Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on the stability and decay properties of superheavy nuclei based on neural network methods

Chen Haijun Sheng Haowen Huang Wenhao Wu Binqi Zhao Tianliang Bao Xiaojun

Citation:

Research on the stability and decay properties of superheavy nuclei based on neural network methods

Chen Haijun, Sheng Haowen, Huang Wenhao, Wu Binqi, Zhao Tianliang, Bao Xiaojun
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Objective: This study aims to develop a highly accurate method for predicting α-decay energies (Qα) of superheavy nuclei (SHN) and to identify the region of enhanced stability (the "island of stability") based on α-decay properties. Improving the precision of Qα calculations is crucial for reliably predicting α-decay half-lives, which are essential for identifying newly synthesized superheavy elements. Methods: A modified Liquid-Drop Model (LDM) formula for calculating Qα is proposed, eliminating explicit dependence on magic numbers to enhance universality. However, the initial LDM formula alone yields a high root-mean-square deviation (RMSD) of 663.5 keV when compared to experimental Qα values from the AME2016 database for 369 nuclei with Z ≥ 82. To significantly improve accuracy, a neural network (NN) approach is integrated with the LDM formula. A feedforward backpropagation (BP) neural network with a 2-21-1 architecture (2 input neurons: proton number Z and mass number A; 21 hidden neurons; 1 output neuron: , the correction term is developed. The network is trained using the Levenberg-Marquardt algorithm on a dataset of 369 nuclei (319 training, 50 validation). The final Qα prediction is given by QαNN = QαEq.(2) +δQα. The Unified Decay Law (UDL) formula (Eq. 8) is then used to calculate α-decay half-lives (T1/2), both with and without NN correction (denoted UDL and UDLNN).
  • [1]

    D. T. Akrawy and D. N. Poenaru, J. Phys. G: Nucl. Part. Phys. 44 (2017) 105105.

    [2]

    M. R. Pahlavani and M. Joharifard, Phys. Rev. C 99 (2019) 044601.

    [3]

    J. G. Deng and H. F. Zhang, Phys. Rev. C 102 (2020) 044314.

    [4]

    J. Khuyagbaatar, F. P. Heßberger, S. Hofmann, D. Ackermann, H. G. Burkhard, S. Heinz, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, J. Maurer, and K. Nishio, Phys. Rev. C 102 (2020) 044312.

    [5]

    E. Olesen and W. Nazarewicz, Phys. Rev. C 99 (2019) 014317.

    [6]

    T. L. Zhao and X. J. Bao, Phys. Rev. C 98 (2018) 064307.

    [7]

    Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Yu. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, and M. G. Itkis, Phys. Rev. C 74 (2006) 044602.

    [8]

    Inauguration of the factory of superheavy elements, http://www.jinr.ru/posts/inauguration-of-the-factory-of-superheavy-elements/, accessed: 2019-05-25.

    [9]

    S. Hofmann and G. Mnzenberg, Rev. Mod. Phys. 72 (2000) 733.

    [10]

    A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys. 58 (2007) 292.

    [11]

    Yu. Ts. Oganessian, A. Sobiczewski, and G. M. Ter-Akopian, Phys. Scr. 92 (2017) 023003.

    [12]

    Yu. Ts. Oganessian and V. K. Utyonkov, Nucl. Phys. A 944 (2015) 62.

    [13]

    P. Mller, J. R. NIX, K.-L. KRATZ, At. Data Nucl. Data Tables 66 (1997) 131.

    [14]

    R. R. Chasman, I. Ahmad, A. M. Friedman, and J. R. Erskine, Rev. Mod. Phys. 49 (1977) 833.

    [15]

    M. G. Mayer, Phys. Rev. 74 (1948) 235

    [16]

    O. Haxel, J. H. D. Jensen, and H. E. Suess, Phys. Rev. 75 (1949) 1766.

    [17]

    M. G. Mayer, Phys. Rev. 75 (1949) 1969.

    [18]

    H. Koura, T. Tachibana, M. Uno and M. Yamada, Prog. Theor. Phys 113 (2005) 305.

    [19]

    N. Wang and M. Liu, Phys. Rev. C 81 (2010) 044322.

    [20]

    P. Mller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109 (2016) 1.

    [21]

    S. Goriely, N. Chamel and J. M. Pearson, Phys. Rev. Lett. 102 (2009) 152503.

    [22]

    S. Goriely, S. Hilaire, M. Girod and S. Péru, Phys. Rev. Lett. 102 (2009) 242501.

    [23]

    P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82 (2010) 054319.

