-
A dynamic polarization controller (DPC) is an important component in fiber optic communication, optical imaging, and quantum technologies. The DPC can transform any input state of polarization (SOP) into any desired SOP to overcome polarization-related impairments resulting from high internally and externally induced birefringence. In this work, a low-loss silicon photonics-integrated DPC is designed and demonstrated experimentally. The whole chip is fabricated by using industry-standard silicon-on-insulator technology. Using the edge-coupling method, the coupler loss is reduced to less than 2 dB, and the total loss of DPC is reduced to 5.7 dB. Using a variable-step simulated annealing method, for a low-noise photodetector and high-static-extinction-ratio device, a dynamic polarization extinction ratio can reach more than 30 dB. The size of the DPC on the chip is 5.20 mm × 0.12 mm × 0.80 mm. The DPC utilizes a 0°/45°/0°/45° structure, which can realize arbitrary polarization-based coordinate conversion with endless polarization control. The 0° and 45° transform structures and matrices are presented, and the principle of the 0° and 45° structures is explained in detail by using the Poincaré sphere. A simulation using Lumerical is conducted to optimize the polarization rotator-splitter, which can transform the TM0 mode light in one waveguide into the TE0 mode light in the other waveguide while the TE0 mode light in one waveguide remains unchanged. Based on the optimized structure, the static polarization extinction ratio of DPC can be measured to be a value greater than 40 dB. The thermal phase shift (TPS) is characterized by using a Mach–Zehnder modulator. The length of the TPS is 400 μm, and the resistance of the metal heater is 2.00 kΩ. The maximum power consumed by the four TPSs is a total of 0.2 W. The modulation bandwidth of the DPC designed by our group is approximately 30 kHz. By considering an applied voltage of 5.6 V in the case of the TPS, the bandwidth–voltage product is 5.6 × 30 = 168 kHz·V. To optimize the DPC parameters, such as the step length, electronic noise, and static polarization extinction ratio, numerical simulation results of the simulated annealing approach are analyzed in detail. In conclusion, a low-loss silicon photonics-integrated DPC is designed and demonstrated experimentally. A dynamic polarization extinction ratio is obtained to be greater than 30 dB by using the variable-step simulated annealing method. The DPC is expected to be utilized in fiber or quantum communication systems to minimize size and further decrease costs. -
Keywords:
- dynamic polarization controller /
- polarization rotator and splitter /
- polarization extinction ratio /
- silicon photonics chip
[1] Wang J, He S L, Dai D X 2014 Laser Photonics Rev. 8 L18Google Scholar
[2] Dai D X, Li C L, Wang S P, Wu H, Shi Y C, Wu Z H, Gao S M, Dai T G, Yu H, Tsang H K 2018 Laser Photonics Rev. 12 1700109Google Scholar
[3] Chen Z Y, Yan L S, Pan Y, Jiang L, Yi A L, Pan W, Luo B 2016 Light-Sci. Appl. 6 e16207Google Scholar
[4] 殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠 2019 物理学报 68 024203Google Scholar
Yin Y L, Sun X B, Song M X, Chen W, Chen F N 2019 Acta Phys. Sin. 68 024203Google Scholar
[5] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332Google Scholar
[6] Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492Google Scholar
[7] 陈烈裕, 李占成, 程化, 田建国, 陈树琪 2021 光学学报 41 0823106Google Scholar
Chen L Y, Li Z C, Chen H, Tian J G, Chen S Q 2021 Acta Opt. Sin. 41 0823106Google Scholar
[8] Wang X Y, Liu W Y, Wang P, Li Y M 2017 Phys. Rev. A 95 062330Google Scholar
[9] Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar
[10] Liu S S, Lu Z G, Wang P, Tian Y, Wang X Y, Li Y M 2023 NPJ Quantum Inf. 9 92Google Scholar
