Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Long wavelength near-infrared II emitting Na3YSi3O9:x Cr3+ silicate and spectral broadening by multi-site occupancy

Gong Chang-Shuai Wang Jian-Tong Wang Bo-Wen Xue Xu-Yan Wang Xue-Jiao

Citation:

Long wavelength near-infrared II emitting Na3YSi3O9:x Cr3+ silicate and spectral broadening by multi-site occupancy

Gong Chang-Shuai, Wang Jian-Tong, Wang Bo-Wen, Xue Xu-Yan, Wang Xue-Jiao
PDF
HTML
Get Citation
  • Phosphors-converted near-infrared LED (pc-NIR LED) possesses applications in various fields including food quality analysis, night vision, biomedical imaging, and biomedicine. The design and development of broadband near-infrared (NIR) phosphors with the required properties are of decisive significance for pc-NIR LED devices. The Cr3+ doped phosphors are considered to be most promising near-infrared materials for commercialization. Broadband NIR luminescent materials doped with Cr3+ have attracted more and more attention due to their potential applications in NIR light sources. However, the emission wavelength of Cr3+ doped phosphor is generally located in the NIR I region of less than 850 nm, and realizing the NIR II region emission is still a challenge. In this work, a series of Cr3+ doped Na3YSi3O9 new silicate phosphors is prepared by solid-state method in N2 atmosphere at 1150 ℃ for 8 h. We take advantages of the silicate nature and the multi octahedral sites suitable for Cr3+ in the studied Na3YSi3O9 materials to redshift and broaden the spectrum. The phase, crystal structure, microstructure, photoluminescence, main emission peak decay and thermal stability of the samples are systematically studied. The results show that the prepared samples are pure phases, with uneven morphology, slight agglomeration, and the sizes in the micrometer range. The Cr3+ is located in the weak crystal field environment of Na3YSi3O9 lattice, with a Dq/B value of 2.29. Under the excitation of blue light at a wavelength of 485 nm, the strongest emission peaks of Na3Y1–x Si3O9:x Cr3+ phosphors are located at 984 nm (NIR II region), which is longer than those of most Cr3+ activated phosphors. Due to the multi-site occupation of Cr3+ in the lattice, the full width at half maximum (FWHM) of the emission spectrum is as high as 183 nm. The optimal doping concentration of Na3Y1–x Si3O9:x Cr3+ is 3%, and the quenching mechanism is the dipole-dipole interaction between Cr3+ ions. Fluorescence decay curves show that the luminescence lifetime of Na3Y0.97Si3O9:0.03Cr3+ sample gradually decreases with the increase of doping concentration and temperature. The results of the temperature-dependent spectra show that the emission intensity decreases in a temperature range from 298 K to 423 K, and the activation energy ΔE of Cr3+ is 0.157 eV.
      Corresponding author: Wang Xue-Jiao, wangxuejiao@bhu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of the Educational Department of Liaoning Province, China (Grant No. JYTMS20231627) and the Natural Science Foundation of Liaoning Provincial Department of Science and Technology, China (Grant No. 2020-MS-286).
    [1]

    Chen Y, Wang S F, Zhang F 2023 Nat. Rev. Bioeng. 1 60Google Scholar

    [2]

    Wu H Y, Jiang L H, Li K, Li C Y, Zhang H J 2021 J. Mater. Chem. C 9 11761Google Scholar

    [3]

    Zhong J Y, Li C J, Zhao W R, You S H, Brgoch J 2022 Chem. Mater. 34 337Google Scholar

    [4]

    Zhang H S, Zhong J Y, Du F, Chen L, Zhang X L, Mu Z F, Zhao W R 2022 ACS Appl. Mater. Interfaces 14 11663Google Scholar

    [5]

    Lai J, Shen W H, Qiu J B, Zhou D C, Long Z W, Yang Y, Zhang K, Khan I, Wang Q 2020 J. Am. Ceram. Soc. 103 5067Google Scholar

    [6]

    Liu T Y, Cai H, Mao N, Song Z, Liu Q L 2021 J. Am. Ceram. Soc. 104 4577Google Scholar

    [7]

