Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improved electro-mechanical model and energy conversion efficiency analysis of pulsed plasma thrusters

Yang Nan-Nan Wang Shang-Min Zhang Jia-Liang Wen Xiao-Qiong Zhao Kai

Citation:

Improved electro-mechanical model and energy conversion efficiency analysis of pulsed plasma thrusters

Yang Nan-Nan, Wang Shang-Min, Zhang Jia-Liang, Wen Xiao-Qiong, Zhao Kai
cstr: 32037.14.aps.73.20241117
PDF
HTML
Get Citation
  • The primary electro-mechanical model is developed for the acceleration kinetics of electromagnetic railguns. Pulsed plasma thrusters (PPTs), whose operation principle is similar to that of electromagnetic railguns, generate thrust via electromagnetic acceleration of plasma. Therefore, the electro-mechanical model serves as a valuable analytical tool to explore the mechanisms of energy conversion and thrust generation of PPTs. In fact, a PPT initiates discharge at its propellant surface and then ejects the discharged channel away to form accelerated plume. During the acceleration, the plasma channel assumes a curved shape, which is different from the flat sheet shape. The curved geometric shape of PPT discharge channel makes the flat current sheet model currently used in the electro-mechanical models inherently flawed. In this paper, a two-dimensional (2D) curved current sheet model is proposed to improve the PPT electro-mechanical model, by referring to the curved morphology of PPT discharge plasma channels. No matter what is the real geometry of the 2D current sheet, the Ampere force on discharge plasma channels and corresponding kinetics can be derived to obtain final kinetic energy of discharge plasma channels. As a result, the relation between the kinetic energy and the inductance of PPT discharge circuit is obtained and expressed as $ {E}_{{\mathrm{k}}}=\displaystyle\int _{0}^{{t}_{{\mathrm{e}}{\mathrm{n}}{\mathrm{d}}}}{i\left(t\right)}^{2}\frac{{\mathrm{d}}{L}_{{\mathrm{e}}{\mathrm{q}}}\left(t\right)}{{\mathrm{d}}t}{\mathrm{d}}t $. To determine the inductance as a temporal function, an algorithm for the inductance is proposed in which time-segment fitting of PPT discharge waveforms is adopted. Moreover, based on the temporal function of the inductance, PPT discharge waveforms can be simulated by using the ODE45 solver of MATLAB with high fitting goodness. So far, a calculation scheme for the kinetic energy of PPT plumes and simulation code for PPT discharge waveforms have set up based on the improved electro-mechanical model. To verify the improved model and the corresponding calculation scheme, the PPT prototype is used to evaluate its energy conversion efficiency. The results show that the model enables elucidating the low PPT electro-mechanical efficiency, which is attributed to the partition limitation of PPT energy to electromagnetic acceleration process. Accordingly, a possible exploration routine for elevating PPT electro-mechanical efficiency is suggested.
      Corresponding author: Zhang Jia-Liang, zhangjl@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12375248).
    [1]

    Wu Z W, Huang T K, Liu X Y, Ling W Y L, Wang N F, Ji L C 2020 Plasma Sci. Technol. 22 094014Google Scholar

    [2]

    Northway P 2020 Ph. D. Dissertation (Washington: University of Washington

    [3]

    Lev D, Myers R M, Lemmer K M, Kolbeck J, Koizumi H, Polzin K 2019 Acta Astronaut. 159 213Google Scholar

    [4]

    吴建军, 胡泽君, 张宇, 何志成, 欧阳, 郑鹏, 赵元政, 李宇奇 2023 推进技术 44 11Google Scholar

    Wu J J, Hu Z J, Zhang Y, He Z C, Ou Y, Zheng P, Zhao Y Z, Li Y Q 2023 J. Propul. Technol. 44 11Google Scholar

    [5]

    Molina-Cabrera P, Herdrich G, Lau M, Fausolas S, Schönherr T, Komurasaki K 2011 the 32nd International Electric Propulsion Conference Wiesbaden, September 11–15, 2011 p1

    [6]

    Spanjers G, McFall K, Gulczinski F, Spores R 1996 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Lake Buena Vista, July 1–3, 1996 p2723

    [7]

    Koizumi H, Noji R, Komurasaki K, Arakawa Y 2007 Phys. Plasmas 14 033506Google Scholar

    [8]

    Gomez E W, Saravia M M, Castelló W B, Elaskar S 2022 8th International Conference on Space Propulsion ESTORIL, May 9–13, 2022 p00203

    [9]

    Antropov N, Diakonov G, Orlov M, Popov G, Yakovlev V 2003 28th International Electric Propulsion Conference Paper Toulouse, March 17–21 2003 p3

