-
Objective: This study aims to develop a highly accurate method for predicting α-decay energies (Qα) of superheavy nuclei (SHN) and to identify the region of enhanced stability (the "island of stability") based on α-decay properties. Improving the precision of Qα calculations is crucial for reliably predicting α-decay half-lives, which are essential for identifying newly synthesized superheavy elements. Methods: A modified Liquid-Drop Model (LDM) formula for calculating Qα is proposed, eliminating explicit dependence on magic numbers to enhance universality. However, the initial LDM formula alone yields a high root-mean-square deviation (RMSD) of 663.5 keV when compared to experimental Qα values from the AME2016 database for 369 nuclei with Z ≥ 82. To significantly improve accuracy, a neural network (NN) approach is integrated with the LDM formula. A feedforward backpropagation (BP) neural network with a 2-21-1 architecture (2 input neurons: proton number Z and mass number A; 21 hidden neurons; 1 output neuron: , the correction term is developed. The network is trained using the Levenberg-Marquardt algorithm on a dataset of 369 nuclei (319 training, 50 validation). The final Qα prediction is given by QαNN = QαEq.(2) +δQα. The Unified Decay Law (UDL) formula (Eq. 8) is then used to calculate α-decay half-lives (T1/2), both with and without NN correction (denoted UDL and UDLNN).
-
Keywords:
- Superheavy Nuclei /
- Neural Network /
- Nuclear Masses /
- Alpha Decay
-
[1] D. T. Akrawy and D. N. Poenaru, J. Phys. G: Nucl. Part. Phys. 44 (2017) 105105.
[2] M. R. Pahlavani and M. Joharifard, Phys. Rev. C 99 (2019) 044601.
[3] J. G. Deng and H. F. Zhang, Phys. Rev. C 102 (2020) 044314.
[4] J. Khuyagbaatar, F. P. Heßberger, S. Hofmann, D. Ackermann, H. G. Burkhard, S. Heinz, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, J. Maurer, and K. Nishio, Phys. Rev. C 102 (2020) 044312.
[5] E. Olesen and W. Nazarewicz, Phys. Rev. C 99 (2019) 014317.
[6] T. L. Zhao and X. J. Bao, Phys. Rev. C 98 (2018) 064307.
[7] Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Yu. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, and M. G. Itkis, Phys. Rev. C 74 (2006) 044602.
[8] Inauguration of the factory of superheavy elements, http://www.jinr.ru/posts/inauguration-of-the-factory-of-superheavy-elements/, accessed: 2019-05-25.
[9] S. Hofmann and G. Mnzenberg, Rev. Mod. Phys. 72 (2000) 733.
[10] A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys. 58 (2007) 292.
[11] Yu. Ts. Oganessian, A. Sobiczewski, and G. M. Ter-Akopian, Phys. Scr. 92 (2017) 023003.
[12] Yu. Ts. Oganessian and V. K. Utyonkov, Nucl. Phys. A 944 (2015) 62.
[13] P. Mller, J. R. NIX, K.-L. KRATZ, At. Data Nucl. Data Tables 66 (1997) 131.
[14] R. R. Chasman, I. Ahmad, A. M. Friedman, and J. R. Erskine, Rev. Mod. Phys. 49 (1977) 833.
[15] M. G. Mayer, Phys. Rev. 74 (1948) 235
[16] O. Haxel, J. H. D. Jensen, and H. E. Suess, Phys. Rev. 75 (1949) 1766.
[17] M. G. Mayer, Phys. Rev. 75 (1949) 1969.
[18] H. Koura, T. Tachibana, M. Uno and M. Yamada, Prog. Theor. Phys 113 (2005) 305.
[19] N. Wang and M. Liu, Phys. Rev. C 81 (2010) 044322.
[20] P. Mller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109 (2016) 1.
[21] S. Goriely, N. Chamel and J. M. Pearson, Phys. Rev. Lett. 102 (2009) 152503.
[22] S. Goriely, S. Hilaire, M. Girod and S. Péru, Phys. Rev. Lett. 102 (2009) 242501.
[23] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82 (2010) 054319.
[24] T. Dong and Z. Ren, Phys. Rev. C 82 (2010) 034320.
[25] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41 (2017) 030003.
[26] H. Geiger and J. Nuttall, London Edinburgh Dublin Philos. Mag. J. Sci 22 (1911) 613.