    Zhong J Y, Zhuo Y, Du F, Zhang H S, Zhao W R, Brgoch J 2021 ACS Appl. Mater. Interfaces 13 31835Google Scholar

    [8]

    Yang Z, Zhao Y, Zhou Y, Qiao J, Chuang Y C, Molokeev M S, Xia Z 2022 Adv. Funct. Mater. 32 2103927Google Scholar

    [9]

    Xiao Y, Xiao W, Wu D, Guan L, Luo M, Sun L D 2022 Adv. Funct. Mater. 32 2109618Google Scholar

    [10]

    Chen X Z, Li Y, Huang K, Huang L, Tian X M, Dong H F, Kang R, Hu Y H, Nie J M, Qiu J R, Han G 2021 Adv. Mater. 33 2008722Google Scholar

    [11]

    Dang P P, Wei Y, Liu D J, Li G G, Lin J 2023 Adv. Opt. Mater. 11 2201739Google Scholar

    [12]

    Liu D J, Dang P P, Zhang G D, Lian H Z, Li G G, Lin J 2024 Infomat 6 e12542Google Scholar

    [13]

    Rajendran V, Huang W T, Chen K C, Chang H, Liu R S 2022 J. Mater. Chem. C 10 14367Google Scholar

    [14]

    Huang W T, Chen K C, Huang M H, Liu R S 2023 Adv. Opt. Mater. 11 2301166Google Scholar

    [15]

    Liu Y, Stasio F D, Bi C H, Zhang J B, Xia Z G, Shi Z F, Manna L 2024 Adv. Mater. 36 2312482Google Scholar

    [16]

    Zhang H, Zhong J, Li C, Wang L, Zhao W 2022 J. Lumin. 251 119211Google Scholar

    [17]

    Zhou Y P, Li X J, Seto Y, Wang Y H 2021 ACS Sustain. Chem. Eng. 9 3145Google Scholar

    [18]

    Malysa B, Meijerink A, Jüstel T 2018 J. Lumin. 202 523Google Scholar

    [19]

    Zou X, Wang X, Zhang H, Kang Y, Yang X, Zhang X, Molokeev M S, Lei B 2022 Chem. Eng. J. 428 132003Google Scholar

    [20]

    Jiang H J, Chen L Y, Zheng G J, Luo Z H, Wu X H, Liu Z H, Li R Y, Liu Y F, Sun P, Jiang J 2022 Adv. Opt. Mater. 10 2102741Google Scholar

    [21]

    Mao M Q, Zhou T L, Zeng H T, Wang L, Huang F, Tang X Y, Xie R J 2020 J. Mater. Chem. C 8 1981Google Scholar

    [22]

    Li C J, Zhong J Y 2023 Adv. Opt. Mater. 11 2202323Google Scholar

    [23]

    Dumesso M U, Xiao W, Zheng G, Basore E T, Tang M, Liu X, Qiu J 2022 Adv. Opt. Mater. 10 2200676Google Scholar

    [24]

    Huang D, Liang S, Chen D, Hu J, Xu K, Zhu H 2021 Chem. Eng. J. 426 131332Google Scholar

    [25]

    Pan L, Lu R, Zhu Q, McGrath J M, Tu K 2015 Postharvest Biol. Tec. 102 42Google Scholar

    [26]

    Cai H, Liu S Q, Song Z, Liu Q L 2021 J. Mater. Chem. C 9 5469Google Scholar

    [27]

    Kenry, Duan Y, Liu B 2018 Adv. Mater. 30 1802394Google Scholar

    [28]

    Xia Z G, Zhou J, Mao Z Y 2013 J. Mater. Chem. C 1 5917Google Scholar

    [29]

    Wang F, Jin Y, Liu Y F, Zhang L L, Dong R, Zhang J H 2019 J. Lumin 206 227Google Scholar

    [30]

    Zhou J B, Zhong J P, Guo J Y, Liang H B, Su Q, Tang Q, Tao Y, Moretti F, Lebbou K, Dujardin C 2016 J. Phys. Chem. C 120 18741Google Scholar

    [31]

    Halada G P, Clayton C R 1991 J. Electrochem. Soc. 138 2921Google Scholar

    [32]

