Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precision measurement based on rovibrational spectrum of cold molecular hydrogen ion

Zhang Qian-Yu Bai Wen-Li Ao Zhi-Yuan Ding Yan-Hao Peng Wen-Cui He Sheng-Guo Tong Xin

Citation:

Precision measurement based on rovibrational spectrum of cold molecular hydrogen ion

Zhang Qian-Yu, Bai Wen-Li, Ao Zhi-Yuan, Ding Yan-Hao, Peng Wen-Cui, He Sheng-Guo, Tong Xin
cstr: 32037.14.aps.73.20241064
PDF
HTML
Get Citation
  • A molecular hydrogen ion HD+, composed of a proton, a deuteron, and an electron, has a rich set of rovibrational transitions that can be theoretically calculated and experimentally measured precisely. Currently, the relative accuracy of the rovibrational transition frequencies of the HD+ molecular ions has reached 10–12. By comparing experimental measurements with theoretical calculations of the HD+ rovibrational spectrum, the precise determination of the proton-electron mass ratio, the testing of quantum electrodynamics(QED) theory, and the exploration of new physics beyond the standard model can be achieved. The experiment on HD+ rovibrational spectrum has achieved the highest accuracy (20 ppt, 1 ppt = 10–12) in measuring proton-electron mass ratio. This ppaper comprehensively introduces the research status of HD+ rovibrational spectroscopy, and details the experimental method of the high-precision rovibrational spectroscopic measurement based on the sympathetic cooling of HD+ ions by laser-cooled Be+ ions. In Section 2, the technologies of generating and trapping both Be+ ions and HD+ ions are introduced. Three methods of generating ions, including electron impact, laser ablation and photoionization, are also compared. In Section 3, we show the successful control of the kinetic energy of HD+ molecular ions through the sympathetic cooling, and the importance of laser frequency stabilization for sympathetic cooling of HD+ molecular ions. In Section 4, two methods of preparing internal states of HD+ molecular ions, optical pumping and resonance enhanced threshold photoionization, are introduced. Both methods show the significant increase of population in the ground rovibrational state. In Section 5, we introduce two methods of determining the change in the number of HD+ molecular ions, i.e. secular excitation and molecular dynamic simulation. Both methods combined with resonance enhanced multiphoton dissociation can detect the rovibrational transitions of HD+ molecular ions. In Section 6, the experimental setup and process for the rovibrational spectrum of HD+ molecular ions are given and the up-to-date results are shown. Finally, this paper summarizes the techniques used in HD+ rovibrational spectroscopic measurements, and presents the prospects of potential spectroscopic technologies for further improving frequency measurement precision and developing the spectroscopic methods of different isotopic hydrogen molecular ions.
      Corresponding author: Peng Wen-Cui, wencuipeng@wipm.ac.cn ; He Sheng-Guo, hesg@wipm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1402103) and the National Natural Science Foundation of China (Grant No. 12393825).
    [1]

    Karr J P, Hilico L, Koelemeij J C, Korobov V 2016 Phys. Rev. A 94 050501Google Scholar

    [2]

    Colbourn E A, Bunker P R 1976 J. Mol. Spectrosc 63 155Google Scholar

    [3]

    Korobov V I, Karr J P 2021 Phys. Rev. A 104 032806Google Scholar

    [4]

    Korobov V I 2022 Phys. Part. Nuclei 53 1Google Scholar

    [5]

    Yan Z C, Zhang J Y 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1055Google Scholar

    [6]

    Ye N, Yan Z C 2014 Phys. Rev. A 90 032516Google Scholar

    [7]

    Aznabayev D T, Bekbaev A K, Korobov V I 2019 Phys. Rev. A 99 012501Google Scholar

    [8]

    Bakalov D, Korobov V I, Schiller S 2006 Phys. Rev. Lett. 97 243001Google Scholar

    [9]

    Haidar M, Korobov V I, Hilico L, Karr J P 2022 Phys. Rev. A 106 042815Google Scholar

    [10]

    Zhong Z X, Zhang P P, Yan Z C, Shi T Y 2012 Phys. Rev. A 86 064502Google Scholar

    [11]

    Zhong Z X, Zhou W P, Mei X S 2018 Phys. Rev. A 98 032502Google Scholar

    [12]

    Korobov V I, Karr J P, Haidar M, Zhong Z X 2020 Phys. Rev. A 102 022804Google Scholar

    [13]

    Wing W H, Ruff G A, Lamb Jr W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488Google Scholar

    [14]

    Koelemeij J C J, Roth B, Wicht A, Ernsting I, Schiller S 2007 Phys. Rev. Lett. 98 173002Google Scholar

    [15]

    Bressel U, Borodin A, Shen J, Hansen M G, Ernsting I, Schiller S 2012 Phys. Rev. Lett. 108 183003Google Scholar

    [16]

    Alighanbari S, Hansen M G, Korobov V I, Schiller S 2018 Nat. Phys. 14 555Google Scholar

    [17]

    Alighanbari S, Giri G S, Constantin F L, Korobov V I, Schiller S 2020 Nature 581 152Google Scholar

    [18]

    Kortunov I V, Alighanbari S, Hansen M G, Giri G, Korobov V I, Schiller S 2021 Nat. Phys. 17 569Google Scholar

    [19]

    Alighanbari S, Kortunov I V, Giri G S, Schiller S 2023 Nat. Phys. 19 1263Google Scholar

    [20]

    Biesheuvel J, Karr J P, Hilico L, Eikema K, Ubachs W, Koelemeij J 2016 Nat. Commun. 7 10385Google Scholar

    [21]

    Patra S, Germann M, Karr J P, Haidar M, Hilico L, Korobov V I, Cozijn F M J, Eikema K S E, Ubachs W, Koelemeij J C J 2020 Science 369 1238Google Scholar

    [22]

    Sturm S, Köhler F, Zatorski J, Wagner A, Harman Z, Werth G, Quint W, Keitel C H, Blaum K 2014 Nature 506 467Google Scholar

