Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface charging characteristics of rotating asteroids in the solar system

Song Zhi-Ying Quan Rong-Hui Liu Zhi-Gui

Citation:

Surface charging characteristics of rotating asteroids in the solar system

Song Zhi-Ying, Quan Rong-Hui, Liu Zhi-Gui
cstr: 32037.14.aps.73.20241182
PDF
HTML
Get Citation
  • The attachment and movement of charged particles in the space plasma environment can result in observable potentials on the asteroid surface. This surface charging phenomenon has been extensively studied. However, so far, the influence of asteroid rotation on surface charging and the surrounding plasma has not yet been fully understood. Traditional methods using numerical integration and PIC have slow computation speeds, and mainly focus on the charging mechanisms of static asteroids. In this study, we establish a multi-scale model based on neural networks and the finite element method, thereby improving simulation efficiency and enabling three-dimensional dynamic simulations of rotating asteroids. Simulation results for asteroids with different rotation periods indicate that both the maximum surface potential and the minimum surface potential decrease as the rotation period increases. The minimum potential on the nightside decreases from –4.96 V with one-hour period to –5.97 V with one-week period. For asteroids with longer periods, this downward trend slows down: the period increases from one week to half a year, resulting in a potential change of 0.001 V. Because strong electric field near the the terminator accelerates electrons and ions, electrons respond more promptly to the electric field, owing to their much higher mobility and diffusion coefficient, exhibiting a more severe accumulation phenomenon than ions, resulting in the decrease of the surface potential. This phenomenon is most pronounced when the solar wind is obliquely incident, where the subsolar point is close to the terminator, resulting in the strongest electric field. When the period exceeds one week, this downward trend becomes less pronounced, specifically, the asteroid and plasma have enough time to reach equilibrium at various angles. During the passage of solar storms, there is a significant change in surface potential at different stages, with potential difference caused by rotation periods reaching hundreds of volts. Surface minerals also play a role, with plagioclase being the most sensitive mineral in the exploration, while ilmenite seems indifferent to changes in rotation periods. Understanding the surface charging of asteroids under various rotation periods and angles is crucial for further studying the solar wind plasma and the motion of asteroid’s surface dust, providing a reference for achieving safe landing and exploration of asteroids.
      Corresponding author: Quan Rong-Hui, quanrh@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 42241148, 51877111).
    [1]

    Zimmerman M I, Farrell W M, Hartzell C M, Wang X, Horanyi M, Hurley D M, Hibbitts K 2016 J. Geophys. Res.: Planets 121 2150Google Scholar

    [2]

    Hartzell C M, Scheeres D J 2013 J. Geophys. Res.: Planets 118 116Google Scholar

    [3]

    Xie L H, Li L, Wang J D, Zhang Y T, Zhou B, Feng Y Y 2023 Astrophys. J. 952 61Google Scholar

    [4]

    Stubbs T J, Farrell W M, Halekas J S, Burchill J K, Collier M R, Zimmerman M I, Vondrak R R, Delory G T, Pfaff R F 2014 Planet. Space Sci. 90 10Google Scholar

    [5]

    Kureshi R, Tripathi K R, Mishra S K 2020 Astrophys. Space Sci. 365 23Google Scholar

    [6]

    Halekas J S, Delory G T, Brain D A, Lin R P, Fillingim M O, Lee C O, Mewaldt R A, Stubbs T J, Farrell W M, Hudson M K 2007 Geophys. Res. Lett. 34 L02111Google Scholar

    [7]

    Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2009 J. Geophys. Res.: Space Phys. 114 A5Google Scholar

    [8]

    Zimmerman M I, Farrell W M, Poppe A R 2014 Icarus 238 77Google Scholar

    [9]

    Quan R H, Zhang C Y, Zhang H C 2023 IEEE Trans. Plasma Sci. 51 1181Google Scholar

    [10]

    Zhu H H, Cui Z Q, Liu J, Jiang S H, Liu X, Wang J H 2023 J. Mar. Sci. Eng. 11 1340Google Scholar

    [11]

    Liu H, Xu Y, Wang C Y, Ding F, Xiao H S 2022 Mater. Res. Express 9 025504Google Scholar

    [12]

    Adil M, Ullah R, Noor S, Gohar N 2022 Neural Comput. Appl. 34 8355Google Scholar

    [13]

    Qian H M, Zhang H, Huang T, Huang H Z, Wang K 2023 Qual. Reliab. Eng. Int. 39 1878Google Scholar

    [14]

    王馨悦, 张爱兵, 荆涛, Reme H, 孔令高, 张珅毅, 李春来 2016 地球物理学报 59 3533Google Scholar

    Wang X Y, Zhang A B, Jing T, Reme H, Kong L G, Zhang S Y, Li C L 2016 Chin. J. Geophys. 59 3533Google Scholar