    Kim Y I, Page K, Limarga A M, Clarke D R, Seshadri R 2007 Phys. Rev. B 76 115204Google Scholar

    [33]

    Wang C P, Zhang Y X, Han X, Hu D F, He D P, Wang X M, Jiao H 2021 J. Mater. Chem. C 9 4583Google Scholar

    [34]

    刘云鹏, 盛伟繁, 吴忠华 2021 无机材料学报 36 901Google Scholar

    Liu Y P, Sheng W F, Wu Z H 2021 J. Inorg. Mater. 36 901Google Scholar

    [35]

    Farges F 2009 Phys. Chem. Miner. 36 463Google Scholar

    [36]

    Xie W, Jiang W, Zhou R F, Li J H, Ding J H, Ni H Y, Zhang Q H, Tang Q, Meng J X, Lin L T 2021 Inorg. Chem. 60 2219Google Scholar

    [37]

    Tobase T, Yoshiasa A, Hiratoko T, Nakatsuka A 2018 J. Synchrotron Radiat. 25 1129Google Scholar

    [38]

    Zhu F M, Gao Y, Zhu B M, Huang L, Qiu J B 2024 Chem. Eng. J 479 147568.Google Scholar

    [39]

    Tanabe Y, Sugano S 1954 J. Phys. Soc. Jpn. 9 766Google Scholar

    [40]

    Trueba A, Garcia-Fernandez P, Garcia-Lastra J M, Aramburu J A, Barriuso M T, Moreno M 2011 J. Phys. Chem. A 115 1423Google Scholar

    [41]

    Mondal A, Das S, Manam J 2019 Phys. B Condens. Matter 569 20Google Scholar

    [42]

    Zhang L L, Zhang S, Hao Z D, Zhang X, Pan G H, Luo Y S, Wu H J, Zhang J H 2018 J. Mater. Chem. C 6 4967Google Scholar

    [43]

    Huyen N T, Tu N, Tung D T, Trung D Q, Anh D D, Duc T T, Nga T T T, Huy P T 2020 Opt. Mater. 108 110207Google Scholar

    [44]

    Blasse G 1968 Phys. Lett. A 28 444Google Scholar

    [45]

    Xiao F, Yi R X, Yuan H L, Zang G J, Xie C N 2018 Spectrochim. Acta A 202 352Google Scholar

    [46]

    Hussen M K, Dejene F B 2019 Optik 181 514Google Scholar

    [47]

    Si J Y, Wang L, Liu L H, Yi W, Cai G M, Takeda T, Funahashi S, Hirosaki N, Xie R J 2019 J. Mater. Chem. C 7 733Google Scholar

    [48]

    Wang X J, Wang X J, Wang Z H, Zhu Q, Wang C, Xin S Y, Li J G 2018 J. Am. Ceram. Soc. 101 5477Google Scholar

    [49]

    Wang X J, Meng Q H, Li M T, Wang X J, Wang Z H, Zhu Q, Li J G 2019 J. Am. Ceram. Soc. 102 3296Google Scholar

    [50]

    Sun Z C, Zhou T L, Liu R H, Tang X Y, Xie R J 2023 J. Am. Ceram. Soc. 106 3446Google Scholar

    [51]

    Gao T Y, Zhuang W D, Liu R H, Liu Y H, Chen X X, Xue Y 2020 J. Alloys Compd. 848 156557Google Scholar

  • 图 1  (a) Na3Y1–x Si3O9:x Cr3+ (x = 0—0.1)样品的XRD图谱; (b) Na3Y0.97Si3O9:0.03Cr3+样品Rietveld精修结果; (c) Na3YSi3O9的晶体结构; (d) Na3Y0.97Si3O9:0.03Cr3+样品FE-SEM及元素扫描分布图

    Figure 1.  (a) The XRD patterns of the Na3Y1–x Si3O9:x Cr3+ (x = 0–0.1) samples; (b) Rietveld refinement results of the Na3Y0.97Si3O9:0.03Cr3+ sample; (c) crystal structure of Na3YSi3O9; (d) the FE-SEM morphology and elemental mapping of the Na3Y0.97Si3O9:0.03Cr3+ sample.