    [23]

    Heiße F, Rau S, Köhler-Langes F, Quint W, Werth G, Sturm S, Blaum K 2019 Phys. Rev. A 100 022518Google Scholar

    [24]

    Hori M, Aghai-Khozani H, Sótér A, Barna D, Dax A, Hayano R, Kobayashi T, Murakami Y, Todoroki K, Yamada H, Horváth D, Venturelli L 2016 Science 354 610Google Scholar

    [25]

    Borkowski M, Buchachenko A A, Ciuryo R, Julienne P S, Takahashi Y 2019 Sci. Rep. 9 14807Google Scholar

    [26]

    Germann M, Patra S, Karr J P, Hilico L, Koelemeij J C J 2021 Phys. Rev. Res. 3 L022028Google Scholar

    [27]

    Shi W, Jacobi J, Knopp H, Schippers S, Müller A 2003 Nucl. Instrum. Methods B 205 201Google Scholar

    [28]

    Udrescu S M, Torres D A, Garcia Ruiz R F 2024 Phys. Rev. Res. 6 013128Google Scholar

    [29]

    Leibrandt D R, Clark R J, Labaziewicz J, Antohi P, Bakr W, Brown K R, Chuang I L 2007 Phys. Rev. A 76 055403Google Scholar

    [30]

    Thini F, Romans K L, Acharya B P, de Silva A H N C, Compton K, Foster K, Rischbieter C, Russ O, Sharma S, Dubey S, Fischer D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095201Google Scholar

    [31]

    Benda J, Mašín Z 2021 Sci. Rep. 11 11686Google Scholar

    [32]

    Hashimoto Y, Matsuoka L, Osaki H, Fukushima Y, Hasegawa S 2006 Jpn. J. Appl. Phys. 45 7108Google Scholar

    [33]

    Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2022 J. Phys. B: At. Mol. Opt. Phys. 55 035002Google Scholar

    [34]

    Wahnschaffe M 2016 Ph. D. Dissertation (Hannover: Gottfried Wilhelm Leibniz University

    [35]

    Zhang Y, Zhang Q Y, Bai W L, Peng W C, He S G, Tong X 2023 Chin. J. Phys. 84 164Google Scholar

    [36]

    Roth B, Blythe P, Wenz H, Daerr H, Schiller S 2006 Phys. Rev. A 73 042712Google Scholar

    [37]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [38]

    Blythe P, Roth B, Fröhlich U, Wenz H, Schiller S 2005 Phys. Rev. Lett. 95 183002Google Scholar

    [39]

    Carollo R A, Lane D A, Kleiner E K, Kyaw P A, Teng C C, Ou C Y, Qiao S, Hanneke D 2017 Opt. Express 25 7220Google Scholar

    [40]

    Wellers C, Schenkel M R, Giri G S, Brown K R, Schiller S 2022 Mol. Phys. 120 e2001599Google Scholar

    [41]

    Okada K, Wada M, Nakamura T, Iida R, Ohtani S, Tanaka J-i, Kawakami H, Katayama I 1998 J. Phys. Soc. Jpn. 67 3073Google Scholar

    [42]

    Wu Q M, Filzinger M, Shi Y, Wang Z H, Zhang J H 2021 Rev. Sci. Instrum. 92 063201Google Scholar

    [43]

    Li Z, Li L, Hua X, Tong X 2024 J. Appl. Phys. 135 144402Google Scholar

    [44]

    Li L, Li Z, Hua X, Tong X 2024 J. Phys. D: Appl. Phys. 57 315205Google Scholar

    [45]

    Buica G, Nakajima T 2008 J. Quant. Spectrosc. Radiat. Transfer 109 107Google Scholar

    [46]

    Tang X, Bachau H 1993 J. Phys. B: At. Mol. Opt. Phys. 26 75Google Scholar

    [47]

    Wolf S, Studer D, Wendt K, Schmidt-Kaler F 2018 Appl. Phys. B 124 30Google Scholar

    [48]

    Zhang Y, Zhang Q Y, Bai W L, Ao Z Y, Peng W C, He S G, Tong X 2023 Phys. Rev. A 107 043101Google Scholar

    [49]

    Chandler D W, Thorne L R 1986 J. Chem. Phys. 85 1733Google Scholar

    [50]

    Buck J D, Robie D C, Hickman A P, Bamford D J, Bischel W K 1989 Phys. Rev. A 39 3932Google Scholar

    [51]

    Trimby E, Hirzler H, Fürst H, Safavi-Naini A, Gerritsma R, Lous R S 2022 New J. Phys. 24 035004Google Scholar

    [52]

    Wayne M I, Bergquist J C, Bollinger J J, Wineland D J 1995 Phys. Scr. 1995 106Google Scholar

    [53]

    Larson D J, Bergquist J C, Bollinger J J, Itano W M, Wineland D J 1986 Phys. Rev. Lett. 57 70Google Scholar

    [54]

    Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, Collaboration B 2021 Nature 596 514Google Scholar

    [55]

    Karl R, Yin Y, Willitsch S 2024 Mol. Phys. 122 2199099Google Scholar

    [56]

    Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2023 Chin. Phys. B 32 036402Google Scholar

    [57]

    Cozijn F M J, Biesheuvel J, Flores A S, Ubachs W, Blume G, Wicht A, Paschke K, Erbert G, Koelemeij J C J 2013 Opt. Lett. 3813 2370Google Scholar

    [58]

    King S A, Leopold T, Thekkeppatt P, Schmidt P O 2018 Appl. Phys. B 124 214Google Scholar

    [59]

    Ohmae N, Katori H 2019 Rev. Sci. Instrum. 90 063201Google Scholar

    [60]

    Vasilyev S, Nevsky A, Ernsting I, Hansen M, Shen J, Schiller S 2011 Appl. Phys. B 103 27Google Scholar

    [61]

    Lo H Y, Alonso J, Kienzler D, Keitch B C, de Clercq L E, Negnevitsky V, Home J P 2014 Appl. Phys. B 114 17Google Scholar

