Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study of efficient temporal-multimode Duan-Lukin-Cirac-Zoller storage scheme

Wen Ya-Fei Zhuang Yuan-Yuan Wang Zhi-Qiang Gao Shi-Hui

Citation:

Experimental study of efficient temporal-multimode Duan-Lukin-Cirac-Zoller storage scheme

Wen Ya-Fei, Zhuang Yuan-Yuan, Wang Zhi-Qiang, Gao Shi-Hui
cstr: 32037.14.aps.73.20240799
PDF
HTML
Get Citation
  • Quantum interfaces that generate entanglement or correlations between a photon and an atomic memory are fundamental building blocks in quantum repeater research. Temporal, spatial, and spectral multiplexed atom–photon entanglement interfaces in cold atomic systems based on spontaneous Raman scattering processes, present an effective technical approach to realizing quantum repeaters. Compared with the other schemes, temporal-multiplexing schemes are particularly attractive since they repeatedly use the same physical process. In these schemes, readout efficiency plays a crucial role. Theoretical models indicate that even if the readout efficiency is increased by 1%, the probability of long-distance entanglement distribution will be increased by 7%–18%. However, current implementation of temporal-multimode quantum memory often suffers low readout efficiency unless an optical cavity or an atomic ensemble with a large optical-depth is adopted.In this study, we solve this challenge by using the expandable pulsed light fabricating technology and carefully selecting energy level transitions, so as to develop an efficient temporal-multiplexed quantum source. Our approach involves applying a train of write laser pulses to an atomic ensemble from different directions, thereby creating spin-wave memories and Stokes-photon emissions. We design an expandable pulsed light fabrication device based on the principle of optical path reversibility, allowing a writing laser beam to pass through an acousto-optic modulator (AOM) network in two different directions. This setup enables precise control over the directions of the write pulse train through real-time manipulation of the field-programmable gate array (FPGA) and the diffraction order of the AOMs. In our experiment, we prepare six pairs of modes. After detecting Stokes photons during the experimental cycle, the FPGA outputs a feedforward signal after a specified storage time, triggering the application of a corresponding reading pulse from the read AOM network to the atomic ensemble, thereby generating an anti-Stokes photon. To enhance readout efficiency, we optimize the energy level structure of the read pulse transitions, $ \left| {{{b}} \to {{{e}}_2}} \right\rangle $ to $ \left| {{{b}} \to {{{e}}_1}} \right\rangle $; specifically, we adjust the transition frequencies of the read pulses by comparing with those used in current temporal-multimode quantum memory schemes. Theoretical calculations show that when the frequencies of the read pulses are tuned to the transitions $ \left| {{{b}} \to {{{e}}_1}} \right\rangle $ and $ \left| {{{b}} \to {{{e}}_2}} \right\rangle $, the readout efficiencies are about 33% and 15%, suggesting that the chosen energy level transitions can double the readout efficiency.Experimental results indicate a readout efficiency of 38% for the multiplexed source and the Bell parameter of 2.35. Additionally, our device has a 5.83-fold higher probability of successfully generating entanglement than a single channel entanglement source. Our method is cost-effective, easy to operate, and highly applicable. For instance, based on our findings, the readout efficiency can be further improved through cavity-enhanced atom–photon coupling, and entanglement fidelity can be increased by suppressing noise in temporal-multimode memory schemes. This work provides a solid foundation and effective methods for realizing the high-efficiency temporal-multimode quantum memory and developing the large-scale quantum networks.
      Corresponding author: Wen Ya-Fei, 18234061008@163.com
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 20210302124265) and the Scientific and Technological Programs of Higher Education Institutions in Shanxi, China (Grant Nos. 2021L426, 2021L441).
    [1]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [2]

    Simon C 2017 Nat. Photonics 11 678Google Scholar

    [3]

    Sangouard N, Simon C, Minář J, Zbinden H, de Riedmatten H, Gisin N 2007 Phys. Rev. A 76 050301Google Scholar

    [4]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [5]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 物理学报 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [6]

    Zheng Q L, Liu J C, Wu C, Xue S C, Zhu P Y, Wang Y, Yu X Y, Yu M M, Deng M T, Wu J J, Xu P 2022 Chin. Phys. B 31 024206Google Scholar

    [7]

    Sun Y, Sun C W, Zhou W, Yang R, Duan J C, Gong Y X, Xu P, Zhu S N 2023 Chin. Phys. B 32 080308Google Scholar

    [8]

    Abruzzo S, Kampermann H, Bruß D 2014 Phys. Rev. A 89 012301Google Scholar

    [9]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241Google Scholar

    [10]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332Google Scholar

    [11]

    Wu Y L, Tian L, Xu Z X, Ge W, Chen L R, Li S J, Peng K C 2016 Phys. Rev. A 93 052327Google Scholar

    [12]