    图 2  Na3Y0.97Si3O9:0.03Cr3+样品 (a) 漫反射光谱; (b) 带隙能量的测定

    Figure 2.  Na3Y0.97Si3O9:0.03Cr3+ samples: (a) Diffuse reflectance spectrum; (b) determination of band gap energy.

    图 3  (a) Na3Y0.97Si3O9:0.03Cr3+样品的XPS全谱; (b) Cr 2p轨道的精细谱; (c) Cr的 K边X射线吸收近边结构(XANES)光谱

    Figure 3.  (a) XPS full spectrum for Na3Y0.97Si3O9:0.03Cr3+ sample; (b) high-resolution XPS spectra of Cr 2p orbital; (c) Cr K-edge X-ray absorption near-edge structure (XANES) spectrum.

    图 4  (a)—(c) Na3Y0.97Si3O9:0.03Cr3+样品的(a)归一化的激发和发射光谱、(b) 田边-菅野图、(c) 80—300 K 范围内变温发射光谱; (d)—(f) Na3Y1–x Si3O9:x Cr3+ (x = 0—0.1)样品的(d)发射光谱; (e) log(x)-log(I/x)对应关系; (f) 荧光衰减曲线(λex = 485 nm, λem = 984 nm)

    Figure 4.  (a) Normalized excitation and emission spectra, (b) Tanabe-Sugano energy level diagram, (c) temperature-dependent emission spectra in the range of 80—300 K for the Na3Y0.97Si3O9:0.03Cr3+ samples; (d) emission spectra, (e) the log(x) versus log(I/x) plot, (f) luminescence decay curves (λex = 485 nm, λem = 984 nm) for the Na3Y1–x Si3O9:x Cr3+ (x = 0–0.1) samples.

    图 5  (a) Na3Y0.97Si3O9:0.03Cr3+样品变温发射光谱的等高线图; (b) 1/kT与ln[(I0/I) -1]的对应关系; (c) Cr3+热猝灭过程的位形坐标示意图; (d) 不同温度下的荧光衰减曲线

    Figure 5.  (a) Contour plot of the temperature-dependent PL spectra of Na3Y0.97Si3O9:0.03Cr3+; (b) ln[(I0/I) -1] vs. 1/kT relationship; (c) the thermal quenching process of Cr3+ depicted with the configurational coordinate diagram; (d) fluorescence decay curves at different temperatures.

    表 1  由Na3Y0.97Si3O9:0.03Cr3+样品XRD图谱精修所得的结构参数和可靠因子及纯相Na3YSi3O9晶胞参数信息 (PDF #72-2455)

    Table 1.  Structure parameters and reliability factors obtained via refinement of the XRD pattern for Na3Y0.97Si3O9:0.03Cr3+ sample and the cell parameters from pure Na3YSi3O9 (PDF #72-2455).

    Chemical formulaNa3YSi3O9Na3Y0.97Si3O9:0.03Cr3+
    Space groupP212121P212121
    a15.408(4)15.0362(4)
    b15.312(5)15.2116(5)
    c15.222(4)15.1460(4)
    α/(°)9090
    β/(°)9090
    γ /(°)9090
    V33591.016(18)3464.26(18)
    Rp/%4.75
    Rwp/%7.41
    χ22.140
    DownLoad: CSV

    表 2  Na3Y0.97Si3O9:0.03Cr3+样品中4种[YO6]多面体键长及多面体畸变指数汇总

    Table 2.  Bond length and distortion index of four kinds [YO6] polyhedrons in Na3Y0.97Si3O9:0.03Cr3+ sample.