    [62]

    Schnitzler H, Fröhlich U, Boley T K W, Clemen A E M, Mlynek J, Peters A, Schiller S 2002 Appl. Opt. 41 7000Google Scholar

    [63]

    Wilson A C, Ospelkaus C, VanDevender A P, Mlynek J A, Brown K R, Leibfried D, Wineland D J 2011 Appl. Phys. B 105 741Google Scholar

    [64]

    Ahmadi M, Alves B X R, Baker C J, Bertsche W, Butler E, Capra A, Carruth C, Cesar C L, Charlton M, Cohen S, Collister R, Eriksson S, Evans A, Evetts N, Fajans J, Friesen T, Fujiwara M C, Gill D R, Gutierrez A, Hangst J S, Hardy W N, Hayden M E, Isaac C A, Ishida A, Johnson M A, Jones S A, Jonsell S, Kurchaninov L, Madsen N, Mathers M, Maxwell D, McKenna J T K, Menary S, Michan J M, Momose T, Munich J J, Nolan P, Olchanski K, Olin A, Pusa P, Rasmussen C Ø, Robicheaux F, Sacramento R L, Sameed M, Sarid E, Silveira D M, Stracka S, Stutter G, So C, Tharp T D, Thompson J E, Thompson R I, van der Werf D P, Wurtele J S 2017 Nature 541 506Google Scholar

    [65]

    Kraus B, Dawel F, Hannig S, Kramer J, Nauk C, Schmidt P O 2022 Opt. Express 30 44992Google Scholar

    [66]

    Cook E C, Vira A D, Patterson C, Livernois E, Williams W D 2018 Phys. Rev. Lett. 121 053001Google Scholar

    [67]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97Google Scholar

    [68]

    Bai W L, Peng W C, Zhang Q Y, Wang C, Ao Z Y, Tong X 2024 Chin. J. Phys. 89 1500Google Scholar

    [69]

    Hirota A, Igosawa R, Kimura N, Kuma S, Chartkunchand K C, Mishra P M, Lindley M, Yamaguchi T, Nakano Y, Azuma T 2020 Phys. Rev. A 102 023119Google Scholar

    [70]

    Windberger A, Schwarz M, Versolato O O, Baumann T, Bekker H, Schmöger L, Hansen A K, Gingell A D, Klosowski L, Kristensen S, Schmidt P O, Ullrich J, Drewsen M, López-Urrutia J R C 2013 10th International Workshop on Non-Neutral Plasmas Greifswald, GERMANY, Aug 27–30, 2013 pp250–256

    [71]

    Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2019 Quantum Sci. Technol. 4 014004Google Scholar

    [72]

    Kas M, Liévin J, Vaeck N, Loreau J 2020 31st International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) Deauville, France, Jul. 23–30, 2020

    [73]

    Dörfler A D, Yurtsever E, Villarreal P, González-Lezana T, Gianturco F A, Willitsch S 2020 Phys. Rev. A 101 012706Google Scholar

    [74]

    Schmidt J, Louvradoux T, Heinrich J, Sillitoe N, Simpson M, Karr J P, Hilico L 2020 Phys. Rev. Appl. 14 024053Google Scholar

    [75]

    Tong X, Winney A H, Willitsch S 2010 Phys. Rev. Lett. 105 143001Google Scholar

    [76]

    Lien C Y, Seck C M, Lin Y W, Nguyen J H V, Tabor D A, Odom B C 2014 Nat. Commun. 5 4783Google Scholar

    [77]

    Schneider T, Roth B, Duncker H, Ernsting I, Schiller S 2010 Nat. Phys. 6 275Google Scholar

    [78]

    Wu H, Mills M, West E, Heaven M C, Hudson E R 2021 Phys. Rev. A 104 063103Google Scholar

    [79]

    Kilaj A, Käser S, Wang J, Straňák P, Schwilk M, Xu L, von Lilienfeld O A, Küpper J, Meuwly M, Willitsch S 2023 Phys. Chem. Chem. Phys. 25 13933Google Scholar

    [80]

    Calvin A, Eierman S, Peng Z, Brzeczek M, Satterthwaite L, Patterson D 2023 Nature 621 295Google Scholar

    [81]

    Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 1Google Scholar

    [82]

    Okada K, Ichikawa M, Wada M, Schuessler H A 2015 Phys. Rev. Appl. 4 054009Google Scholar

    [83]

    Germann M, Tong X, Willitsch S 2014 Nat. Phys. 10 820Google Scholar

    [84]

    Tran V Q, Karr J P, Douillet A, Koelemeij J C J, Hilico L 2013 Phys. Rev. A 88 033421Google Scholar

    [85]

    Karr J P 2014 J. Mol. Spectrosc. 300 37Google Scholar

    [86]

    Schiller S, Bakalov D, Korobov V I 2014 Phys. Rev. Lett. 113 023004Google Scholar

    [87]

    Koelemeij J C J, Roth B, Schiller S 2007 Phys. Rev. A 76 023413Google Scholar

    [88]

    Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749Google Scholar

    [89]

    Myers E G 2018 Phys. Rev. A 98 010101Google Scholar

    [90]

    Puchalski M, Komasa J, Pachucki K 2020 Phys. Rev. Lett. 125 253001Google Scholar

    [91]

    Danev P, Bakalov D, Korobov V I, Schiller S 2021 Phys. Rev. A 103 012805Google Scholar

    [92]

    Schenkel M, Alighanbari S, Schiller S 2024 Nat. Phys. 20 383Google Scholar

    [93]

    Zammit M C, Charlton M, Jonsell S, Colgan J, Savage J S, Fursa D V, Kadyrov A S, Bray I, Forrey R C, Fontes C J, Leiding J A, Kilcrease D P, Hakel P, Timmermans E 2019 Phys. Rev. A 100 042709Google Scholar

  • 图 1  质子电子质量比常数测量

    Figure 1.  The measurements of proton-electron mass ratio.