    [10]

    Schönherr T, Nawaz A, Herdrich G, Röser H P, Auweter-Kurtz M 2009 J. Propul. Power 25 380Google Scholar

    [11]

    Palumbo D J, Guman W J 1976 J. Spacecraft Rockets 13 163Google Scholar

    [12]

    Ling W Y L, Zhang S, Fu H, Huang M C, Quansah J, Liu X Y, Wang N F 2020 Chin. J. Aeronaut. 33 2999Google Scholar

    [13]

    Ou Y, Wu J J, Du X R, Zhang H, He Z F 2019 Vacuum 165 163Google Scholar

    [14]

    Spanjers G G, Lotspeich J S, McFall K A, Spores R A 1998 J. Propul. Power 14 554Google Scholar

    [15]

    Schönherr T, Komurasaki K, Herdrich G 2013 J. Propul. Power 29 1478Google Scholar

    [16]

    Zeng L H, Wu Z W, Sun G R, Huang T K, Xie K, Wang N F 2019 Acta Astronaut. 160 317Google Scholar

    [17]

    Nawaz A, Albertoni R, Auweter-Kurtz M 2010 Acta Astronaut. 67 440Google Scholar

    [18]

    Wu Z W, Sun G R, Huang T K, Liu X, Xie K, Wang N F 2018 AIAA J. 56 3024Google Scholar

    [19]

    Jahn R G 1968 Physics of Electric Propulsion (New York: McGraw-Hill) p263

    [20]

    Turchi P, Mikellides P 1995 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit San Diego, July 10–12, 1995 p1

    [21]

    Gatsonis N A, Hastings D E 1992 J. Geophys. Res.-Space 97 14989Google Scholar

    [22]

    Vondra R J, Thomassen K, Solbes A 1970 J. Spacecraft Rockets 7 1402Google Scholar

    [23]

    魏荣华 1982 空间科学学报 2 319Google Scholar

    Wei R H 1982 Chin. J. Space Sci. 2 319Google Scholar

    [24]

    Laperriere D, Gatsonis N, Demetriou M 2005 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Tucson, July 10–13, 2005 p4077

    [25]

    Gatsonis N, Demetriou M 2004 40st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Florida, July 11–14, 2004 p3464

    [26]

    Laperriere D D 2005 M. S. Thesis (Massachusetts: Worcester Polytechnic Institute

    [27]

    Ou Y, Wu J J, Zhang Y, Li J, Tan S 2018 Energies 11 1146Google Scholar

    [28]

    张华, 吴建军, 张代贤, 张锐, 何振 2013 物理学报 62 210202Google Scholar

    Zhang H, Wu J J, Zhang D X, Zhang R, He Z 2013 Acta Phys. Sin. 62 210202Google Scholar

    [29]

    Mikellides Y G 1999 Theoretical Modeling and Optimization of Ablation-fed Pulsed Plasma Thrusters (The Ohio State University

    [30]

    Mikellides P G, Henrikson E M, Rajagopalan S S 2019 J. Propul. Power 35 811Google Scholar

    [31]

    Keidar M, Boyd I D, Beilis I I 2003 J. Propul. Power 19 424Google Scholar

    [32]

    Keidar M, Boyd I 2002 38st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Indianapolis, July 7–10, 2002 p4275

    [33]

    Yang L, Huang Y, Tang H, Liu X 2015 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium Hyogo-Kobe, July 4–10, 2015 p1

    [34]

    Yang L, Liu X Y, Wu Z W, Wang N F 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit California, USA, July 31–August 3, 2011 p6077

    [35]

    Riazantsev A, Jakubczak M, Kurzyna J 2024 38th International Electric Propulsion Conference Toulouse, June 23–28, 2024 p1

    [36]

    Schönherr T, Nawaz A, Lau M, Petkow D, Herdrich G 2010 Trans. JSASS Aerospace Tech. Japan 8 Tb_11Google Scholar

    [37]

    王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越 2021 物理学报 70 235204Google Scholar

    Wang Y N, Ren L Y, Ding W D, Sun A B, Geng J Y 2021 Acta Phys. Sin. 70 235204Google Scholar

    [38]

    王尚民, 田立成, 张家良, 张天平, 冯玮玮, 陈新伟, 高军 2017 中国空间科学技术 37 24Google Scholar

    Wang S M, Tian L C, Zhang J L, Zhang T P, Feng W W, Chen W X, Gao J 2017 Chin. Space Sci. Technol. 37 24Google Scholar

  • 图 1  基本PPT机-电模型等效电路示意图

    Figure 1.  Equivalent circuit schematic of primary PPT electromechanical model.