    Bondd1d2d3d4d5d6davddis
    Y1—O2.49372.18672.06432.26233.14273.02362.25890.1461
    Y2—O2.11082.23022.27442.83292.12182.11082.28010.0808
    Y3—O2.27071.95282.76481.80123.80772.89602.58220.2223
    Y4—O2.26422.0521.61691.88743.14013.22492.36430.2307
    DownLoad: CSV

    表 3  Na3Y1–x Si3O9:x Cr3+ (x = 0—0.1)样品荧光衰减曲线拟合结果 (λex = 485 nm, λem = 984 nm)

    Table 3.  Fluorescence decay curve fitting results of Na3Y1–x Si3O9:x Cr3+ (x = 0–0.1) samples (λex = 485 nm, λem = 984 nm)

    浓度λem/nmA1A2τ1τ2χ2τ/μs
    0.0059842020.38802.0916.5054.350.98737.95
    0.019841993.95836.8315.0850.031.05435.42
    0.029841808.84729.5812.1444.471.05931.42
    0.039841963.30726.1912.6145.560.96131.45
    0.059841837.09818.4213.0243.060.98630.91
    0.109841985.01692.6413.2945.200.98430.61
    DownLoad: CSV
  • [1]

    Chen Y, Wang S F, Zhang F 2023 Nat. Rev. Bioeng. 1 60Google Scholar

    [2]

    Wu H Y, Jiang L H, Li K, Li C Y, Zhang H J 2021 J. Mater. Chem. C 9 11761Google Scholar

    [3]

    Zhong J Y, Li C J, Zhao W R, You S H, Brgoch J 2022 Chem. Mater. 34 337Google Scholar

    [4]

    Zhang H S, Zhong J Y, Du F, Chen L, Zhang X L, Mu Z F, Zhao W R 2022 ACS Appl. Mater. Interfaces 14 11663Google Scholar

    [5]

    Lai J, Shen W H, Qiu J B, Zhou D C, Long Z W, Yang Y, Zhang K, Khan I, Wang Q 2020 J. Am. Ceram. Soc. 103 5067Google Scholar

    [6]

    Liu T Y, Cai H, Mao N, Song Z, Liu Q L 2021 J. Am. Ceram. Soc. 104 4577Google Scholar

    [7]

    Zhong J Y, Zhuo Y, Du F, Zhang H S, Zhao W R, Brgoch J 2021 ACS Appl. Mater. Interfaces 13 31835Google Scholar

    [8]

    Yang Z, Zhao Y, Zhou Y, Qiao J, Chuang Y C, Molokeev M S, Xia Z 2022 Adv. Funct. Mater. 32 2103927Google Scholar

    [9]

    Xiao Y, Xiao W, Wu D, Guan L, Luo M, Sun L D 2022 Adv. Funct. Mater. 32 2109618Google Scholar

    [10]

    Chen X Z, Li Y, Huang K, Huang L, Tian X M, Dong H F, Kang R, Hu Y H, Nie J M, Qiu J R, Han G 2021 Adv. Mater. 33 2008722Google Scholar

    [11]

    Dang P P, Wei Y, Liu D J, Li G G, Lin J 2023 Adv. Opt. Mater. 11 2201739Google Scholar

    [12]

    Liu D J, Dang P P, Zhang G D, Lian H Z, Li G G, Lin J 2024 Infomat 6 e12542Google Scholar

    [13]

    Rajendran V, Huang W T, Chen K C, Chang H, Liu R S 2022 J. Mater. Chem. C 10 14367Google Scholar

    [14]

    Huang W T, Chen K C, Huang M H, Liu R S 2023 Adv. Opt. Mater. 11 2301166Google Scholar

    [15]

    Liu Y, Stasio F D, Bi C H, Zhang J B, Xia Z G, Shi Z F, Manna L 2024 Adv. Mater. 36 2312482Google Scholar

    [16]

    Zhang H, Zhong J, Li C, Wang L, Zhao W 2022 J. Lumin. 251 119211Google Scholar

    [17]

    Zhou Y P, Li X J, Seto Y, Wang Y H 2021 ACS Sustain. Chem. Eng. 9 3145Google Scholar

    [18]

    Malysa B, Meijerink A, Jüstel T 2018 J. Lumin. 202 523Google Scholar

    [19]

    Zou X, Wang X, Zhang H, Kang Y, Yang X, Zhang X, Molokeev M S, Lei B 2022 Chem. Eng. J. 428 132003Google Scholar

    [20]

    Jiang H J, Chen L Y, Zheng G J, Luo Z H, Wu X H, Liu Z H, Li R Y, Liu Y F, Sun P, Jiang J 2022 Adv. Opt. Mater. 10 2102741Google Scholar

    [21]