    图 2  H2分子、HD+分子离子、反质子氦光谱实验确定强子与强子相互作用的第五种力的上限[26]

    Figure 2.  Spectroscopic measurement of H2 molecule, HD+ molecular ion, and antiprotonic helium constrains on the fifth force of hadron-hadron interaction[26].

    图 3  激光溅射影响下的离子阱电压变化

    Figure 3.  The change of voltage on the ion trap under the influence of laser ablation.

    图 4  Be原子和HD分子光电离的相关能级 (a) Be原子光电离的相关能级, 黑色箭头表示双光子非共振电离, 紫色箭头表示[1+1]双光子共振电离, 蓝色箭头表示[2+1]三光子共振电离; (b) HD分子光电离的相关能级, 3个蓝色箭头组合表示[2+1]三光子共振电离, 两个蓝色箭头和一个红色箭头组合表示[2+1']三光子共振电离

    Figure 4.  The related levels of Be atom and HD molecule photoionization: (a) The relevant energy levels for photoionization of the Be atom, black arrows indicate two-photon non-resonant ionization, purple arrows indicate [1+1] two-photon resonant ionization, and blue arrows indicate [2+1] three-photon resonant ionization; (b) the relevant energy levels for photoionization of the HD molecule, three blue arrows represent [2+1] three-photon resonant ionization, and combination of two blue arrows and a red arrow represent [2+1'] three-photon resonant ionization.

    图 5  双组分库仑晶体径向分离示意图, 该图视角为径向截面图, 其中M1为内层被协同冷却离子的质量, M2为外层冷却剂离子的质量, b2a2分别为质量为M2离子壳层的外径和内径, b1为内层离子的外径

    Figure 5.  The schematic diagram of a bi-component Coulomb crystal in the view of a radial cross-section, where M1 is the mass of the sympathetically cooled ions in the inner shell, M2 is the mass of the laser-cooled ions in the outer shell, b2 and a2 are the radius of the outer and inner surface of the ions with the mass of M2, respectively, b1 is the radius of the outer surface of the ions with the mass of M1.

    图 6  Be+离子激光冷却相关能级

    Figure 6.  Related energy levels of Be+ laser cooling.

    图 7  313 nm激光器稳频实验装置示意图[68]

    Figure 7.  Schematic of the experimental setup for frequency stabilization of the 313 nm laser[68].

    图 8  将冷却激光的锁定在ULE腔(a)和波长计(b)上的Be+库仑晶体的图像[68], 图像时间点在激光频率锁定后的2, 40, 80, 120, 160, 200, 240 s

    Figure 8.  The images of Be+ Coulomb crystals with cooling laser locked to ULE cavity (a) or wavelength meter (b)[68], the image time points are at 2, 40, 80, 120, 160, 200, 240 s after the laser frequency is locked.

    图 9  利用光泵浦方法后HD+振动基态的转动态分布[77], 红色、黑色、蓝色的数据点分别为为使用光泵浦方法后的实验采集的信号、模拟的信号、模拟的态布居数, 灰色数据点为没有使用光泵浦方法实验采集的信号

    Figure 9.  Rotational-state distribution of the vibrational ground state after applying the optical pumping scheme[77], the red, black, and blue data points represent the experimental collected signals, simulated signals, and simulated population after using the optical pumping method, respectively, the gray data points represent the experimental collected signals without using the optical pumping method.

    图 10  不同201 nm激光能量下[2+1]和[2+1' ]两种REMPI过程产生的HD+离子信号[48]

    Figure 10.  HD+ ion signals produced by two processes under the different power of 201 nm laser[48].

    图 11  宏运动激发装置示意图, 蓝色、红色小球分别为激光冷却的离子和宏运动激发加热的暗离子

    Figure 11.  Schematic diagram of secular excitation, the blue and red balls represent coolant ions and dark ions heated by secular excitation, respectively.

    图 12  HD+分子离子宏运动激发扫频信号[48], 红线、蓝线分别为HD+分子离子解离前后的扫频信号

    Figure 12.  The change of fluorescent signals when sweeping frequency of the secular excitation for HD+ molecular ions[48], the red and blue lines represent the fluorescent signals before and after the dissociation of HD+ molecular ions, respectively.

    图 13  通过分子动力学模拟确定离子阱内装载的HD+分子离子的数量[35], 比较实验与模拟图像的晶体结构, 其内部暗核的形状和尺寸与HD+离子的数量有关(红框内), 含有(15 ± 1)个HD+分子离子的模拟图像与实验图像最为符合

    Figure 13.  Determination of the number of sympathetically cooled HD+ ions by molecular dynamics simulation[35], comparing the crystal structures in the experimental and simulated images, the shape and size of the internal dark core are related to the number of HD+ ions (within the red square), and the simulated image containing (15 ± 1) HD+ molecular ions is the most consistent with the experimental image.

    图 14  HD+分子离子共振增强多光子解离(REMPD)过程 (a)解离前后二维电子概率密度ρ的分布图, 其色度正比于lgρ; (b) REMPD过程的相关能级; (c)为转跃迁(v, L):(0, 0)→(6, 1)相关的超精细结构能级图, 其中的量子数F, S, J是电子自旋se、质子自旋Ip、氘核自旋Id和分子旋转N按耦合强弱通过以下耦合方案形成, J = S+L, 其中S = F+Id, F = se+Ip, 4种不同颜色带箭头的线表示符合ΔF = 0, ΔS = 0选择定则的超精细跃迁

    Figure 14.  Resonance enhanced multiphoton dissociation (REMPD) process of HD+ molecular ions: (a) The distribution of electrons two-dimensional probability density ρ before and after dissociation, and its chromaticity is proportional to log10ρ; (b) the relevant energy levels of the REMPD process; (c) the relevant hyperfine structure levels of the rovibrational transition (v, L):(0, 0)→(6, 1), the quantum numbers refer to the following coupling scheme for the electron spin se, proton spin Ip, deuteron spin Id, and molecular rotation N: J = S+L, where S = F+Id, F = se+Ip. The four strongest hyperfine transitions for ΔF = 0 and ΔS = 0 are represented by four different colored arrows.

