 6  基于模拟退火算法的偏振锁定仿真结果 (a) 采用各种固定步长及可变步长锁定后的偏振消光比; (b) 考虑探测器电子学噪声时采用固定步长的仿真锁定结果; (c) 考虑探测器噪声和静态消光比时采用固定步长的仿真锁定结果; (d) 考虑探测器噪声和静态消光比时采用固定步长和可变步长的锁定结果; EN: 电子学噪声, SER: 静态消光比

    Figure 6.  The simulation of polarization locking using simulated annealing method: (a) The extinction ratios of polarization locking using fixed steps and variable steps methods; (b) the polarization locking results using fixed steps considering electronic noise; (c) the polarization locking results using fixed steps considering electronic noise and static extinction ratio; (d) the polarization locking results using fixed steps and variable steps considering electronic noise and static extinction ratio. EN: electronic noise, SER: static extinction ratio.

    图 7  动态偏振控制实验示意图及芯片实物图 (a) 动态偏振控制实验示意图; (b) 低噪声光电探测器示意图; (c) 硅基动态偏振控制器及外围电路; (d) 硅基芯片俯视图; (e)透镜光纤与硅基芯片端面耦合的显微镜图; (f) 硅基动态偏振控制器显微镜图; VOA, 可调光衰减器; MPC, 手动偏振控制器; PBS, 偏振分束器; MF I/O card, 多功能输入输出卡

    Figure 7.  The scheme of experimental setup about locking the polarization and related photographs: (a) The scheme of experimental setup; (b) the scheme of low noise photodetector; (c) the microscope photograph of whole silicon photonics chip and related circuits; (d) the vertical view of whole silicon photonics chip; (e) the microscope photograph of aligning the fiber lens with chip edges; (f) the microscope photograph of silicon photonics integrated dynamic polarization controller. VOA: Variable optics attenuator; MPC: Manual polarization controller; PBS: Polarization beam splitter; MF I/O card: Multi-function I/O card.

    图 8  热相移器特性图 (a) 热相移器的热功率和相移关系图; (b) MZI调制器的上升和下降时间

    Figure 8.  The characteristics of thermal phase shift: (a) The relationship of thermal power and phase shift; (b) the rise and fall time of the MZI modulator.

    图 9  采用固定步长和可变步长时基于硅基芯片的偏振锁定结果

    Figure 9.  Experiment results of polarization locking using fixed or variable steps based on silicon photonics integrated dynamic polarization controller.

    表 1  静态偏振消光比测试数据

    Table 1.  Test data for static polarization extinction ratios.

    测试数据和相应静态偏振消光比 平均值
    测试1 光路2功率/nW 37 32 35 36 38 35.6
    偏振消光比/dB 41.3 41.9 41.5 41.4 41.1 41.44
    测试2 光路1功率/nW 38 37 35 38 34 36.4
    偏振消光比/dB 41.1 41.3 41.5 41.1 41.6 41.32
    测试3 光路1功率/nW 46 41 46 46 46 45
    偏振消光比/dB 40.3 40.8 40.3 40.3 40.3 40.4
    测试4 光路2功率/nW 45 47 45 45 48 46
    偏振消光比/dB 40.5 40.2 40.5 40.5 40.1 40.36
    DownLoad: CSV
  • [1]

    Wang J, He S L, Dai D X 2014 Laser Photonics Rev. 8 L18Google Scholar

    [2]

    Dai D X, Li C L, Wang S P, Wu H, Shi Y C, Wu Z H, Gao S M, Dai T G, Yu H, Tsang H K 2018 Laser Photonics Rev. 12 1700109Google Scholar

    [3]

    Chen Z Y, Yan L S, Pan Y, Jiang L, Yi A L, Pan W, Luo B 2016 Light-Sci. Appl. 6 e16207Google Scholar

    [4]

    殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠 2019 物理学报 68 024203Google Scholar

    Yin Y L, Sun X B, Song M X, Chen W, Chen F N 2019 Acta Phys. Sin. 68 024203Google Scholar

    [5]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332Google Scholar

    [6]

    Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492Google Scholar

    [7]

    陈烈裕, 李占成, 程化, 田建国, 陈树琪 2021 光学学报 41 0823106Google Scholar

    Chen L Y, Li Z C, Chen H, Tian J G, Chen S Q 2021 Acta Opt. Sin. 41 0823106Google Scholar

    [8]

    Wang X Y, Liu W Y, Wang P, Li Y M 2017 Phys. Rev. A 95 062330Google Scholar

    [9]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [10]

    Liu S S, Lu Z G, Wang P, Tian Y, Wang X Y, Li Y M 2023 NPJ Quantum Inf. 9 92Google Scholar

    [11]

    Xin G F, Shen L, Pi H Y, Chen D J, Cai H W, Feng H Z, Geng J X, Qu R H, Chen G T, Fang Z J, Chen W B 2012 Chin. Opt. Lett. 10 101403Google Scholar