    图 2  二维薄电流片及机-电模型电路示意图

    Figure 2.  Circuit schematic of the improved electromechanical model with 2D thin current sheet.

    图 3  PPT实验装置示意图

    Figure 3.  Schematic of PPT experimental setup.

    图 4  典型PPT放电电流波形及其数值滤波、对比拟合效果 (a) 原始电流波形及滤波效果; (b) 电流波形的不同拟合效果对比

    Figure 4.  A typical current waveform and its numerical filtering and fitting: (a) Measured and filtered waveforms; (b) current waveform fittings with different scheme.

    图 5  PPT波形的分段拟合区间划分及仿真效果 (a) 分段拟合区间的划分示意图; (b) 波形的分段拟合效果; (c) 波形的仿真效果

    Figure 5.  Segmentation and the simulation outcome of PPT waveform: (a) Fitting segments; (b) segmental fitted waveform; (c) simulated waveform.

    图 6  PPT放电回路的时变特性 (a) 6次PPT回路电感数据; (b) 6次PPT回路电阻数据; (c) 电感二次式拟合效果; (d) 电阻二次式拟合效果

    Figure 6.  Temporal variance of PPT circuit inductance during discharge: (a) Inductive data for 6 PPT discharges; (b) resistance data for 6 PPT discharges; (c) inductive fitting with a quadratic function; (d) resistance fitting with a quadratic function.

    图 7  基于改进PPT机-电模型计算的电磁加速动能

    Figure 7.  Electromagnetic kinetic energy calculated with the improved PPT electromechanical model.

    图 8  PPT机-电效率随工况参数的变化

    Figure 8.  Electromechanical efficiency with operation conditions of PPT.

    图 9  PPT放电电压、电流、瞬时功率和能量沉积的典型波形($ {E}_{{\mathrm{q}}} $, 快沉积能量; $ {E}_{{\mathrm{s}}} $, 慢沉积能量)

    Figure 9.  Typical waveforms of PPT discharge voltage, current, power and energy deposition ($ {E}_{{\mathrm{q}}} $, quick deposition energy; $ {E}_{{\mathrm{s}}} $, slow deposition energy).

    图 10  不同工况PPT放电的能量注入分配 (a)快沉积能量与慢沉积能量; (b)慢沉积能量占比

    Figure 10.  Energy deposition for PPT discharges with different operation conditions: (a) Quick ($ {E}_{{\mathrm{q}}}) $ and slow ($ {E}_{{\mathrm{s}}}) $deposition energy; (b) ratio of slow deposition energy.

  • [1]

    Wu Z W, Huang T K, Liu X Y, Ling W Y L, Wang N F, Ji L C 2020 Plasma Sci. Technol. 22 094014Google Scholar

    [2]

    Northway P 2020 Ph. D. Dissertation (Washington: University of Washington

    [3]

    Lev D, Myers R M, Lemmer K M, Kolbeck J, Koizumi H, Polzin K 2019 Acta Astronaut. 159 213Google Scholar

    [4]

    吴建军, 胡泽君, 张宇, 何志成, 欧阳, 郑鹏, 赵元政, 李宇奇 2023 推进技术 44 11Google Scholar

    Wu J J, Hu Z J, Zhang Y, He Z C, Ou Y, Zheng P, Zhao Y Z, Li Y Q 2023 J. Propul. Technol. 44 11Google Scholar

    [5]

    Molina-Cabrera P, Herdrich G, Lau M, Fausolas S, Schönherr T, Komurasaki K 2011 the 32nd International Electric Propulsion Conference Wiesbaden, September 11–15, 2011 p1

    [6]

    Spanjers G, McFall K, Gulczinski F, Spores R 1996 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Lake Buena Vista, July 1–3, 1996 p2723

    [7]

    Koizumi H, Noji R, Komurasaki K, Arakawa Y 2007 Phys. Plasmas 14 033506Google Scholar

    [8]

    Gomez E W, Saravia M M, Castelló W B, Elaskar S 2022 8th International Conference on Space Propulsion ESTORIL, May 9–13, 2022 p00203

    [9]

    Antropov N, Diakonov G, Orlov M, Popov G, Yakovlev V 2003 28th International Electric Propulsion Conference Paper Toulouse, March 17–21 2003 p3

    [10]

    Schönherr T, Nawaz A, Herdrich G, Röser H P, Auweter-Kurtz M 2009 J. Propul. Power 25 380Google Scholar

    [11]

    Palumbo D J, Guman W J 1976 J. Spacecraft Rockets 13 163Google Scholar

    [12]