    图 15  HD+分子离子振转跃迁 (v, L):(0, 0)→(6, 1) 光谱实验装置示意图

    Figure 15.  Schematic diagram of the experimental setup for the HD+ molecular ion rovibrational transition (v, L): (0, 0)→(6, 1) spectrum.

    图 16  HD+分子离子振转跃迁 (v, L):(0, 0)→(6, 1) 光谱, 数据点为8次测量的平均值, 垂直误差棒为8次测量的标准差

    Figure 16.  Spectrum of the (v, N): (0, 0) → (6, 1) HD+ molecular ion rovibrational transition, data points are the average of 8 measurements, and vertical error bars represent the standard deviations.

    表 1  基本物理常数对HD+分子离子振转跃迁频率不确定度的影响[1]

    Table 1.  Influences of fundamental physical constants on the uncertainty of the vibrational transition frequencies of HD+ molecular ions[1].

    R μpe μde rp rd α
    当前物理量的相对不确定度 1.9 ppt 60 ppt 35 ppt 0.002 350 ppm 0.15 ppb
    频率值对物理量的敏感系数 ~1 ~0.1 ~0.01 ~10–9 ~10–9 ~10–6
    物理量对频率相对不确定度影响 ~1 ppt ~10 ppt ~1 ppt ~1 ppt ~0.1 ppt ~0.1 ppq
    注: 表中ppm(part per million), ppb(part per billion), ppt(part per trillion), ppq(part per quadrillion)分别表示10–6, 10–9, 10–12, 10–15.
    DownLoad: CSV

    表 2  QED理论计算的HD+振转跃迁 (v, L):(0, 0)→(6, 1)各项贡献

    Table 2.  Contribution of QED theory calculation of HD+ rovibrational transition (v, L):(0, 0)→(6, 1).

    频率/MHz 贡献项
    vnr 303393178.0114(8) 三体非相对论薛定谔方程能量
    vnuc –0.096(1) 有限核效应
    vα2 4571.102 59(3) Breit–Pauli近似中的相对论修正
    vα3 –1 234.8136(3) 辐射修正领头项
    vα4 –8.9607(3) 1圈、2圈辐射修正; 高阶的相对论修正
    vα5 0.537(1) 3圈的辐射修正; Wichmann–Kroll贡献项
    vα6 0.003(5) 高阶的辐射修正
    vtot 303303396505.784(5)
    DownLoad: CSV
  • [1]

    Karr J P, Hilico L, Koelemeij J C, Korobov V 2016 Phys. Rev. A 94 050501Google Scholar

    [2]

    Colbourn E A, Bunker P R 1976 J. Mol. Spectrosc 63 155Google Scholar

    [3]

    Korobov V I, Karr J P 2021 Phys. Rev. A 104 032806Google Scholar

    [4]

    Korobov V I 2022 Phys. Part. Nuclei 53 1Google Scholar

    [5]

    Yan Z C, Zhang J Y 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1055Google Scholar

    [6]

    Ye N, Yan Z C 2014 Phys. Rev. A 90 032516Google Scholar

    [7]

    Aznabayev D T, Bekbaev A K, Korobov V I 2019 Phys. Rev. A 99 012501Google Scholar

    [8]

    Bakalov D, Korobov V I, Schiller S 2006 Phys. Rev. Lett. 97 243001Google Scholar

    [9]

    Haidar M, Korobov V I, Hilico L, Karr J P 2022 Phys. Rev. A 106 042815Google Scholar

    [10]

    Zhong Z X, Zhang P P, Yan Z C, Shi T Y 2012 Phys. Rev. A 86 064502Google Scholar

    [11]

    Zhong Z X, Zhou W P, Mei X S 2018 Phys. Rev. A 98 032502Google Scholar

    [12]

    Korobov V I, Karr J P, Haidar M, Zhong Z X 2020 Phys. Rev. A 102 022804Google Scholar

    [13]

    Wing W H, Ruff G A, Lamb Jr W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488Google Scholar

    [14]

    Koelemeij J C J, Roth B, Wicht A, Ernsting I, Schiller S 2007 Phys. Rev. Lett. 98 173002Google Scholar

    [15]

    Bressel U, Borodin A, Shen J, Hansen M G, Ernsting I, Schiller S 2012 Phys. Rev. Lett. 108 183003Google Scholar

    [16]

    Alighanbari S, Hansen M G, Korobov V I, Schiller S 2018 Nat. Phys. 14 555Google Scholar

    [17]

    Alighanbari S, Giri G S, Constantin F L, Korobov V I, Schiller S 2020 Nature 581 152Google Scholar

    [18]

    Kortunov I V, Alighanbari S, Hansen M G, Giri G, Korobov V I, Schiller S 2021 Nat. Phys. 17 569Google Scholar

    [19]

    Alighanbari S, Kortunov I V, Giri G S, Schiller S 2023 Nat. Phys. 19 1263Google Scholar

    [20]

    Biesheuvel J, Karr J P, Hilico L, Eikema K, Ubachs W, Koelemeij J 2016 Nat. Commun. 7 10385Google Scholar

    [21]

    Patra S, Germann M, Karr J P, Haidar M, Hilico L, Korobov V I, Cozijn F M J, Eikema K S E, Ubachs W, Koelemeij J C J 2020 Science 369 1238Google Scholar

    [22]

    Sturm S, Köhler F, Zatorski J, Wagner A, Harman Z, Werth G, Quint W, Keitel C H, Blaum K 2014 Nature 506 467Google Scholar

    [23]

    Heiße F, Rau S, Köhler-Langes F, Quint W, Werth G, Sturm S, Blaum K 2019 Phys. Rev. A 100 022518Google Scholar

    [24]