    [12]

    Zhang P Y, Lu L L, Qu F C, Jiang X H, Zheng X D, Lu Y Q, Zhu S N, Ma X S 2020 Chin. Opt. Lett. 18 082701Google Scholar

    [13]

    李申, 马海强, 吴令安, 翟光杰 2013 物理学报 62 084214Google Scholar

    Li S, Ma H Q, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 084214Google Scholar

    [14]

    Ma C X, Sacher W D, Tang Z Y, Mikkelsen J C, Yang Y, Xu F H, Thiessen T, Lo H K, Poon J K S 2016 Optica 3 1274Google Scholar

    [15]

    Sibson P, Kennard J E, Stanisic S, Erven C, O’Brien J L, Thompson M G 2017 Optica 4 172Google Scholar

    [16]

    Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625Google Scholar

    [17]

    Tian Y, Zhang Y, Liu S S, Wang P, Lu Z G, Wang X Y, Li Y M 2023 Opt. Lett 48 2953Google Scholar

    [18]

    Tomohiro N, Takefumi N, Mamoru E, Ruofan H, Takahiro K, Takeshi U, Akira F 2023 Opt. Express 31 19236Google Scholar

    [19]

    Sarmiento-Merenguel J D, Halir R, Le Roux X, Alonso-Ramos C, Vivien L, Cheben P, Durán-Valdeiglesias E, Molina-Fernández I, Marris-Morini D, Xu D X, Schmid J H 2015 Optica 2 1019Google Scholar

    [20]

    Kim J W, Park S H, Chu W S, Oh M C 2012 Opt. Express 20 12443Google Scholar

    [21]

    Velha P, Sorianello V, Preite M V, De Angelis G, Cassese T, Bianchi A, Testa A, Romagnoli M 2016 Opt. Lett. 41 5656Google Scholar

    [22]

    Zhou H L, Zhao Y H, Wei Y X, Li F, Dong J J, Zhang X L 2019 Nanophotonics 8 2257Google Scholar

    [23]

    Wang X Y, Jia Y X, Guo X B, Liu J Q , Wang S F , Liu W Y , Sun F Y, Li Y M 2022 Chin. Opt. Lett. 20 041301Google Scholar

    [24]

    Sacher W. D, Barwicz T, Taylor B. J. F, Poon J. K. S 2014 Opt. Express 22 3777Google Scholar

    [25]

    Zou J, Ma X, Xia X, Wang C H, Zhang M, Hu J H, Wang X Y, He J J 2021 J. Lightwave Technol. 39 2431Google Scholar

    [26]

    张晓光, 段高燕, 席丽霞 2009 光学学报 29 1173Google Scholar

    Zhang X G, Duan G Y, Xi L X 2009 Acta Opt. Sin. 29 1173Google Scholar

    [27]

    L. Moller 2001 IEEE Photonics Technol. Lett. 13 585Google Scholar

    [28]

    Yassin B, Zeriab E S M, Lahcen A 2023 J. Optim. Theory Appl. 197 438Google Scholar

    [29]

    Shen Y D, Dong Y C, Han X X, Wu J D, Xue K, Jin M Z, Xie G, Xu X Y 2023 Int. J. Hydrogen Energy 48 24560Google Scholar

    [30]

    Kuznetsov A, Karpinski M, Ziubina R, Kandiy S, Frontoni E, Peliukh O, Veselska O, Kozak R 2023 Information 14 259Google Scholar

    [31]

    Wang Z S, Wu Y H 2023 Processes 11 861Google Scholar

    [32]

    Siew S Y, Li B, Gao F, Zheng H Y, Zhang W, Guo P, Xie S W, Song A, Dong B, Luo L W, Li C, Luo X, Lo G Q 2021 J. Light. Technol. 39 4374Google Scholar

    [33]

    Cheben P, Schmid J H, Wang S R, Xu D X, Vachon M, Janz S, Lapointe J, Painchaud Y, Picard M J 2015 Opt. Express 23 22553Google Scholar