    [24]

    T. Dong and Z. Ren, Phys. Rev. C 82 (2010) 034320.

    [25]

    M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41 (2017) 030003.

    [26]

    H. Geiger and J. Nuttall, London Edinburgh Dublin Philos. Mag. J. Sci 22 (1911) 613.

    [27]

    Y. Z. Wang, S. J. Wang, Z. Y. Hou, and J. Z. Gu, Phys. Rev. C 92 (2015) 064301.

    [28]

    S. Gazula, J. Clark, and H. Bohr, Nucl. Phys. A 540 (1992) 1.

    [29]

    K. Gernoth, J. Clark, J. Prater, and H. Bohr, Phys. Lett. B 300 (1993) 1.

    [30]

    K. Gernoth and J. Clark, Neural Networks 8 (1995) 291.

    [31]

    S. Athanassopoulos, E. Mavrommatis, K. A. Gernoth, and J. W. Clark, Nucl. Phys. A 743 (2004)222.

    [32]

    T. Bayram, S. Akkoyun, and S. O. Kara, Ann. Nucl. Energy 63 (2014) 172.

    [33]

    R. Utama and J. Piekarewicz, Phys. Rev. C 96 (2017) 044308.

    [34]

    R. Utama, J. Piekarewicz, and H. B. Prosper, Phys. Rev. C 93 (2016) 014311.

    [35]

    H. F. Zhang, L. H. Wang, J. P. Yin, P. H. Chen, and H. F. Zhang, J. Phys. G 44 (2017) 045110.

    [36]

    Z. M. Niu, H. Z. Liang, Phys. Lett. B 778 (2018) 48.

    [37]

    K. Levenberg, Quart. Appl. Math 2 (1944) 164.

    [38]

    D. Marquardt, SIAM J. Appl. Math 11 (1963) 431.

    [39]

    W. Press, S. Teukolsky, W. Vetterling and F. Flannery, 678 (1992)

    [40]

    C. Xu and Z. Z. Ren, Phy. Rev. C 74 (2006) 014304.

    [41]

    X. J. Bao, H. F. Zhang, H. F. Zhang, G. Royer and J. Q. Li, Nucl. Phys. A 921 (2014) 85.

    [42]

    W. H. Long, J. Meng and S. G. Zhou, Phys. Rev. C 65 (2002) 047306.

    [43]

    C. Qi, F. R. Xu, R. J. Liotta and R. Wyss, Phys. Rev. Lett. 103 (2009) 072501.

    [44]

    C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, M. Y. Zhang, C. Asawatangtrakuldee, and D. Hu Phys. Rev. C 80 (2009) 044326.

    [45]

    D. D. Ni, Z. Z. Ren, T. K. Dong and C. Xu, Phys. Rev. C 78 (2008) 044301.

    [46]

    A. Parkhomenko and A. Sobiczewski, Acta Phys. Pol. B 36 (2005) 3095.

    [47]

    G. Royer, J. Phys. G 26 (2000) 1149.

    [48]

    T. L. Zhao, X. J. Bao and S. Q. Guo, J. Phys. G 45 (2018) 025106.

    [49]

    G. Audi, F.G. Kondev, M. Wang, W.J. Huang, and S. Naimi, Chin. Phys. C 41 (2017) 030001.

    [50]

    Z. Y. Zhang, H. B. Yang, M. H. Huang, Z. G. Gan, C. X. Yuan, C. Qi, A. N. Andreyev, M. L. Liu, L. Ma, M. M. Zhang, Y. L. Tian, Y. S. Wang, J. G. Wang, C. L. Yang, G. S. Li, Y. H. Qiang, W. Q. Yang, R. F. Chen, H. B. Zhang, Z.W. Lu, X.X. Xu, L. M. Duan, H.R. Yang, W.X. Huang, Z. Liu, X.H. Zhou, Y. H. Zhang, H. S. Xu, N. Wang, H. B. Zhou, X. J. Wen, S. Huang, W. Hua, L. Zhu, X. Wang, Y. C. Mao, X. T. He, S. Y. Wang, W. Z. Xu, H. W. Li, Z. Z. Ren, and S. G. Zhou, Phys. Rev. Lett. 126 (2021) 152502.