    Hori M, Aghai-Khozani H, Sótér A, Barna D, Dax A, Hayano R, Kobayashi T, Murakami Y, Todoroki K, Yamada H, Horváth D, Venturelli L 2016 Science 354 610Google Scholar

    [25]

    Borkowski M, Buchachenko A A, Ciuryo R, Julienne P S, Takahashi Y 2019 Sci. Rep. 9 14807Google Scholar

    [26]

    Germann M, Patra S, Karr J P, Hilico L, Koelemeij J C J 2021 Phys. Rev. Res. 3 L022028Google Scholar

    [27]

    Shi W, Jacobi J, Knopp H, Schippers S, Müller A 2003 Nucl. Instrum. Methods B 205 201Google Scholar

    [28]

    Udrescu S M, Torres D A, Garcia Ruiz R F 2024 Phys. Rev. Res. 6 013128Google Scholar

    [29]

    Leibrandt D R, Clark R J, Labaziewicz J, Antohi P, Bakr W, Brown K R, Chuang I L 2007 Phys. Rev. A 76 055403Google Scholar

    [30]

    Thini F, Romans K L, Acharya B P, de Silva A H N C, Compton K, Foster K, Rischbieter C, Russ O, Sharma S, Dubey S, Fischer D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095201Google Scholar

    [31]

    Benda J, Mašín Z 2021 Sci. Rep. 11 11686Google Scholar

    [32]

    Hashimoto Y, Matsuoka L, Osaki H, Fukushima Y, Hasegawa S 2006 Jpn. J. Appl. Phys. 45 7108Google Scholar

    [33]

    Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2022 J. Phys. B: At. Mol. Opt. Phys. 55 035002Google Scholar

    [34]

    Wahnschaffe M 2016 Ph. D. Dissertation (Hannover: Gottfried Wilhelm Leibniz University

    [35]

    Zhang Y, Zhang Q Y, Bai W L, Peng W C, He S G, Tong X 2023 Chin. J. Phys. 84 164Google Scholar

    [36]

    Roth B, Blythe P, Wenz H, Daerr H, Schiller S 2006 Phys. Rev. A 73 042712Google Scholar

    [37]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [38]

    Blythe P, Roth B, Fröhlich U, Wenz H, Schiller S 2005 Phys. Rev. Lett. 95 183002Google Scholar

    [39]

    Carollo R A, Lane D A, Kleiner E K, Kyaw P A, Teng C C, Ou C Y, Qiao S, Hanneke D 2017 Opt. Express 25 7220Google Scholar

    [40]

    Wellers C, Schenkel M R, Giri G S, Brown K R, Schiller S 2022 Mol. Phys. 120 e2001599Google Scholar

    [41]

    Okada K, Wada M, Nakamura T, Iida R, Ohtani S, Tanaka J-i, Kawakami H, Katayama I 1998 J. Phys. Soc. Jpn. 67 3073Google Scholar

    [42]

    Wu Q M, Filzinger M, Shi Y, Wang Z H, Zhang J H 2021 Rev. Sci. Instrum. 92 063201Google Scholar

    [43]

    Li Z, Li L, Hua X, Tong X 2024 J. Appl. Phys. 135 144402Google Scholar

    [44]

    Li L, Li Z, Hua X, Tong X 2024 J. Phys. D: Appl. Phys. 57 315205Google Scholar

    [45]

    Buica G, Nakajima T 2008 J. Quant. Spectrosc. Radiat. Transfer 109 107Google Scholar

    [46]

    Tang X, Bachau H 1993 J. Phys. B: At. Mol. Opt. Phys. 26 75Google Scholar

    [47]

    Wolf S, Studer D, Wendt K, Schmidt-Kaler F 2018 Appl. Phys. B 124 30Google Scholar

    [48]

    Zhang Y, Zhang Q Y, Bai W L, Ao Z Y, Peng W C, He S G, Tong X 2023 Phys. Rev. A 107 043101Google Scholar

    [49]

    Chandler D W, Thorne L R 1986 J. Chem. Phys. 85 1733Google Scholar

    [50]

    Buck J D, Robie D C, Hickman A P, Bamford D J, Bischel W K 1989 Phys. Rev. A 39 3932Google Scholar

    [51]

    Trimby E, Hirzler H, Fürst H, Safavi-Naini A, Gerritsma R, Lous R S 2022 New J. Phys. 24 035004Google Scholar

    [52]

    Wayne M I, Bergquist J C, Bollinger J J, Wineland D J 1995 Phys. Scr. 1995 106Google Scholar

    [53]

    Larson D J, Bergquist J C, Bollinger J J, Itano W M, Wineland D J 1986 Phys. Rev. Lett. 57 70Google Scholar

    [54]

    Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, Collaboration B 2021 Nature 596 514Google Scholar

    [55]

    Karl R, Yin Y, Willitsch S 2024 Mol. Phys. 122 2199099Google Scholar

    [56]

    Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2023 Chin. Phys. B 32 036402Google Scholar

    [57]

    Cozijn F M J, Biesheuvel J, Flores A S, Ubachs W, Blume G, Wicht A, Paschke K, Erbert G, Koelemeij J C J 2013 Opt. Lett. 3813 2370Google Scholar

    [58]

    King S A, Leopold T, Thekkeppatt P, Schmidt P O 2018 Appl. Phys. B 124 214Google Scholar

    [59]

    Ohmae N, Katori H 2019 Rev. Sci. Instrum. 90 063201Google Scholar

    [60]

    Vasilyev S, Nevsky A, Ernsting I, Hansen M, Shen J, Schiller S 2011 Appl. Phys. B 103 27Google Scholar

    [61]

    Lo H Y, Alonso J, Kienzler D, Keitch B C, de Clercq L E, Negnevitsky V, Home J P 2014 Appl. Phys. B 114 17Google Scholar

    [62]

    Schnitzler H, Fröhlich U, Boley T K W, Clemen A E M, Mlynek J, Peters A, Schiller S 2002 Appl. Opt. 41 7000Google Scholar