    Wen Y F, Zhou P, Xu Z, Yuan L, Zhang H, Wang S, Wang H 2019 Phys. Rev. A 100 012342Google Scholar

    [13]

    Liu H L, Wang M J, Jiao H L, Lu J J, Fan W X, Li S J, Wang H 2023 Opt. Express 31 7200Google Scholar

    [14]

    Li Y, Wen Y F, Wang M J, Liu C, Liu H L, Li S J, Wang H 2022 Phy. Rev. A 106 022610Google Scholar

    [15]

    Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar

    [16]

    Tian L, Xu Z X, Chen L R, Ge W, Yuan H X, Wen Y F, Wang H 2017 Phys. Rev. Lett. 119 130505Google Scholar

    [17]

    Lipka M, Mazelanik M, Leszczyński A, Wasilewski W, Parniak M 2021 Commun. Phys. 4 46Google Scholar

    [18]

    Krovi H, Guha S, Dutton Z, Slater J A, Simon C, Tittel W 2016 Appl. Phys. B. 52 122Google Scholar

    [19]

    Saglamyurek E, Puigibert M G, Zhou Q, Giner L, Marsili F, Verma V B, Nam S W, Oesterling L, Nippa D, Oblak D, Tittel W 2016 Nat. Commun. 7 11202Google Scholar

    [20]

    Albrecht B, Farrera P, Heinze G, Cristiani M, de Riedmatten H 2015 Phys. Rev. Lett. 115 160501Google Scholar

    [21]

    Farrera P, Heinze G, de Riedmatten H 2018 Phys. Rev. Lett. 120 100501Google Scholar

    [22]

    Heller L, Farrera P, Heinze G, de Riedmatten H 2020 Phys. Rev. Lett. 124 210504Google Scholar

    [23]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [24]

    Jiang L, Taylor J M, Lukin M D 2007 Phys. Rev. A 76 012301Google Scholar

    [25]

    温亚飞, 田剑锋, 王志强, 庄园园 2023 物理学报 72 060301Google Scholar

    Wen Y F, Tian J F, Wang Z Q, Zhuang Y Y 2023 Acta Phys. Sin. 72 060301Google Scholar

    [26]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [27]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [28]

    Simon C, de Riedmatten H, Afzelius M 2010 Phys. Rev. A 82 010304Google Scholar

    [29]

    Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100Google Scholar

    [30]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95Google Scholar

    [31]

    周湃, 温亚飞, 袁亮, 李雅, 李淑静, 王海 2020 量子光学学报 26 6Google Scholar

    Zhou P, Wen Y F, Yuan L, Li Y, Li S J, Wang H 2020 Acta Sin. Quan. Opt. 26 6Google Scholar

  • 图 1  (a) 实验装置图, 其中Wi (Ri)为第i路写(读)光, Filters为滤波器, D (T)为单光子探测器, PBS为偏振分束棱镜, AOM为声光调制器; (b) 原子能级图, 其中$ {\sigma ^ + } $($ {\sigma ^ - } $)为不同偏振的出射光子(右旋或左旋); (c) 实验时序图, 其中W, C, R为写光、清洁光(泵浦光)、读光; DG, TG为单光子探测器门开关

    Figure 1.  (a) Experimental setup; Wi (Ri), the i-th write (read) pulses; Filters, F-P etalons; D (T), single photon detector; PBS, polarization beam splitter; AOM, acousto-optic modulator; (b) relevant atomic levels; $ {\sigma ^ + } $($ {\sigma ^ - } $), right (left) polarization of emitted photon; (c) time sequence of the experimental trials; W, C, R, write, cleaning, and read pulses; DG (TG), timeline of the D (T) detector gate.

    图 3  时间复用量子存储Bell参数S (m)随时间模式数m的变化

    Figure 3.  Measured Bell parameter S (m) as a function of the mode number m.

    图 2  测量Stokes光子探测概率$P_{\text{S}}^m$和读出效率随时间模式数m的变化

    Figure 2.  Measured Stokes detection probability $P_{\text{S}}^m$ and readout efficiency as a function of the mode number m.

    图 4  测量Bell参数S (m)与存储时间$\tau $变化关系

    Figure 4.  Measurements of the Bell parameter S (m) as a function of $\tau $.