    Mao M Q, Zhou T L, Zeng H T, Wang L, Huang F, Tang X Y, Xie R J 2020 J. Mater. Chem. C 8 1981Google Scholar

    [22]

    Li C J, Zhong J Y 2023 Adv. Opt. Mater. 11 2202323Google Scholar

    [23]

    Dumesso M U, Xiao W, Zheng G, Basore E T, Tang M, Liu X, Qiu J 2022 Adv. Opt. Mater. 10 2200676Google Scholar

    [24]

    Huang D, Liang S, Chen D, Hu J, Xu K, Zhu H 2021 Chem. Eng. J. 426 131332Google Scholar

    [25]

    Pan L, Lu R, Zhu Q, McGrath J M, Tu K 2015 Postharvest Biol. Tec. 102 42Google Scholar

    [26]

    Cai H, Liu S Q, Song Z, Liu Q L 2021 J. Mater. Chem. C 9 5469Google Scholar

    [27]

    Kenry, Duan Y, Liu B 2018 Adv. Mater. 30 1802394Google Scholar

    [28]

    Xia Z G, Zhou J, Mao Z Y 2013 J. Mater. Chem. C 1 5917Google Scholar

    [29]

    Wang F, Jin Y, Liu Y F, Zhang L L, Dong R, Zhang J H 2019 J. Lumin 206 227Google Scholar

    [30]

    Zhou J B, Zhong J P, Guo J Y, Liang H B, Su Q, Tang Q, Tao Y, Moretti F, Lebbou K, Dujardin C 2016 J. Phys. Chem. C 120 18741Google Scholar

    [31]

    Halada G P, Clayton C R 1991 J. Electrochem. Soc. 138 2921Google Scholar

    [32]

    Kim Y I, Page K, Limarga A M, Clarke D R, Seshadri R 2007 Phys. Rev. B 76 115204Google Scholar

    [33]

    Wang C P, Zhang Y X, Han X, Hu D F, He D P, Wang X M, Jiao H 2021 J. Mater. Chem. C 9 4583Google Scholar

    [34]

    刘云鹏, 盛伟繁, 吴忠华 2021 无机材料学报 36 901Google Scholar

    Liu Y P, Sheng W F, Wu Z H 2021 J. Inorg. Mater. 36 901Google Scholar

    [35]

    Farges F 2009 Phys. Chem. Miner. 36 463Google Scholar

    [36]

    Xie W, Jiang W, Zhou R F, Li J H, Ding J H, Ni H Y, Zhang Q H, Tang Q, Meng J X, Lin L T 2021 Inorg. Chem. 60 2219Google Scholar

    [37]

    Tobase T, Yoshiasa A, Hiratoko T, Nakatsuka A 2018 J. Synchrotron Radiat. 25 1129Google Scholar

    [38]

    Zhu F M, Gao Y, Zhu B M, Huang L, Qiu J B 2024 Chem. Eng. J 479 147568.Google Scholar

    [39]

    Tanabe Y, Sugano S 1954 J. Phys. Soc. Jpn. 9 766Google Scholar

    [40]

    Trueba A, Garcia-Fernandez P, Garcia-Lastra J M, Aramburu J A, Barriuso M T, Moreno M 2011 J. Phys. Chem. A 115 1423Google Scholar

    [41]

    Mondal A, Das S, Manam J 2019 Phys. B Condens. Matter 569 20Google Scholar

    [42]

    Zhang L L, Zhang S, Hao Z D, Zhang X, Pan G H, Luo Y S, Wu H J, Zhang J H 2018 J. Mater. Chem. C 6 4967Google Scholar

    [43]

    Huyen N T, Tu N, Tung D T, Trung D Q, Anh D D, Duc T T, Nga T T T, Huy P T 2020 Opt. Mater. 108 110207Google Scholar

    [44]

    Blasse G 1968 Phys. Lett. A 28 444Google Scholar

    [45]

    Xiao F, Yi R X, Yuan H L, Zang G J, Xie C N 2018 Spectrochim. Acta A 202 352Google Scholar

    [46]

    Hussen M K, Dejene F B 2019 Optik 181 514Google Scholar

    [47]