    [63]

    Wilson A C, Ospelkaus C, VanDevender A P, Mlynek J A, Brown K R, Leibfried D, Wineland D J 2011 Appl. Phys. B 105 741Google Scholar

    [64]

    Ahmadi M, Alves B X R, Baker C J, Bertsche W, Butler E, Capra A, Carruth C, Cesar C L, Charlton M, Cohen S, Collister R, Eriksson S, Evans A, Evetts N, Fajans J, Friesen T, Fujiwara M C, Gill D R, Gutierrez A, Hangst J S, Hardy W N, Hayden M E, Isaac C A, Ishida A, Johnson M A, Jones S A, Jonsell S, Kurchaninov L, Madsen N, Mathers M, Maxwell D, McKenna J T K, Menary S, Michan J M, Momose T, Munich J J, Nolan P, Olchanski K, Olin A, Pusa P, Rasmussen C Ø, Robicheaux F, Sacramento R L, Sameed M, Sarid E, Silveira D M, Stracka S, Stutter G, So C, Tharp T D, Thompson J E, Thompson R I, van der Werf D P, Wurtele J S 2017 Nature 541 506Google Scholar

    [65]

    Kraus B, Dawel F, Hannig S, Kramer J, Nauk C, Schmidt P O 2022 Opt. Express 30 44992Google Scholar

    [66]

    Cook E C, Vira A D, Patterson C, Livernois E, Williams W D 2018 Phys. Rev. Lett. 121 053001Google Scholar

    [67]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97Google Scholar

    [68]

    Bai W L, Peng W C, Zhang Q Y, Wang C, Ao Z Y, Tong X 2024 Chin. J. Phys. 89 1500Google Scholar

    [69]

    Hirota A, Igosawa R, Kimura N, Kuma S, Chartkunchand K C, Mishra P M, Lindley M, Yamaguchi T, Nakano Y, Azuma T 2020 Phys. Rev. A 102 023119Google Scholar

    [70]

    Windberger A, Schwarz M, Versolato O O, Baumann T, Bekker H, Schmöger L, Hansen A K, Gingell A D, Klosowski L, Kristensen S, Schmidt P O, Ullrich J, Drewsen M, López-Urrutia J R C 2013 10th International Workshop on Non-Neutral Plasmas Greifswald, GERMANY, Aug 27–30, 2013 pp250–256

    [71]

    Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2019 Quantum Sci. Technol. 4 014004Google Scholar

    [72]

    Kas M, Liévin J, Vaeck N, Loreau J 2020 31st International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) Deauville, France, Jul. 23–30, 2020

    [73]

    Dörfler A D, Yurtsever E, Villarreal P, González-Lezana T, Gianturco F A, Willitsch S 2020 Phys. Rev. A 101 012706Google Scholar

    [74]

    Schmidt J, Louvradoux T, Heinrich J, Sillitoe N, Simpson M, Karr J P, Hilico L 2020 Phys. Rev. Appl. 14 024053Google Scholar

    [75]

    Tong X, Winney A H, Willitsch S 2010 Phys. Rev. Lett. 105 143001Google Scholar

    [76]

    Lien C Y, Seck C M, Lin Y W, Nguyen J H V, Tabor D A, Odom B C 2014 Nat. Commun. 5 4783Google Scholar

    [77]

    Schneider T, Roth B, Duncker H, Ernsting I, Schiller S 2010 Nat. Phys. 6 275Google Scholar

    [78]

    Wu H, Mills M, West E, Heaven M C, Hudson E R 2021 Phys. Rev. A 104 063103Google Scholar

    [79]

    Kilaj A, Käser S, Wang J, Straňák P, Schwilk M, Xu L, von Lilienfeld O A, Küpper J, Meuwly M, Willitsch S 2023 Phys. Chem. Chem. Phys. 25 13933Google Scholar

    [80]

    Calvin A, Eierman S, Peng Z, Brzeczek M, Satterthwaite L, Patterson D 2023 Nature 621 295Google Scholar

    [81]

    Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 1Google Scholar

    [82]

    Okada K, Ichikawa M, Wada M, Schuessler H A 2015 Phys. Rev. Appl. 4 054009Google Scholar

    [83]

    Germann M, Tong X, Willitsch S 2014 Nat. Phys. 10 820Google Scholar

    [84]

    Tran V Q, Karr J P, Douillet A, Koelemeij J C J, Hilico L 2013 Phys. Rev. A 88 033421Google Scholar

    [85]

    Karr J P 2014 J. Mol. Spectrosc. 300 37Google Scholar

    [86]

    Schiller S, Bakalov D, Korobov V I 2014 Phys. Rev. Lett. 113 023004Google Scholar

    [87]

    Koelemeij J C J, Roth B, Schiller S 2007 Phys. Rev. A 76 023413Google Scholar

    [88]

    Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749Google Scholar

    [89]

    Myers E G 2018 Phys. Rev. A 98 010101Google Scholar

    [90]

    Puchalski M, Komasa J, Pachucki K 2020 Phys. Rev. Lett. 125 253001Google Scholar

    [91]

    Danev P, Bakalov D, Korobov V I, Schiller S 2021 Phys. Rev. A 103 012805Google Scholar

    [92]

    Schenkel M, Alighanbari S, Schiller S 2024 Nat. Phys. 20 383Google Scholar

    [93]

    Zammit M C, Charlton M, Jonsell S, Colgan J, Savage J S, Fursa D V, Kadyrov A S, Bray I, Forrey R C, Fontes C J, Leiding J A, Kilcrease D P, Hakel P, Timmermans E 2019 Phys. Rev. A 100 042709Google Scholar