  • [1] Zhang Guang-Wei, Bai Jian-Dong, Jie Qi, Jin Jing-Jing, Zhang Yong-Mei, Liu Wen-Yuan. Research on dynamic polarization control in continuous variable quantum key distribution systems. Acta Physica Sinica, 2024, 73(6): 060301. doi: 10.7498/aps.73.20231890
    [2] Hui Zhan-Qiang, Gao Li-Ming, Liu Rui-Hua, Han Dong-Dong, Wang Wei. Dual-core negative curvature fiber-based terahertz polarization beam splitter with ultra-low loss and wide bandwidth. Acta Physica Sinica, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [3] Dual-core Negative Curvature Fiber-based Terahertz Polarization Beam Splitter with Ultra-low Loss and Wide Bandwidth. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211650
    [4] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [5] Peng Hao, Shen Wei-Dong, Yang Chen-Ying, Zhang Yue-Guang, Liu Xu. Design and optimization of broadband polarization beam splitter made from a wave-structured multilayer film. Acta Physica Sinica, 2014, 63(13): 134212. doi: 10.7498/aps.63.134212
    [6] Han Bo-Lin, Lou Shu-Qin, Lu Wen-Liang, Su Wei, Zou Hui, Wang Xin. Novel ultra-broadband polarization beam splitter based on dual-core photonic crystal fiber. Acta Physica Sinica, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [7] Wei Ke-Jin, Ma Hai-Qiang, Wang Long. A quantum secret sharing scheme based on two polarization beam splitters. Acta Physica Sinica, 2013, 62(10): 104205. doi: 10.7498/aps.62.104205
    [8] Liao Qing-Hua, Zhang Xuan, Xia Quan, Yu Tian-Bao, Chen Shu-Wen, Liu Nian-Hua. A design for all-optical switch and arbitrary proportion of energy output beam splitter. Acta Physica Sinica, 2013, 62(4): 044220. doi: 10.7498/aps.62.044220
    [9] Wang Wen-Rui, Yu Jin-Long, Han Bing-Chen, Guo Jing-Zhong, Luo Jun, Wang Ju, Liu Yi, Yang En-Ze. All-optical logic gates based on nonlinear polarization rotation in high nonlinear fiber. Acta Physica Sinica, 2012, 61(8): 084214. doi: 10.7498/aps.61.084214
    [10] Chen Xing-Hua, Lin Xiao-Dong, Wu Zheng-Mao, Fan Li, Cao Ti, Xia Guang-Qiong. Optical generation of high-quality millimeter-wave based on an optically injected VCSEL subject to polarization-rotated external optical feedback. Acta Physica Sinica, 2012, 61(9): 094209. doi: 10.7498/aps.61.094209
    [11] Cao Ming-Tao, Qiu Shu-Wei, Guo Wen-Ge, Liu Tao, Han Liang, Liu Hao, Zhang Pei, Zhang Shou-Gang, Gao Hong, Li Fu-Li. Optical polarization rotation in a rubidium vapor. Acta Physica Sinica, 2012, 61(16): 164208. doi: 10.7498/aps.61.164208
    [12] Zuo Lin, Yang Ai-Ying, Zhou Da-Wei, Sun Yu-Nan. Study on wave plate angles of polarization controller in nonlinear polarization rotation mode-locked fiber laser. Acta Physica Sinica, 2012, 61(5): 054211. doi: 10.7498/aps.61.054211
    [13] Zhang Xuan, Liao Qing-Hua, Chen Shu-Wen, Hu Ping, Yu Tian-Bao, Liu Nian-Hua. Proposal of novel and efficient polarization beam splitter. Acta Physica Sinica, 2011, 60(10): 104215. doi: 10.7498/aps.60.104215
    [14] Guo Hao, Wu Ping, Yu Tian-Bao, Liao Qing-Hua, Liu Nian-Hua, Huang Yong-Zhen. Design of novel polarization beam splitter in two-dimensional photonic crystal. Acta Physica Sinica, 2010, 59(8): 5547-5552. doi: 10.7498/aps.59.5547
    [15] Zhao Hua-Jun, Yang Shou-Liang, Zhang Dong, Liang Kang-You, Cheng Zheng-Fu, Shi Dong-Ping. Design of polarizing beam splitters based on subwavelength metal grating. Acta Physica Sinica, 2009, 58(9): 6236-6242. doi: 10.7498/aps.58.6236
    [16] Shen Xiao-Peng, Han Kui, Li Hai-Peng, Shen Yi-Feng, Wang Zi-Yu. Polarization beam splitter for self-collimated beams in photonic crystals. Acta Physica Sinica, 2008, 57(3): 1737-1741. doi: 10.7498/aps.57.1737
    [17] Feng Su-Juan, Shang Liang, Mao Qing-He. Continuously adjusting the reflectivity of fiber loop mirror using a polarization controller. Acta Physica Sinica, 2007, 56(8): 4677-4685. doi: 10.7498/aps.56.4677
    [18] Li Yi-Yu, Gu Pei-Fu, Li Ming-Yu, Liu Xu, Yang Hui. Analysis of the all-angle polarization beam splitting effect of the multi-layered wavy films. Acta Physica Sinica, 2006, 55(2): 910-913. doi: 10.7498/aps.55.910
    [19] Ma Hai-Qiang, Li Ya-Ling, Zhao Huan, Wu Ling-An. A quantum key distribution system based on two polarization beam splitters. Acta Physica Sinica, 2005, 54(11): 5014-5017. doi: 10.7498/aps.54.5014
    [20] . Acta Physica Sinica, 1975, 24(4): 268-280. doi: 10.7498/aps.24.268
Metrics
  • Abstract views:  2575
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  27 July 2023
  • Accepted Date:  28 September 2023
  • Available Online:  16 November 2023
  • Published Online:  20 January 2024

/

返回文章
返回