    Si J Y, Wang L, Liu L H, Yi W, Cai G M, Takeda T, Funahashi S, Hirosaki N, Xie R J 2019 J. Mater. Chem. C 7 733Google Scholar

    [48]

    Wang X J, Wang X J, Wang Z H, Zhu Q, Wang C, Xin S Y, Li J G 2018 J. Am. Ceram. Soc. 101 5477Google Scholar

    [49]

    Wang X J, Meng Q H, Li M T, Wang X J, Wang Z H, Zhu Q, Li J G 2019 J. Am. Ceram. Soc. 102 3296Google Scholar

    [50]

    Sun Z C, Zhou T L, Liu R H, Tang X Y, Xie R J 2023 J. Am. Ceram. Soc. 106 3446Google Scholar

    [51]

    Gao T Y, Zhuang W D, Liu R H, Liu Y H, Chen X X, Xue Y 2020 J. Alloys Compd. 848 156557Google Scholar

  • [1] Xia Chang-Ming, Lu Jia-Ao, Huang Zhuo-Yuan, Liu Jian-Tao, Hou Zhi-Yun, Zhou Gui-Yao. Preparation and optical properties of thulium doped lanthanum aluminum silicate glass photonic crystal fiber. Acta Physica Sinica, 2023, 72(20): 204206. doi: 10.7498/aps.72.20230766
    [2] Xiong Zhong-Long, Wu Yan, Jing Rui-Ping, Ma Chong, Long Wei-Hui, Zhang Chao-Jun, Cheng Yong-Jin. Performance of Yb-doped silicate glass with thermal bleaching. Acta Physica Sinica, 2016, 65(4): 044208. doi: 10.7498/aps.65.044208
    [3] Wu Tian-Jiao, Huang Yan-Tang, Ma Jing, Huang Jing, Huang Yu, Zhang Pei-Jin, Guo Chang-Lei. Study on luminescent properties of Yb3+-doped phosphosilicate microsphere. Acta Physica Sinica, 2014, 63(21): 217805. doi: 10.7498/aps.63.217805
    [4] Ma Hong-Ping, Liu Ping, Yang Qing-Hua, Deng De-Gang. Broad band infrared optical properties of Cr4+-doped Li1.14Zn1.43SiO4 transparent glass-ceramics. Acta Physica Sinica, 2013, 62(17): 177801. doi: 10.7498/aps.62.177801
    [5] Yu Yang, Liu Zi-Jun, Chen Qiao-Qiao, Dai Neng-Li, Li Jin-Yan, Yang Lü-Yun. The luminescence properties of the Dy3+-doped borosilicate glasses. Acta Physica Sinica, 2013, 62(1): 017804. doi: 10.7498/aps.62.017804
    [6] Zhou Da-Cheng, Liu Zhi-Liang, Song Zhi-Guo, Yang Zheng-Wen, He Xi-Jia, Wang Rong-Fei, Jiao Qing, Qiu Jian-Bei. Super broadband near infrared luminescence properties in Bi-doped aluminosilicate glasses. Acta Physica Sinica, 2012, 61(12): 127802. doi: 10.7498/aps.61.127802
    [7] Zhong Rui-Xia, Zhang Jia-Hua, Li Ming-Ya, Wang Xiao-Qiang. Luminescent properties and energy transfer in MAl12O19: Eu2+, Cr3+ (M = Ca, Sr, Ba). Acta Physica Sinica, 2012, 61(11): 117801. doi: 10.7498/aps.61.117801
    [8] Wang Xing-Jun, Dong Bin, Zhou Zhi-Ping. Phase transformation and photoluminescence properties of Er silicate films by sol-gel method. Acta Physica Sinica, 2010, 59(5): 3554-3557. doi: 10.7498/aps.59.3554
    [9] Xu Wei, Li Cheng-Ren, Chen Bao-Jiu, Feng Zhi-Qing. Optical property of Bi3+∶Eu3+-codoped borosilicate glass with Eu3+ ions as probe. Acta Physica Sinica, 2010, 59(2): 1328-1332. doi: 10.7498/aps.59.1328