    Ling W Y L, Zhang S, Fu H, Huang M C, Quansah J, Liu X Y, Wang N F 2020 Chin. J. Aeronaut. 33 2999Google Scholar

    [13]

    Ou Y, Wu J J, Du X R, Zhang H, He Z F 2019 Vacuum 165 163Google Scholar

    [14]

    Spanjers G G, Lotspeich J S, McFall K A, Spores R A 1998 J. Propul. Power 14 554Google Scholar

    [15]

    Schönherr T, Komurasaki K, Herdrich G 2013 J. Propul. Power 29 1478Google Scholar

    [16]

    Zeng L H, Wu Z W, Sun G R, Huang T K, Xie K, Wang N F 2019 Acta Astronaut. 160 317Google Scholar

    [17]

    Nawaz A, Albertoni R, Auweter-Kurtz M 2010 Acta Astronaut. 67 440Google Scholar

    [18]

    Wu Z W, Sun G R, Huang T K, Liu X, Xie K, Wang N F 2018 AIAA J. 56 3024Google Scholar

    [19]

    Jahn R G 1968 Physics of Electric Propulsion (New York: McGraw-Hill) p263

    [20]

    Turchi P, Mikellides P 1995 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit San Diego, July 10–12, 1995 p1

    [21]

    Gatsonis N A, Hastings D E 1992 J. Geophys. Res.-Space 97 14989Google Scholar

    [22]

    Vondra R J, Thomassen K, Solbes A 1970 J. Spacecraft Rockets 7 1402Google Scholar

    [23]

    魏荣华 1982 空间科学学报 2 319Google Scholar

    Wei R H 1982 Chin. J. Space Sci. 2 319Google Scholar

    [24]

    Laperriere D, Gatsonis N, Demetriou M 2005 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Tucson, July 10–13, 2005 p4077

    [25]

    Gatsonis N, Demetriou M 2004 40st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Florida, July 11–14, 2004 p3464

    [26]

    Laperriere D D 2005 M. S. Thesis (Massachusetts: Worcester Polytechnic Institute

    [27]

    Ou Y, Wu J J, Zhang Y, Li J, Tan S 2018 Energies 11 1146Google Scholar

    [28]

    张华, 吴建军, 张代贤, 张锐, 何振 2013 物理学报 62 210202Google Scholar

    Zhang H, Wu J J, Zhang D X, Zhang R, He Z 2013 Acta Phys. Sin. 62 210202Google Scholar

    [29]

    Mikellides Y G 1999 Theoretical Modeling and Optimization of Ablation-fed Pulsed Plasma Thrusters (The Ohio State University

    [30]

    Mikellides P G, Henrikson E M, Rajagopalan S S 2019 J. Propul. Power 35 811Google Scholar

    [31]

    Keidar M, Boyd I D, Beilis I I 2003 J. Propul. Power 19 424Google Scholar

    [32]

    Keidar M, Boyd I 2002 38st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Indianapolis, July 7–10, 2002 p4275

    [33]

    Yang L, Huang Y, Tang H, Liu X 2015 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium Hyogo-Kobe, July 4–10, 2015 p1

    [34]

    Yang L, Liu X Y, Wu Z W, Wang N F 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit California, USA, July 31–August 3, 2011 p6077

    [35]

    Riazantsev A, Jakubczak M, Kurzyna J 2024 38th International Electric Propulsion Conference Toulouse, June 23–28, 2024 p1

    [36]

    Schönherr T, Nawaz A, Lau M, Petkow D, Herdrich G 2010 Trans. JSASS Aerospace Tech. Japan 8 Tb_11Google Scholar

    [37]

    王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越 2021 物理学报 70 235204Google Scholar

    Wang Y N, Ren L Y, Ding W D, Sun A B, Geng J Y 2021 Acta Phys. Sin. 70 235204Google Scholar

    [38]

    王尚民, 田立成, 张家良, 张天平, 冯玮玮, 陈新伟, 高军 2017 中国空间科学技术 37 24Google Scholar

    Wang S M, Tian L C, Zhang J L, Zhang T P, Feng W W, Chen W X, Gao J 2017 Chin. Space Sci. Technol. 37 24Google Scholar