    [15]

    Novikov L S, Mileev V N, Krupnikov K K, Makletsov A A, Marjin B V, Rjazantseva M O, Sinolits V V, Vlasova N A 2008 Adv. Space Res. 42 1307Google Scholar

    [16]

    Wang S, Wu Z C, Tang X J, Yi Z, Sun Y W 2016 IEEE Trans. Plasma Sci. 44 289Google Scholar

    [17]

    Whipple E C 1981 Rep. Prog. Phys. 44 1197Google Scholar

    [18]

    Pandya A, Mehta P, Kothari N 2019 Int. J. Numer. Modell. Electron. Networks Devices Fields 32 e2631Google Scholar

    [19]

    Hastings D, Garrett H 2004 Spacecraft-Environment Interactions (Cambridge: Cambridge University Press) pp143–156, 162–165

    [20]

    张海呈, 全荣辉, 张诚悦 2023 空间科学学报 43 78Google Scholar

    Zhang H C, Quan R H, Zhang C Y 2023 Chin. J. Space Sci. 43 78Google Scholar

    [21]

    Chávez G, Cortés-Vega L, Sotomayor A 2024 J. Phys. Conf. Ser. 2701 012105Google Scholar

    [22]

    Li X Y, Scheeres D J 2021 Icarus 357 114249Google Scholar

    [23]

    古列维奇 A V著 (刘选谋, 张训械 译) 1986 电离层中的非线性现象(北京: 科学出版社)第38—94, 107—140页

    Gurevich A V (translated by Liu X M, Zhang X X) 1986 Nonlinear Phenomena in the Ionosphere (Beijing: Science Press) pp38–94, 107–140

    [24]

    金兹堡V L著(钱善瑎译) 1978电磁波在等离子体中的传播(北京: 科学出版社)第65—84页

    Ginzburg V L (translated by Qian S X) 1978 The Propagation of Electromagnetic Waves in Plasmas (Beijing: Science Press) pp65–84

    [25]

    Skoug R M, Bame S J, Feldman W C, Gosling J T, McComas D J, Steinberg J T, Tokar R L, Riley P, Burlaga L F, Ness N F, Smith C W 1999 Geophys. Res. Lett. 26 161Google Scholar

    [26]

    Farrell W M, Halekas J S, Killen R M, Delory G T, Gross N, Bleacher L V, Krauss-Varben D, Travnicek P, Hurley D, Stubbs T J, Zimmerman M I, Jackson T L 2012 J. Geophys. Res.: Planets 117 E00K04Google Scholar

    [27]

    Zimmerman M I, Jackson T L, Farrell W M, Stubbs T J 2012 J. Geophys. Res.: Planets 117 E00K03Google Scholar

  • 图 1  模拟区域示意图

    Figure 1.  Schematic diagram of the simulation geometries.

    图 2  多尺度模型与PIC模拟结果对比

    Figure 2.  Comparison between our multi-scale simulation method and PIC simulation.

    图 3  自转周期为1天的小行星表面电势和周围等离子体环境

    Figure 3.  Surface potential and surrounding plasma of asteroid with rotation period of 1 day.

    图 4  不同自转周期的小行星表面最大和最小电位

    Figure 4.  The maximum and minimum potentials of asteroids with different rotation periods.

    图 5  太阳风暴期间小行星表面电位

    Figure 5.  Simulated potential during passage of the modeled solar storm.

    图 6  太阳风暴期间小行星表面归一化电位

    Figure 6.  Normalized potential during passage of the modeled solar storm.

    图 7  小行星三种组成矿物的充电结果 (a), (b) 斜长石; (c), (d) 斜方辉石; (e), (f) 钛铁矿

    Figure 7.  Charging results of three constituent minerals of asteroids: (a), (b) Plagiocase; (c), (d) orthopyroxene; (e), (f) ilmenite.

    表 1  太阳风暴各阶段太阳风参数

    Table 1.  Plasma parameters during passage of solar storm

    阶段 标准 前向激波 早期CME 晚期CME
    数密度/cm–3 5—8 20 3 ≥50
    体速度/(km·s–1) 400—450 600 650 500
    Te/eV 15 80 9 16
    Ti/eV 10 40 6 4
    cs/(km·s–1) 37.91 87.54 29.36 39.15
    DownLoad: CSV

    表 2  太阳风各阶段内小行星自转对充电结果的影响

    Table 2.  Influence of asteroid rotation on charging results during various solar storm stages.