    [51]

    N. Wang, M. Liu, X. Z. Wu, J. Meng, Phys. Lett. B 734 (2014) 215.

    [52]

    P. Mller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109 (2016) 1.

    [53]

    Y. T. Oganessian, A. Sobiczewski and G. M. Ter-Akopian, Phys. Scr 92 (2017) 023003.

    [54]

    N. N. Ma, H. F. Zhang, X. J. Bao, and H. F. Zhang, Chin. Phys. C 43 (2019) 0441

  • [1] TIAN Wenjing, YANG Zongyu, XU Min, LONG Ting, HE Xiaoxue, KE Rui, YANG Shuosu, YU Deliang, SHI Zhongbing, GAO Zhe. Rapid analysis model and extrapolation method of neural network in spectral diagnostic. Acta Physica Sinica, doi: 10.7498/aps.74.20241739
    [2] WEI Kaiwen, SHANG Tianshuai, TIAN Ronghe, YANG Dong, LI Chunjuan, CHEN Jun, LI Jian, HUANG Xiaolong, ZHU Jiali. Research on average energy data of β decay released nuclei based on neural networks. Acta Physica Sinica, doi: 10.7498/aps.74.20250655
    [3] XING Fengzhu, LE Xiankai, WANG Nan, WANG Yanzhao. Research on α decay properties of superheavy nuclei with Z = 118–120. Acta Physica Sinica, doi: 10.7498/aps.74.20240907
    [4] Ma Rui-Yao, Wang Xin, Li Shu, Yong Heng, Shangguan Dan-Hua. An efficient calculation method for particle transport problems based on neural network. Acta Physica Sinica, doi: 10.7498/aps.73.20231661
    [5] Zhang Kai-Lin, Han Sheng-Xian, Yue Sheng-Jun, Liu Zuo-Ye, Hu Bi-Tao. Influence of strong laser field on nuclear α decay. Acta Physica Sinica, doi: 10.7498/aps.73.20231627
    [6] Jiao Bao-Bao. Nucleus density based new relationship of nuclear charge radius. Acta Physica Sinica, doi: 10.7498/aps.72.20230126
    [7] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, doi: 10.7498/aps.71.20220670
    [8] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, doi: 10.7498/aps.73.20240050
    [9] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, doi: 10.7498/aps.64.110503
    [10] Li Huan, Wang You-Guo. Noise-enhanced information transmission of a non-linear multilevel threshold neural networks system. Acta Physica Sinica, doi: 10.7498/aps.63.120506
    [11] Chen Tie-Ming, Jiang Rong-Rong. New hybrid stream cipher based on chaos and neural networks. Acta Physica Sinica, doi: 10.7498/aps.62.040301
    [12] Zhang Wei-Hong, Niu Zhong-Ming, Wang Feng, Gong Xiao-Bo, Sun Bao-Hua. Uncertainties of nucleo-chronometers from nuclear physics inputs. Acta Physica Sinica, doi: 10.7498/aps.61.112601
    [13] Li Hua-Qing, Liao Xiao-Feng, Huang Hong-Yu. Synchronization of uncertain chaotic systems based on neural network and sliding mode control. Acta Physica Sinica, doi: 10.7498/aps.60.020512
    [14] Zhao Hai-Quan, Zhang Jia-Shu. Adaptive nonlinear channel equalization based on combination neural network for chaos-based communication systems. Acta Physica Sinica, doi: 10.7498/aps.57.3996
    [15] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, doi: 10.7498/aps.57.6120
    [16] Huang Ming-Hui, Gan Zai-Guo, Fan Hong-Mei, Su Peng-Yuan, Ma Long, Zhou Xiao-Hong, Li Jun-Qing. The driving potential and cross sections for synthesizing super heavy nuclei with hot fusion. Acta Physica Sinica, doi: 10.7498/aps.57.1569
    [17] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, doi: 10.7498/aps.56.730
    [18] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, doi: 10.7498/aps.52.2723
    [19] Tan Wen, Wang Yao-Nan, Liu Zhu-Run, Zhou Shao-Wu. . Acta Physica Sinica, doi: 10.7498/aps.51.2463
    [20] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, doi: 10.7498/aps.50.674
Metrics
  • Abstract views:  218
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Available Online:  11 August 2025
  • /

    返回文章
    返回