    表 1  单路纠缠源读出效率

    Table 1.  Readout efficiency of single channel entangled source.

    i 1 2 3 4 5 6
    恢复效率$ {\gamma _{{i}}} $/% 0.39 0.36 0.35 0.38 0.38 0.36
    DownLoad: CSV

    表 2  单路纠缠源Bell参数测量

    Table 2.  Measurement of Bell parameters for single channel entanglement source.

    i 1 2 3 4 5 6
    Bell参数S 2.50 2.47 2.48 2.51 2.47 2.46
    DownLoad: CSV
  • [1]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [2]

    Simon C 2017 Nat. Photonics 11 678Google Scholar

    [3]

    Sangouard N, Simon C, Minář J, Zbinden H, de Riedmatten H, Gisin N 2007 Phys. Rev. A 76 050301Google Scholar

    [4]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [5]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 物理学报 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [6]

    Zheng Q L, Liu J C, Wu C, Xue S C, Zhu P Y, Wang Y, Yu X Y, Yu M M, Deng M T, Wu J J, Xu P 2022 Chin. Phys. B 31 024206Google Scholar

    [7]

    Sun Y, Sun C W, Zhou W, Yang R, Duan J C, Gong Y X, Xu P, Zhu S N 2023 Chin. Phys. B 32 080308Google Scholar

    [8]

    Abruzzo S, Kampermann H, Bruß D 2014 Phys. Rev. A 89 012301Google Scholar

    [9]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241Google Scholar

    [10]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332Google Scholar

    [11]

    Wu Y L, Tian L, Xu Z X, Ge W, Chen L R, Li S J, Peng K C 2016 Phys. Rev. A 93 052327Google Scholar

    [12]

    Wen Y F, Zhou P, Xu Z, Yuan L, Zhang H, Wang S, Wang H 2019 Phys. Rev. A 100 012342Google Scholar

    [13]

    Liu H L, Wang M J, Jiao H L, Lu J J, Fan W X, Li S J, Wang H 2023 Opt. Express 31 7200Google Scholar

    [14]

    Li Y, Wen Y F, Wang M J, Liu C, Liu H L, Li S J, Wang H 2022 Phy. Rev. A 106 022610Google Scholar

    [15]

    Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar

    [16]

    Tian L, Xu Z X, Chen L R, Ge W, Yuan H X, Wen Y F, Wang H 2017 Phys. Rev. Lett. 119 130505Google Scholar

    [17]

    Lipka M, Mazelanik M, Leszczyński A, Wasilewski W, Parniak M 2021 Commun. Phys. 4 46Google Scholar

    [18]

    Krovi H, Guha S, Dutton Z, Slater J A, Simon C, Tittel W 2016 Appl. Phys. B. 52 122Google Scholar

    [19]

    Saglamyurek E, Puigibert M G, Zhou Q, Giner L, Marsili F, Verma V B, Nam S W, Oesterling L, Nippa D, Oblak D, Tittel W 2016 Nat. Commun. 7 11202Google Scholar

    [20]

    Albrecht B, Farrera P, Heinze G, Cristiani M, de Riedmatten H 2015 Phys. Rev. Lett. 115 160501Google Scholar

    [21]

    Farrera P, Heinze G, de Riedmatten H 2018 Phys. Rev. Lett. 120 100501Google Scholar

    [22]

    Heller L, Farrera P, Heinze G, de Riedmatten H 2020 Phys. Rev. Lett. 124 210504Google Scholar

    [23]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [24]

    Jiang L, Taylor J M, Lukin M D 2007 Phys. Rev. A 76 012301Google Scholar

    [25]

    温亚飞, 田剑锋, 王志强, 庄园园 2023 物理学报 72 060301Google Scholar

    Wen Y F, Tian J F, Wang Z Q, Zhuang Y Y 2023 Acta Phys. Sin. 72 060301Google Scholar

    [26]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [27]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [28]

    Simon C, de Riedmatten H, Afzelius M 2010 Phys. Rev. A 82 010304Google Scholar

    [29]

    Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100Google Scholar

    [30]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95Google Scholar

    [31]

    周湃, 温亚飞, 袁亮, 李雅, 李淑静, 王海 2020 量子光学学报 26 6Google Scholar

    Zhou P, Wen Y F, Yuan L, Li Y, Li S J, Wang H 2020 Acta Sin. Quan. Opt. 26 6Google Scholar