    阶段 周期 Vmax/V Vmin/V Eelef_max/(V·m–1)
    前向激波 0.467 h 16.74 –84.54 12.62
    1 h 16.73 –98.13 13.11
    6 h 16.22 –145.07 14.23
    1 d 16.15 –191.03 12.72
    早期CME 0.467 h 9.57 –3.73 5.55
    1 h 9.57 –3.76 5.49
    12 h 9.57 –3.76 5.49
    1 month 9.57 –3.76 5.43
    晚期CME 0.467 h 5.62 –73.80 8.72
    1 h 5.63 –111.55 10.64
    2 h 5.41 –179.86 20.35
    3 h 5.43 –270.21 18.80
    DownLoad: CSV

    表 3  表面矿物材料参数

    Table 3.  Material properties of different minerals.

    材料 功函数/eV 阈值波长/nm δmax Emax/eV εr σ/(pS·m–1)
    斜长石 5.58 238 2.8 1000 5.5 7
    斜方辉石 5.14 259 2.1 700 2.9 7.5
    钛铁矿 4.29 297 2.5 600 3.1 9
    DownLoad: CSV
  • [1]

    Zimmerman M I, Farrell W M, Hartzell C M, Wang X, Horanyi M, Hurley D M, Hibbitts K 2016 J. Geophys. Res.: Planets 121 2150Google Scholar

    [2]

    Hartzell C M, Scheeres D J 2013 J. Geophys. Res.: Planets 118 116Google Scholar

    [3]

    Xie L H, Li L, Wang J D, Zhang Y T, Zhou B, Feng Y Y 2023 Astrophys. J. 952 61Google Scholar

    [4]

    Stubbs T J, Farrell W M, Halekas J S, Burchill J K, Collier M R, Zimmerman M I, Vondrak R R, Delory G T, Pfaff R F 2014 Planet. Space Sci. 90 10Google Scholar

    [5]

    Kureshi R, Tripathi K R, Mishra S K 2020 Astrophys. Space Sci. 365 23Google Scholar

    [6]

    Halekas J S, Delory G T, Brain D A, Lin R P, Fillingim M O, Lee C O, Mewaldt R A, Stubbs T J, Farrell W M, Hudson M K 2007 Geophys. Res. Lett. 34 L02111Google Scholar

    [7]

    Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2009 J. Geophys. Res.: Space Phys. 114 A5Google Scholar

    [8]

    Zimmerman M I, Farrell W M, Poppe A R 2014 Icarus 238 77Google Scholar

    [9]

    Quan R H, Zhang C Y, Zhang H C 2023 IEEE Trans. Plasma Sci. 51 1181Google Scholar

    [10]

    Zhu H H, Cui Z Q, Liu J, Jiang S H, Liu X, Wang J H 2023 J. Mar. Sci. Eng. 11 1340Google Scholar

    [11]

    Liu H, Xu Y, Wang C Y, Ding F, Xiao H S 2022 Mater. Res. Express 9 025504Google Scholar

    [12]

    Adil M, Ullah R, Noor S, Gohar N 2022 Neural Comput. Appl. 34 8355Google Scholar

    [13]

    Qian H M, Zhang H, Huang T, Huang H Z, Wang K 2023 Qual. Reliab. Eng. Int. 39 1878Google Scholar

    [14]

    王馨悦, 张爱兵, 荆涛, Reme H, 孔令高, 张珅毅, 李春来 2016 地球物理学报 59 3533Google Scholar

    Wang X Y, Zhang A B, Jing T, Reme H, Kong L G, Zhang S Y, Li C L 2016 Chin. J. Geophys. 59 3533Google Scholar

    [15]

    Novikov L S, Mileev V N, Krupnikov K K, Makletsov A A, Marjin B V, Rjazantseva M O, Sinolits V V, Vlasova N A 2008 Adv. Space Res. 42 1307Google Scholar

    [16]

    Wang S, Wu Z C, Tang X J, Yi Z, Sun Y W 2016 IEEE Trans. Plasma Sci. 44 289Google Scholar

    [17]

    Whipple E C 1981 Rep. Prog. Phys. 44 1197Google Scholar

    [18]

    Pandya A, Mehta P, Kothari N 2019 Int. J. Numer. Modell. Electron. Networks Devices Fields 32 e2631Google Scholar

    [19]

    Hastings D, Garrett H 2004 Spacecraft-Environment Interactions (Cambridge: Cambridge University Press) pp143–156, 162–165

    [20]

    张海呈, 全荣辉, 张诚悦 2023 空间科学学报 43 78Google Scholar

    Zhang H C, Quan R H, Zhang C Y 2023 Chin. J. Space Sci. 43 78Google Scholar

    [21]