[27] Y. Z. Wang, S. J. Wang, Z. Y. Hou, and J. Z. Gu, Phys. Rev. C 92 (2015) 064301.
[28] S. Gazula, J. Clark, and H. Bohr, Nucl. Phys. A 540 (1992) 1.
[29] K. Gernoth, J. Clark, J. Prater, and H. Bohr, Phys. Lett. B 300 (1993) 1.
[30] K. Gernoth and J. Clark, Neural Networks 8 (1995) 291.
[31] S. Athanassopoulos, E. Mavrommatis, K. A. Gernoth, and J. W. Clark, Nucl. Phys. A 743 (2004)222.
[32] T. Bayram, S. Akkoyun, and S. O. Kara, Ann. Nucl. Energy 63 (2014) 172.
[33] R. Utama and J. Piekarewicz, Phys. Rev. C 96 (2017) 044308.
[34] R. Utama, J. Piekarewicz, and H. B. Prosper, Phys. Rev. C 93 (2016) 014311.
[35] H. F. Zhang, L. H. Wang, J. P. Yin, P. H. Chen, and H. F. Zhang, J. Phys. G 44 (2017) 045110.
[36] Z. M. Niu, H. Z. Liang, Phys. Lett. B 778 (2018) 48.
[37] K. Levenberg, Quart. Appl. Math 2 (1944) 164.
[38] D. Marquardt, SIAM J. Appl. Math 11 (1963) 431.
[39] W. Press, S. Teukolsky, W. Vetterling and F. Flannery, 678 (1992)
[40] C. Xu and Z. Z. Ren, Phy. Rev. C 74 (2006) 014304.
[41] X. J. Bao, H. F. Zhang, H. F. Zhang, G. Royer and J. Q. Li, Nucl. Phys. A 921 (2014) 85.
[42] W. H. Long, J. Meng and S. G. Zhou, Phys. Rev. C 65 (2002) 047306.
[43] C. Qi, F. R. Xu, R. J. Liotta and R. Wyss, Phys. Rev. Lett. 103 (2009) 072501.
[44] C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, M. Y. Zhang, C. Asawatangtrakuldee, and D. Hu Phys. Rev. C 80 (2009) 044326.
[45] D. D. Ni, Z. Z. Ren, T. K. Dong and C. Xu, Phys. Rev. C 78 (2008) 044301.
[46] A. Parkhomenko and A. Sobiczewski, Acta Phys. Pol. B 36 (2005) 3095.
[47] G. Royer, J. Phys. G 26 (2000) 1149.
[48] T. L. Zhao, X. J. Bao and S. Q. Guo, J. Phys. G 45 (2018) 025106.
[49] G. Audi, F.G. Kondev, M. Wang, W.J. Huang, and S. Naimi, Chin. Phys. C 41 (2017) 030001.
[50] Z. Y. Zhang, H. B. Yang, M. H. Huang, Z. G. Gan, C. X. Yuan, C. Qi, A. N. Andreyev, M. L. Liu, L. Ma, M. M. Zhang, Y. L. Tian, Y. S. Wang, J. G. Wang, C. L. Yang, G. S. Li, Y. H. Qiang, W. Q. Yang, R. F. Chen, H. B. Zhang, Z.W. Lu, X.X. Xu, L. M. Duan, H.R. Yang, W.X. Huang, Z. Liu, X.H. Zhou, Y. H. Zhang, H. S. Xu, N. Wang, H. B. Zhou, X. J. Wen, S. Huang, W. Hua, L. Zhu, X. Wang, Y. C. Mao, X. T. He, S. Y. Wang, W. Z. Xu, H. W. Li, Z. Z. Ren, and S. G. Zhou, Phys. Rev. Lett. 126 (2021) 152502.
[51] N. Wang, M. Liu, X. Z. Wu, J. Meng, Phys. Lett. B 734 (2014) 215.
[52] P. Mller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109 (2016) 1.
[53] Y. T. Oganessian, A. Sobiczewski and G. M. Ter-Akopian, Phys. Scr 92 (2017) 023003.
[54] N. N. Ma, H. F. Zhang, X. J. Bao, and H. F. Zhang, Chin. Phys. C 43 (2019) 0441
Metrics
- Abstract views: 218
- PDF Downloads: 10
- Cited By: 0