[11] Xin G F, Shen L, Pi H Y, Chen D J, Cai H W, Feng H Z, Geng J X, Qu R H, Chen G T, Fang Z J, Chen W B 2012 Chin. Opt. Lett. 10 101403Google Scholar
[12] Zhang P Y, Lu L L, Qu F C, Jiang X H, Zheng X D, Lu Y Q, Zhu S N, Ma X S 2020 Chin. Opt. Lett. 18 082701Google Scholar
[13] 李申, 马海强, 吴令安, 翟光杰 2013 物理学报 62 084214Google Scholar
Li S, Ma H Q, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 084214Google Scholar
[14] Ma C X, Sacher W D, Tang Z Y, Mikkelsen J C, Yang Y, Xu F H, Thiessen T, Lo H K, Poon J K S 2016 Optica 3 1274Google Scholar
[15] Sibson P, Kennard J E, Stanisic S, Erven C, O’Brien J L, Thompson M G 2017 Optica 4 172Google Scholar
[16] Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625Google Scholar
[17] Tian Y, Zhang Y, Liu S S, Wang P, Lu Z G, Wang X Y, Li Y M 2023 Opt. Lett 48 2953Google Scholar
[18] Tomohiro N, Takefumi N, Mamoru E, Ruofan H, Takahiro K, Takeshi U, Akira F 2023 Opt. Express 31 19236Google Scholar
[19] Sarmiento-Merenguel J D, Halir R, Le Roux X, Alonso-Ramos C, Vivien L, Cheben P, Durán-Valdeiglesias E, Molina-Fernández I, Marris-Morini D, Xu D X, Schmid J H 2015 Optica 2 1019Google Scholar
[20] Kim J W, Park S H, Chu W S, Oh M C 2012 Opt. Express 20 12443Google Scholar
[21] Velha P, Sorianello V, Preite M V, De Angelis G, Cassese T, Bianchi A, Testa A, Romagnoli M 2016 Opt. Lett. 41 5656Google Scholar
[22] Zhou H L, Zhao Y H, Wei Y X, Li F, Dong J J, Zhang X L 2019 Nanophotonics 8 2257Google Scholar
[23] Wang X Y, Jia Y X, Guo X B, Liu J Q , Wang S F , Liu W Y , Sun F Y, Li Y M 2022 Chin. Opt. Lett. 20 041301Google Scholar
[24] Sacher W. D, Barwicz T, Taylor B. J. F, Poon J. K. S 2014 Opt. Express 22 3777Google Scholar
[25] Zou J, Ma X, Xia X, Wang C H, Zhang M, Hu J H, Wang X Y, He J J 2021 J. Lightwave Technol. 39 2431Google Scholar
[26] 张晓光, 段高燕, 席丽霞 2009 光学学报 29 1173Google Scholar
Zhang X G, Duan G Y, Xi L X 2009 Acta Opt. Sin. 29 1173Google Scholar
[27] L. Moller 2001 IEEE Photonics Technol. Lett. 13 585Google Scholar
[28] Yassin B, Zeriab E S M, Lahcen A 2023 J. Optim. Theory Appl. 197 438Google Scholar
[29] Shen Y D, Dong Y C, Han X X, Wu J D, Xue K, Jin M Z, Xie G, Xu X Y 2023 Int. J. Hydrogen Energy 48 24560Google Scholar
[30] Kuznetsov A, Karpinski M, Ziubina R, Kandiy S, Frontoni E, Peliukh O, Veselska O, Kozak R 2023 Information 14 259Google Scholar
[31] Wang Z S, Wu Y H 2023 Processes 11 861Google Scholar
[32] Siew S Y, Li B, Gao F, Zheng H Y, Zhang W, Guo P, Xie S W, Song A, Dong B, Luo L W, Li C, Luo X, Lo G Q 2021 J. Light. Technol. 39 4374Google Scholar
[33] Cheben P, Schmid J H, Wang S R, Xu D X, Vachon M, Janz S, Lapointe J, Painchaud Y, Picard M J 2015 Opt. Express 23 22553Google Scholar
-
图 3 各种模式光场传输效率与偏振旋转分束结构长度的关系 (a) TE0, TM0和TE1模式的光场传输效率与偏振旋转结构的长度$ {L_{\text{r}}} $的关系; (b) TE0和TE1模式的光场传输效率与偏振分束结构的长度$ {L_{\text{s}}} $的关系
Figure 3. The relationships between the transmission efficiencies of different modes and the polarization rotator-splitter length: (a) The relationships between the transmission efficiencies of TE0, TM0 and TE1 modes and the length of polarization rotator structure $ {L_{\text{r}}} $; (b) the relationships between the transmission efficiencies of TE0 , TE1 mode and the length of polarization splitter structure $ {L_{\mathrm{s}}} $.
图 4 传递矩阵对应的等效波导结构 (a) 矩阵$ {{\boldsymbol{M}}_0} $的等效波导结构; (b) 矩阵$ {{\boldsymbol{M}}_{45}} $的等效波导结构; (c) 矩阵$ {{\boldsymbol{M}}_0} $和$ {{\boldsymbol{M}}_{45}} $对任意偏振态$ P $在庞加莱球上的变换轨迹; TPS: 热相移器
Figure 4. Equivalent waveguide structures of transfer matrices: (a) Equivalent waveguide structure of matrix ${{\boldsymbol{M}}_0} $; (b) equivalent waveguide structure of matrix $ {{\boldsymbol{M}}_{45}} $; (c) the transform traces of matrix $ {{\boldsymbol{M}}_0} $and matrix $ {{\boldsymbol{M}}_{45}} $ on arbitrary polarization state $ P $ in Poincare sphere; TPS: Thermal phase shift.