    Chávez G, Cortés-Vega L, Sotomayor A 2024 J. Phys. Conf. Ser. 2701 012105Google Scholar

    [22]

    Li X Y, Scheeres D J 2021 Icarus 357 114249Google Scholar

    [23]

    古列维奇 A V著 (刘选谋, 张训械 译) 1986 电离层中的非线性现象(北京: 科学出版社)第38—94, 107—140页

    Gurevich A V (translated by Liu X M, Zhang X X) 1986 Nonlinear Phenomena in the Ionosphere (Beijing: Science Press) pp38–94, 107–140

    [24]

    金兹堡V L著(钱善瑎译) 1978电磁波在等离子体中的传播(北京: 科学出版社)第65—84页

    Ginzburg V L (translated by Qian S X) 1978 The Propagation of Electromagnetic Waves in Plasmas (Beijing: Science Press) pp65–84

    [25]

    Skoug R M, Bame S J, Feldman W C, Gosling J T, McComas D J, Steinberg J T, Tokar R L, Riley P, Burlaga L F, Ness N F, Smith C W 1999 Geophys. Res. Lett. 26 161Google Scholar

    [26]

    Farrell W M, Halekas J S, Killen R M, Delory G T, Gross N, Bleacher L V, Krauss-Varben D, Travnicek P, Hurley D, Stubbs T J, Zimmerman M I, Jackson T L 2012 J. Geophys. Res.: Planets 117 E00K04Google Scholar

    [27]

    Zimmerman M I, Jackson T L, Farrell W M, Stubbs T J 2012 J. Geophys. Res.: Planets 117 E00K03Google Scholar

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Ma Rui-Yao, Wang Xin, Li Shu, Yong Heng, Shangguan Dan-Hua. An efficient calculation method for particle transport problems based on neural network. Acta Physica Sinica, 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [3] Fang Bo-Lang, Wu Jun-Jie, Wang Sheng, Wu Zhen-Jie, Li Tian-Zhi, Zhang Yang, Yang Peng-Ling, Wang Jian-Guo. Measurement method of metal surface absorptivity based on physics-informed neural network. Acta Physica Sinica, 2024, 73(9): 094301. doi: 10.7498/aps.73.20231453
    [4] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [5] Li Jing, Sun Hao. Tag Z boson jets via convolutional neural networks. Acta Physica Sinica, 2021, 70(6): 061301. doi: 10.7498/aps.70.20201557
    [6] Sun Li-Wang, Li Hong, Wang Peng-Jun, Gao He-Bei, Luo Meng-Bo. Recognition of adsorption phase transition of polymer on surface by neural network. Acta Physica Sinica, 2019, 68(20): 200701. doi: 10.7498/aps.68.20190643
    [7] Yuan Qing-Yun, Wang Song. A new charging model for exposed dielectric of spacecraft. Acta Physica Sinica, 2018, 67(19): 195201. doi: 10.7498/aps.67.20180532
    [8] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [9] Li Huan, Wang You-Guo. Noise-enhanced information transmission of a non-linear multilevel threshold neural networks system. Acta Physica Sinica, 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [10] Chen Tie-Ming, Jiang Rong-Rong. New hybrid stream cipher based on chaos and neural networks. Acta Physica Sinica, 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [11] Huang Jian-Guo, Yi Zhong, Meng Li-Fei, Zhao Hua, Liu Ye-Nan. Physical process and characteristics for rapid charging events at international space station. Acta Physica Sinica, 2013, 62(22): 229401. doi: 10.7498/aps.62.229401
    [12] Huang Jian-Guo, Yi Zhong, Meng Li-Fei, Zhao Hua, Liu Ye-Nan. Mechanism of rapid-charging events for international space station. Acta Physica Sinica, 2013, 62(9): 099401. doi: 10.7498/aps.62.099401
    [13] Cao He-Fei, Liu Shang-He, Sun Yong-Wei, Yuan Qing-Yun. Unbiased solid surface charging research inplasma environment. Acta Physica Sinica, 2013, 62(11): 119401. doi: 10.7498/aps.62.119401
    [14] Li Hua-Qing, Liao Xiao-Feng, Huang Hong-Yu. Synchronization of uncertain chaotic systems based on neural network and sliding mode control. Acta Physica Sinica, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [15] Zhao Hai-Quan, Zhang Jia-Shu. Adaptive nonlinear channel equalization based on combination neural network for chaos-based communication systems. Acta Physica Sinica, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [16] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [17] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [18] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [19] Tan Wen, Wang Yao-Nan, Liu Zhu-Run, Zhou Shao-Wu. . Acta Physica Sinica, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
Metrics
  • Abstract views:  182
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2024
  • Accepted Date:  24 October 2024
  • Available Online:  18 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回