  • [1] Li Xin, Zeng Ming, Liu Hui, Ning Zhong-Xi, Yu Da-Ren. Iodine electron cyclotron resonance plasma source for electric propulsion. Acta Physica Sinica, 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [2] Meng Ju, He Zhen-Cen, Yan Jun, Wu Ze-Qing, Yao Ke, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Effects of electric quadrupole transitions on ion energy-level populations of in electron beam ion trap plasma. Acta Physica Sinica, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [3] Liu Yong-Tang, Sheng Liang, Li Yang, Zhang Jin-Hai, Ouyang Xiao-Ping. Current channel in plasma of inverse exploding planar foils. Acta Physica Sinica, 2022, 71(3): 035205. doi: 10.7498/aps.71.20211495
    [4] Niu Zhong-Guo, Xu Xiang-Hui, Wang Jian-Feng, Jiang Jia-Li, Liang Hua. Experiment on longitudinal aerodynamic characteristics of flying wing model with plasma flow control. Acta Physica Sinica, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [5] Study of the current channel in plasma of inverse exploding planar foils. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211495
    [6] Experimental study on longitudinal aerodynamic characteristics of flying wing model with plasma flow control. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211425
    [7] Wang Ya-Nan, Ren Lin-Yuan, Ding Wei-Dong, Sun An-Bang, Geng Jin-Yue. Influence of cavity configuration parameters on discharge characteristics of capillary discharge based pulsed plasma thruster. Acta Physica Sinica, 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [8] Dong Wei, Wang Zhi-Bin. Improved hybrid plasmonic microcavity laser. Acta Physica Sinica, 2018, 67(19): 195204. doi: 10.7498/aps.67.20180242
    [9] Liu Li-Juan, Kong Xiao-Bo, Liu Yong-Gang, Xuan Li. Enhancement of conversion efficiency for an organic semiconductor laser based on a holographic polymer dispersed liquid crystal. Acta Physica Sinica, 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [10] Zu Feng-Xia, Zhang Pan-Pan, Xiong Lun, Yin Yong, Liu Min-Min, Gao Guo-Ying. Design and electronic transport properties of organic thiophene molecular rectifier with the graphene electrodes. Acta Physica Sinica, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [11] Cheng Yu-Guo, Xia Guang-Qing. Numerical investigation on the plasma acceleration of the inductive pulsed plasma thruster. Acta Physica Sinica, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [12] Wang Peng, Guo Run-Da, Chen Yu, Yue Shou-Zhen, Zhao Yi, Liu Shi-Yong. Influence of gradient doping on photoelectric conversion efficiency of organic photovoltaic devices. Acta Physica Sinica, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [13] Zhang Hua, Wu Jian-Jun, Zhang Dai-Xian, Zhang Rui, He Zhen. A modified electromechanical model with one-dimensional abalation model for numerical analysis of the pulsed plasma thruster. Acta Physica Sinica, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [14] Zhang Rui, Zhang Dai-Xian, Zhang Fan, He Zhen, Wu Jian-Jun. Structural and optical characterization of film deposited by pulsed plasma thruster plume. Acta Physica Sinica, 2013, 62(2): 025207. doi: 10.7498/aps.62.025207
    [15] Shi Yan-Xiang, Wu Jian, Ge De-Biao. The research on the dielectric tensor of weakly ionized dust plasma. Acta Physica Sinica, 2009, 58(8): 5507-5512. doi: 10.7498/aps.58.5507
    [16] Tao Wei-Dong, Wang Biao. Design of an improved Fresnel prism. Acta Physica Sinica, 2006, 55(3): 1126-1129. doi: 10.7498/aps.55.1126
    [17] Di Xiao-Lian, Xin Yu, Ning Zhao-Yuan. Effect of antenna configuration on power transfer efficiency for planar inductively coupled plasmas. Acta Physica Sinica, 2006, 55(10): 5311-5317. doi: 10.7498/aps.55.5311
    [18] Tang Chang-Jian, Gong Yu-Bin, Yang Yu-Zhi. Dielectric tensor of 2D relativistic motional plasma. Acta Physica Sinica, 2004, 53(4): 1145-1149. doi: 10.7498/aps.53.1145
    [19] Yang Juan, Mao Gen-Wang, He Hong-Qing, Tang Jin-Lan, Song Jun, Su Wei-Yi. Electromicrowave device of microwave plasma thruster operating under vacuum condition and its experiment. Acta Physica Sinica, 2004, 53(12): 4282-4286. doi: 10.7498/aps.53.4282
    [20] YAO RUO-HE, CHI LING-FEI, LIN XUAN-YING, SHI WANG-ZHOU, LIN KUI-XUN. THE DIAGNOSTICS OF RF GLOW DISCHARGE PLASMA BY A PROBE AND ITS DATA PROCESS. Acta Physica Sinica, 2000, 49(5): 922-925. doi: 10.7498/aps.49.922
Metrics
  • Abstract views:  1000
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  10 August 2024
  • Accepted Date:  25 September 2024
  • Available Online:  08 October 2024
  • Published Online:  05 November 2024

/

返回文章
返回