图 5 基于硅基光电子芯片的动态偏振控制器结构 (a) 与波导0°/45°/0°/45°结构对应的片上动态偏振控制器结构; (b) 实际片上动态偏振控制器结构
Figure 5. The structures of dynamic polarization controller on silicon photonics chip: (a) The structure of dynamic polarization controller corresponding to 0°/45°/0°/45° structure; (b) the simplified structure of dynamic polarization controller on chip.
图 6 基于模拟退火算法的偏振锁定仿真结果 (a) 采用各种固定步长及可变步长锁定后的偏振消光比; (b) 考虑探测器电子学噪声时采用固定步长的仿真锁定结果; (c) 考虑探测器噪声和静态消光比时采用固定步长的仿真锁定结果; (d) 考虑探测器噪声和静态消光比时采用固定步长和可变步长的锁定结果; EN: 电子学噪声, SER: 静态消光比
Figure 6. The simulation of polarization locking using simulated annealing method: (a) The extinction ratios of polarization locking using fixed steps and variable steps methods; (b) the polarization locking results using fixed steps considering electronic noise; (c) the polarization locking results using fixed steps considering electronic noise and static extinction ratio; (d) the polarization locking results using fixed steps and variable steps considering electronic noise and static extinction ratio. EN: electronic noise, SER: static extinction ratio.
图 7 动态偏振控制实验示意图及芯片实物图 (a) 动态偏振控制实验示意图; (b) 低噪声光电探测器示意图; (c) 硅基动态偏振控制器及外围电路; (d) 硅基芯片俯视图; (e)透镜光纤与硅基芯片端面耦合的显微镜图; (f) 硅基动态偏振控制器显微镜图; VOA, 可调光衰减器; MPC, 手动偏振控制器; PBS, 偏振分束器; MF I/O card, 多功能输入输出卡
Figure 7. The scheme of experimental setup about locking the polarization and related photographs: (a) The scheme of experimental setup; (b) the scheme of low noise photodetector; (c) the microscope photograph of whole silicon photonics chip and related circuits; (d) the vertical view of whole silicon photonics chip; (e) the microscope photograph of aligning the fiber lens with chip edges; (f) the microscope photograph of silicon photonics integrated dynamic polarization controller. VOA: Variable optics attenuator; MPC: Manual polarization controller; PBS: Polarization beam splitter; MF I/O card: Multi-function I/O card.
表 1 静态偏振消光比测试数据
Table 1. Test data for static polarization extinction ratios.
测试数据和相应静态偏振消光比 平均值 测试1 光路2功率/nW 37 32 35 36 38 35.6 偏振消光比/dB 41.3 41.9 41.5 41.4 41.1 41.44 测试2 光路1功率/nW 38 37 35 38 34 36.4 偏振消光比/dB 41.1 41.3 41.5 41.1 41.6 41.32 测试3 光路1功率/nW 46 41 46 46 46 45 偏振消光比/dB 40.3 40.8 40.3 40.3 40.3 40.4 测试4 光路2功率/nW 45 47 45 45 48 46 偏振消光比/dB 40.5 40.2 40.5 40.5 40.1 40.36 -
[1] Wang J, He S L, Dai D X 2014 Laser Photonics Rev. 8 L18Google Scholar
[2] Dai D X, Li C L, Wang S P, Wu H, Shi Y C, Wu Z H, Gao S M, Dai T G, Yu H, Tsang H K 2018 Laser Photonics Rev. 12 1700109Google Scholar
[3] Chen Z Y, Yan L S, Pan Y, Jiang L, Yi A L, Pan W, Luo B 2016 Light-Sci. Appl. 6 e16207Google Scholar
[4] 殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠 2019 物理学报 68 024203Google Scholar
Yin Y L, Sun X B, Song M X, Chen W, Chen F N 2019 Acta Phys. Sin. 68 024203Google Scholar
[5] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332Google Scholar
[6] Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492Google Scholar
[7] 陈烈裕, 李占成, 程化, 田建国, 陈树琪 2021 光学学报 41 0823106Google Scholar
Chen L Y, Li Z C, Chen H, Tian J G, Chen S Q 2021 Acta Opt. Sin. 41 0823106Google Scholar