    [10] Lü Jing-Wen, Liu Shuang, Xiao Hong-Liang, Zheng Xiao-Qiu, Li Yue, Li Feng. Preparation and performance of Cr3+/Tm3+/Ho3+ co-doped fluorophosphate glasses. Acta Physica Sinica, 2008, 57(10): 6373-6380. doi: 10.7498/aps.57.6373
    [11] Qian Qi, Wang Yan, Zhang Qin-Yuan, Yang Zhong-Min, Yang Gang-Feng, Jiang Zhong-Hong. Optical characterization of ultraviolet laser photosensitive Er3+-doped bismuth-silicate glasses. Acta Physica Sinica, 2007, 56(5): 2736-2741. doi: 10.7498/aps.56.2736
    [12] Wang Xue-Jun, Xia Hai-Ping. Study of near infrared emission property of GeO2-Bi2O3-MOx(MOx=WO3, BaO) glasses. Acta Physica Sinica, 2007, 56(5): 2725-2730. doi: 10.7498/aps.56.2725
    [13] Zhang Xu-Dong, Xu Tie-Feng, Nie Qiu-Hua, Dai Shi-Xun, Shen Xiang, Lu Long-Jun, Zhang Xiang-Hua. Investigation of spectral properties and thermal stability of Er3+/Yb3+ co-doped TeO2-B2O3-SiO2 glasses. Acta Physica Sinica, 2007, 56(3): 1758-1764. doi: 10.7498/aps.56.1758
    [14] Li Shan-Feng, Miao Zhuang, Peng Yang, Zhang Qing-Yu. Optical properties and cooperative luminescence of Yb-doped borate-silicate glasses. Acta Physica Sinica, 2006, 55(8): 4315-4320. doi: 10.7498/aps.55.4315
    [15] Li Shan-Feng, Zhang Qing-Yu. Absorption and photoluminescence properties Er/Yb co-doped soda-silicate glasses. Acta Physica Sinica, 2005, 54(11): 5462-5467. doi: 10.7498/aps.54.5462
    [16] Liu Zhu-Ping, Tang Jing-Ping, Hu Li-Li, Jiang Zhong-Hong. Laser properties of rotating prism Q-switched Cr3+, Yb3+, Er3+: phosphate glasses. Acta Physica Sinica, 2005, 54(9): 4422-4426. doi: 10.7498/aps.54.4422
    [17] Xu Shi-Qing, Wang Guo-Nian, Zhang Jun-Jie, Dai Shi-Xun, Hu Li-Li, Jiang Zhong-Hong. The upconversion luminescence research of Er3+-doped heavy metal oxyfluorosilicate glasses. Acta Physica Sinica, 2004, 53(6): 1840-1844. doi: 10.7498/aps.53.1840
    [18] GAO WEN-BIN, CHEN JUN-DE, YANG SHI-JUN, YE LI-LI, LU SHI-PING, WEN GEN-WANG. A STUDY OF THE SPECTRAL CHARACTERISTICS OF YGG:Cr3+ CRYSTAL. Acta Physica Sinica, 1987, 36(5): 584-590. doi: 10.7498/aps.36.584
    [19] XIA YUAN-FU, LIU RONG-CHUAN, WANG SHU-XIN, XU CHAO, PAN SHU-YING, CHENG YI-BING. A MOSSBAUER INVESTIGATION OF THE IRON-SODIUM-SILICATE GLASS SYSTEMS. Acta Physica Sinica, 1984, 33(1): 132-136. doi: 10.7498/aps.33.132
    [20] GAN FU-XI, DENG HE, LIU HUI-MING. PARAMAGNETIC RESONANCE STUDY ON TRANSITION METAL IONS IN PHOSPHATE, FLUOROPHOSPHATE AND FLUORIDE GLASSES(I)——Cr3+,Mo3+. Acta Physica Sinica, 1982, 31(3): 404-409. doi: 10.7498/aps.31.404
  • supplement 157803-20240663补充材料.pdf supplement
Metrics
  • Abstract views:  690
  • PDF Downloads:  24
  • Cited By: 0
Publishing process
  • Received Date:  10 May 2024
  • Accepted Date:  25 June 2024
  • Available Online:  01 July 2024
  • Published Online:  05 August 2024

/

返回文章
返回