  • [1] Yang Wen-Bin, Zhang Hua-Lei, Qi Xin-Hua, Che Qing-Feng, Zhou Jiang-Ning, Bai Bing, Chen Shuang, Mu Jin-He. Coherent anti-Stokes Raman scattering spectral calculation and vibrational-rotational temperature measurement of non-equilibrium plasma flow field. Acta Physica Sinica, 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] Wen Lin, Fan Qun-Chao, Jian Jun, Fan Zhi-Xiang, Li Hui-Dong, Fu Jia, Ma Jie, Xie Feng. Calculating macroscopic gas molar heat capacity of SO molecule based on rovibrational energy level. Acta Physica Sinica, 2022, 71(17): 175101. doi: 10.7498/aps.71.20212273
    [3] Tang Jia-Dong, Liu Qian-Hao, Cheng Cun-Feng, Hu Shui-Ming. Hyperfine structure of ro-vibrational transition of HD in magnetic field. Acta Physica Sinica, 2021, 70(17): 170301. doi: 10.7498/aps.70.20210512
    [4] Wang Qiao-Xia, Wang Yu-Min, Ma Ri, Yan Bing. All-electron calculation of ground state vibration-rotation energy levels of 7Li2(0, ±1) molecular systems. Acta Physica Sinica, 2019, 68(11): 113102. doi: 10.7498/aps.68.20190359
    [5] Wang Ye, Zhang Jing-Ning, Kim Kihwan. Single-ion qubit with coherence time exceeding 10 minutes. Acta Physica Sinica, 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [6] Xu Hui-Ying, Liu Yong, Li Zhong-Yuan, Yang Yu-Jun, Yan Bing. Rovibrational spectrum calculations of four electronic states in carbon monoxide molecule: Comparison of two effect correction methods. Acta Physica Sinica, 2018, 67(21): 213301. doi: 10.7498/aps.67.20181469
    [7] Xu Mei, Wang Xiao-Lu, Linghu Rong-Feng, Yang Xiang-Dong. Study on ro-vibrational excitation cross sections of Ne-HF. Acta Physica Sinica, 2013, 62(6): 063102. doi: 10.7498/aps.62.063102
    [8] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [9] Wang Li-Rong, Feng Xin-Lin, Ma Jie, Zhao Yan-Ting, Xiao Lian-Tuan, Jia Suo-Tang. Vib-rotational spectrum of ultracold cesium molecule 0g- long range state. Acta Physica Sinica, 2013, 62(18): 183301. doi: 10.7498/aps.62.183301
    [10] Li Chun, Zhang Shao-Bin, Jin Wei, Georgios Lefkidis, Wolfgang Hübner. Laser-induced ultrafast spin transfer in linear magnetic molecular ions. Acta Physica Sinica, 2012, 61(17): 177502. doi: 10.7498/aps.61.177502
    [11] Shen Guang-Xian, Wang Rong-Kai, Linghu Rong-Feng, Zhou Xun, Yang Xiang-Dong. Theoretical calculation of the vib-rotational interaction potential and the differential coefficient cross sections for He-HD (HT, DT) system. Acta Physica Sinica, 2012, 61(21): 213101. doi: 10.7498/aps.61.213101
    [12] Yang Yan, Ji Zhong-Hua, Yuan Jin-Peng, Wang Li-Rong, Zhao Yan-Ting, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang. Experimental study of rovibrational spectrum of ultracold polar RbCs molecules. Acta Physica Sinica, 2012, 61(21): 213301. doi: 10.7498/aps.61.213301
    [13] Wang Xiao-Lu, Xu Mei, Linghu Rong-Feng, Sun Ke-Bin, Yang Xiang-Dong. Theoretical study on the partial wave cross sections of vibrational and rotational excitation for the collisions of He isotope with H2. Acta Physica Sinica, 2010, 59(3): 1689-1694. doi: 10.7498/aps.59.1689
    [14] Tang Xiao-Feng, Niu Ming-Li, Zhou Xiao-Guo, Liu Shi-Lin. Spectroscopic studies of molecular ions and their dissociation dynamics by the threshold photoelectron-photoion coincidence. Acta Physica Sinica, 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [15] Zhang Yi-Chi, Wu Ji-Zhou, Ma Jie, Zhao Yan-Ting, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Research on improve the SNR of ultracold cesium molecule rovibronic spectrum via best optimization parameter control. Acta Physica Sinica, 2010, 59(8): 5418-5423. doi: 10.7498/aps.59.5418
    [16] Fan Qun-Chao, Sun Wei-Guo, Qu Shuang-Shuang. Accurate studies on rovibrational energies of the electronic state B1Σ of HF molecule using an algebraic approach. Acta Physica Sinica, 2008, 57(7): 4110-4118. doi: 10.7498/aps.57.4110
    [17] Gong Tian-Lin, Yang Xiao-Hua, Li Hong-Bing, Han Liang-Kai, Chen Yang-Qin. Dependence of the molecular ionic spectral intensity on the pressure of mother molecules. Acta Physica Sinica, 2004, 53(2): 418-422. doi: 10.7498/aps.53.418
    [18] YANG XIAO-HUA, CHEN YANG-QIN, CAI PEI-PEI, LU JING-JING, WANG RONG-JUN. DIFFERENTIAL VELOCITY-MODULATION LASER SPECTROSCOPY OF MOLECULAR IONS. Acta Physica Sinica, 1999, 48(5): 834-839. doi: 10.7498/aps.48.834
    [19] WANG XIAO-GANG, ZHU QING-SHI. A LOCAL MODE APPROACH TO MOLECULAR VIBRATION ROTATION SPECTROSCOPY OF LOCAL MODE VIBRATIONAL STATES. Acta Physica Sinica, 1997, 46(10): 1906-1916. doi: 10.7498/aps.46.1906
    [20] FANG ZI-WEI, LIN CHENG-LU, ZOU SHI-CHANG. A STUDY OF DAMAGE IN SILICON CREATED BY P2+ IMPLANTATION. Acta Physica Sinica, 1988, 37(9): 1425-1431. doi: 10.7498/aps.37.1425
Metrics
  • Abstract views:  835
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  31 July 2024
  • Accepted Date:  18 September 2024
  • Available Online:  23 September 2024
  • Published Online:  20 October 2024

/

返回文章
返回