[8] Wang X Y, Liu W Y, Wang P, Li Y M 2017 Phys. Rev. A 95 062330Google Scholar
[9] Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar
[10] Liu S S, Lu Z G, Wang P, Tian Y, Wang X Y, Li Y M 2023 NPJ Quantum Inf. 9 92Google Scholar
[11] Xin G F, Shen L, Pi H Y, Chen D J, Cai H W, Feng H Z, Geng J X, Qu R H, Chen G T, Fang Z J, Chen W B 2012 Chin. Opt. Lett. 10 101403Google Scholar
[12] Zhang P Y, Lu L L, Qu F C, Jiang X H, Zheng X D, Lu Y Q, Zhu S N, Ma X S 2020 Chin. Opt. Lett. 18 082701Google Scholar
[13] 李申, 马海强, 吴令安, 翟光杰 2013 物理学报 62 084214Google Scholar
Li S, Ma H Q, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 084214Google Scholar
[14] Ma C X, Sacher W D, Tang Z Y, Mikkelsen J C, Yang Y, Xu F H, Thiessen T, Lo H K, Poon J K S 2016 Optica 3 1274Google Scholar
[15] Sibson P, Kennard J E, Stanisic S, Erven C, O’Brien J L, Thompson M G 2017 Optica 4 172Google Scholar
[16] Liu W Y, Cao Y X, Wang X Y, Li Y M 2020 Phys. Rev. A 102 032625Google Scholar
[17] Tian Y, Zhang Y, Liu S S, Wang P, Lu Z G, Wang X Y, Li Y M 2023 Opt. Lett 48 2953Google Scholar
[18] Tomohiro N, Takefumi N, Mamoru E, Ruofan H, Takahiro K, Takeshi U, Akira F 2023 Opt. Express 31 19236Google Scholar
[19] Sarmiento-Merenguel J D, Halir R, Le Roux X, Alonso-Ramos C, Vivien L, Cheben P, Durán-Valdeiglesias E, Molina-Fernández I, Marris-Morini D, Xu D X, Schmid J H 2015 Optica 2 1019Google Scholar
[20] Kim J W, Park S H, Chu W S, Oh M C 2012 Opt. Express 20 12443Google Scholar
[21] Velha P, Sorianello V, Preite M V, De Angelis G, Cassese T, Bianchi A, Testa A, Romagnoli M 2016 Opt. Lett. 41 5656Google Scholar
[22] Zhou H L, Zhao Y H, Wei Y X, Li F, Dong J J, Zhang X L 2019 Nanophotonics 8 2257Google Scholar
[23] Wang X Y, Jia Y X, Guo X B, Liu J Q , Wang S F , Liu W Y , Sun F Y, Li Y M 2022 Chin. Opt. Lett. 20 041301Google Scholar
[24] Sacher W. D, Barwicz T, Taylor B. J. F, Poon J. K. S 2014 Opt. Express 22 3777Google Scholar
[25] Zou J, Ma X, Xia X, Wang C H, Zhang M, Hu J H, Wang X Y, He J J 2021 J. Lightwave Technol. 39 2431Google Scholar
[26] 张晓光, 段高燕, 席丽霞 2009 光学学报 29 1173Google Scholar
Zhang X G, Duan G Y, Xi L X 2009 Acta Opt. Sin. 29 1173Google Scholar
[27] L. Moller 2001 IEEE Photonics Technol. Lett. 13 585Google Scholar
[28] Yassin B, Zeriab E S M, Lahcen A 2023 J. Optim. Theory Appl. 197 438Google Scholar
[29] Shen Y D, Dong Y C, Han X X, Wu J D, Xue K, Jin M Z, Xie G, Xu X Y 2023 Int. J. Hydrogen Energy 48 24560Google Scholar
[30] Kuznetsov A, Karpinski M, Ziubina R, Kandiy S, Frontoni E, Peliukh O, Veselska O, Kozak R 2023 Information 14 259Google Scholar
[31] Wang Z S, Wu Y H 2023 Processes 11 861Google Scholar
[32] Siew S Y, Li B, Gao F, Zheng H Y, Zhang W, Guo P, Xie S W, Song A, Dong B, Luo L W, Li C, Luo X, Lo G Q 2021 J. Light. Technol. 39 4374Google Scholar
[33] Cheben P, Schmid J H, Wang S R, Xu D X, Vachon M, Janz S, Lapointe J, Painchaud Y, Picard M J 2015 Opt. Express 23 22553Google Scholar
Catalog
Metrics
- Abstract views: 3151
- PDF Downloads: 142
- Cited By: 0