  • [1] Meng Jing, Gao Bo-Wen. Photovoltaic performance of novel Perovskite/organic integrated solar cells with high efficiency and high stability. Acta Physica Sinica, 2023, 72(1): 018802. doi: 10.7498/aps.72.20221120
    [2] Lin Ming-Yue, Ju Bo, Li Yan, Chen Xue-Lian. Performance of 2-bromoterephthalic acid passivated all-inorganic perovskite cells. Acta Physica Sinica, 2021, 70(12): 128803. doi: 10.7498/aps.70.20202005
    [3] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [4] Zhou Peng-Chao, Zhang Wei-Dong, Gu Jia-Lu, Chen Hui-Min, Hu Teng-Da, Pu Hua-Yan, Lan Wei-Xia, Wei Bin. Dual non-fullerene acceptors based high efficiency ternary organic solar cells. Acta Physica Sinica, 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [5] Yang De-Wen, Chen Chang-Hua, Shi Yan-Chao, Xiao Ren-Zhen, Teng Yan, Fan Zhi-Qiang, Liu Wen-Yuan, Song Zhi-Min, Sun Jun. Investigation of an X band high efficiency klystron-like relativistic backward wave oscillator. Acta Physica Sinica, 2020, 69(16): 164102. doi: 10.7498/aps.69.20200434
    [6] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [7] Wen Ya-Fei, Wang Sheng-Zhi, Xu Zhong-Xiao, Li Shu-Jing, Wang Hai. Highly-efficient optical storage of two orthogonal polarization modes in a cold atom ensemble. Acta Physica Sinica, 2018, 67(1): 014204. doi: 10.7498/aps.67.20171217
    [8] Guo Jing, He Guang-Yuan, Jiao Zhong-Xing, Wang Biao. High-efficiency intracavity 2 μm degenerate optical parametric oscillator. Acta Physica Sinica, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [9] You Lang-Fang, Ling Wei-Jun, Li Ke, Zhang Ming-Xia, Zuo Yin-Yan, wang Yi-Shan. High efficient CEP-stabilized infrared optical parametric amplifier made from a BBO single crystal. Acta Physica Sinica, 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [10] Hou Guo-Fu, Xue Jun-Ming, Yuan Yu-Jie, Zhang Xiao-Dan, Sun Jian, Chen Xin-Liang, Geng Xin-Hua, Zhao Ying. Key issues for high-efficiency silicon thin film solar cells prepared by RF-PECVD under high-pressure-depletion conditions. Acta Physica Sinica, 2012, 61(5): 058403. doi: 10.7498/aps.61.058403
    [11] Xiao Hu, Leng Jin-Yong, Wu Wu-Ming, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu, Xu Xiao-Jun, Zhao Guo-Min. High efficiency tandem-pumped fiber amplifier. Acta Physica Sinica, 2011, 60(12): 124207. doi: 10.7498/aps.60.124207
    [12] Lin Hong-Huan, Zhang Rui, Deng Ying, Li Ming-Zhong, Zhou Shou-Huan, Wang Jian-Jun, Xu Dang-Peng. Multibeam optical pulse generation system based on time division multiplexing. Acta Physica Sinica, 2010, 59(12): 8725-8732. doi: 10.7498/aps.59.8725
    [13] Ma Wen-Wen, Li Shu-Guang, Yin Guo-Bing, Feng Rong-Pu, Fu Bo. High efficiency pulse compression in tapered microstructure fibers in anomalous dispersion region. Acta Physica Sinica, 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [14] Liu Jun, Li Xiao-Fang, Chen Xiao-Wei, Jiang Yong-Liang, Li Ru-Xin, Xu Zhi-Zhan. 1 kHz-0.1 TW high efficiency Ti: sapphire laser amplifier. Acta Physica Sinica, 2007, 56(3): 1375-1378. doi: 10.7498/aps.56.1375
    [15] Ling Wei-Jun, Wang Zhao-Hua, Wang Peng, Jia Yu-Lei, Tian Jin-Rong, Wei Zhi-Yi. The main multi-pass amplifier with double-side pumped Ti:sapphire. Acta Physica Sinica, 2005, 54(3): 1208-1212. doi: 10.7498/aps.54.1208
    [16] Yao Yuan, Shi Yin. A study on the realization of radio frequency energy AC/DC charge pump based on MOS FET. Acta Physica Sinica, 2005, 54(5): 2424-2428. doi: 10.7498/aps.54.2424
    [17] Liu Hong-Jun, Chen Guo-Fu, Zhao Wei, Wang Yi-Shan. The generation of high efficiency and high quality andhigh stability parametric amplified light. Acta Physica Sinica, 2004, 53(1): 105-113. doi: 10.7498/aps.53.105
    [18] LIU LIANG, CHEN HONG-XIN, WANG YU-ZHU. LASER COOLING OF AN ATOMIC BEAM WITH HIGH EFFICIENCY. Acta Physica Sinica, 1993, 42(11): 1762-1765. doi: 10.7498/aps.42.1762
    [19] CHEN JIAN-WEN, FU SHU-FEN, LIU MIAO-HONG. ELECTRIC DISCHARGE PUMPED XeBr LASER WITH HIGH POWER AND HIGH EFFICIENCY. Acta Physica Sinica, 1980, 29(6): 799-802. doi: 10.7498/aps.29.799
    [20] WU CUN-KAI, FAN JUN-YIN, WANG ZHI-YING. A HIGH EFFICIENCY STIMULATED RAMAN SCATTERING SOURCE. Acta Physica Sinica, 1980, 29(5): 588-593. doi: 10.7498/aps.29.588
Metrics
  • Abstract views:  378
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  05 June 2024
  • Accepted Date:  03 August 2024
  • Available Online:  29 August 2024
  • Published Online:  20 September 2024

/

返回文章
返回