Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on stability and decay properties of superheavy nuclei based on neural network method

CHEN Haijun SHENG Haowen HUANG Wenhao WU Binqi ZHAO Tianliang BAO Xiaojun

Citation:

Research on stability and decay properties of superheavy nuclei based on neural network method

CHEN Haijun, SHENG Haowen, HUANG Wenhao, WU Binqi, ZHAO Tianliang, BAO Xiaojun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This study aims to develop a highly accurate method of predicting α-decay energy (Qα) of superheavy nuclei (SHN) and to identify the region of enhanced stability (the “island of stability”) based on α-decay properties. Improving the accuracy of Qα calculations is crucial for reliably predicting α-decay half-lives, which are essential for identifying newly synthesized superheavy elements.A modified liquid-drop model (LDM) formula for calculating Qα is proposed, eliminating explicit dependence on magic numbers to improve universality. However, the initial LDM formula alone yields a high root-mean-square deviation (RMSD) of 663.5 keV compared with experimental Qα values from the AME2016 database for 369 nuclei with Z ≥ 82. In order to significantly improve accuracy, a neural network (NN) method is combined with the LDM formula. For a feedforward backpropagation (BP) neural network with a 2-21-1 architecture (2 input neurons: proton number Z and mass number A; 21 hidden neurons; 1 output neuron), the correction term $ \text{δ}{\text{Q}}_{\text{α}} $ is developed. The network is trained using the Levenberg-Marquardt algorithm on a dataset of 369 nuclei (319 training, 50 validation). The final Qα prediction is given by $ Q_\alpha ^{{\text{NN}}} = Q_\alpha ^{{\text{Eq}}{\text{. (2)}}} + \delta Q_\alpha ^{} $. The unified decay law (UDL) formula is then used to calculate α-decay half-lives (T1/2), with and without NN correction (denoted as UDL and UDLNN). The main results obtained are listed below.1) Improved Qα accuracy: The NN correction dramatically reduces the RMSD between calculated and experimental Qα values from 663.5 keV (LDM alone) to 89.2 keV.2) Capturing shell effects: Remarkably, although there is no explicit input of nuclear shell information, the NN-corrected Qα predictions clearly reproduce known shell structures, including the expected shell closure near N = 184 for superheavy nuclei. This is evident in the systematic lowering of predicted Qα values (implying increased stability) around the predicted doubly magic nucleus 298Fl (Z = 114, N = 184) and other known shell closures (e.g., N = 152, N = 162).3) Half-life predictions: Using the NN-corrected Qα in the UDL formula (UDLNN) further refines T1/2 predictions, reducing the RMSD from 0.631 (UDL alone) to 0.423. The method reliably reproduces experimental half-lives and shell-related features, such as a significant increase in T1/2 near shell closure (e.g. N = 126) and odd-A/odd-odd nuclei due to blocking effects.4) Validation: Predictions for recently synthesized neutron-deficient uranium isotopes 214,216,218U agree well with new experimental data of Qα and T1/2. Predictions for Fl isotopic chains also show good agreement with experimental trends.5) Stability island prediction: Maps of predicted Qα and T1/2 in the superheavy region consistently identify minimum value (indicating maximum stability) near the theoretically predicted doube magic nucleus 298Fl. A potential secondary stability center near Z = 126 and N = 228 is suggested, but further verification is needed. The longest predicted region of T1/2 coincides with the N = 184 shell closure.The conclusions drawn from the above findings are as follows. Integrating a neural network with a modified liquid-drop model formula provides a powerful and accurate method for predicting α-decay energies (Qα) of heavy and superheavy nuclei. The NN successfully learns and corrects complex shell effects implicitly, significantly improving prediction accuracy (RMSD reduced by ~85%). By combining the UDL formula, this method yields reliable α-decay half-lives. The results strongly confirm the existence and location of the predicted "island of stability" centered on the double magic nucleus 298Fl, providing valuable theoretical guidance for future experiments on the synthesis and identification of superheavy elements.
  • 图 1  由两个输入神经元、一个隐藏层和一个输出神经元组成的前馈神经网络

    Figure 1.  Feedforward neural network consisting of two input neurons, a hidden layer and an output neuron.

    图 2  α衰变能量的实验值与理论值之差

    Figure 2.  Difference between experimental and theoretical values of α decay energy.

    图 3  Po, Th, Rf同位素α衰变能和半衰期的理论结果与实验值的比较

    Figure 3.  Comparison of theoretical results and experimental values for Po, Th, Rf isotope $ \mathrm{\alpha } $ decay energy and half-life.

    图 4  Fl同位素$ \alpha $衰变能和半衰期的理论结果与实验值比较

    Figure 4.  Comparison of theoretical results and experimental values for Fl isotope $ \alpha $ecay energy and half-life.

    图 5  利用(2)式(左)和神经网络模型修正(右)预测超重核$ \alpha $衰变能量

    Figure 5.  Prediction of $ \alpha $ decay energy of superheavy nuclei using Eq. (2)(left) and neural network model correction (right).

    图 6  利用UDL公式和UDLNN计算$ \alpha $衰变半衰期

    Figure 6.  Calculated $ \alpha $ decay half-life using the UDL formula and the UDLNN.

    表 1  其他文献$ \alpha $衰变能和半衰期与本文工作的计算结果进行了比较

    Table 1.  The $ \alpha $ decay energy and half-life of other reference are compared with the calculation results of the work in this paper.

    $ {Q}_{\alpha }/\mathrm{M}\mathrm{e}\mathrm{V} $
    同位素 文献[49] (2)式 NN 文献[51] 文献[52]
    214U 8.696 10.054 8.865 9.008 8.45
    216U 8.532 10.047 8.587 8.532 8.36
    218U 8.773 9.897 8.795 8.801 8.51
    $ {T}_{1/2}/\mathrm{m}\mathrm{s} $
    同位素 文献[45] UDL UDLNN
    214U 0.52+0.63 –0.21 0.77 0.40
    216U 2.25+0.95 –0.4 2.12 1.93
    218U 0.65+0.08 –0.07 0.34 0.40
    DownLoad: CSV

    表 2  母核质子数为Z = 120的同位素$ \alpha $衰变链的预测. 第1列为母核, 第2列为文献[49]计算的$ \alpha $衰变能量, 第3列为(2)式计算的$ \alpha $衰变能量, 第4列为神经网络学习后的衰变能量, 第5列为使用UDL公式计算的$ \alpha $衰变半衰期, 第6列为使用神经网络学习后的$ \alpha $衰变半衰期

    Table 2.  Prediction of the $ \alpha $ decay chains of isotopes with proton number Z = 120 in the parent nucleus. The first column in the table shows the parent nucleus, the second column shows the $ \alpha $ decay energy calculated in Ref. [49], the third column shows the decay energy calculated in Eq. (2), the fourth column shows the decay energy after neural network learning, the fifth column shows the $ \alpha $ decay half-life calculated using the UDL formula, and the sixth column shows the $ \alpha $ decay half-life after learning using the neural network.

    核素 $ {Q}_{\alpha }^{\mathrm{L}\mathrm{Z}\mathrm{U}} $ $ {Q}_{\alpha }^{\mathrm{E}\mathrm{q}. \left(2\right)} $ $ {Q}_{\alpha }^{\mathrm{N}\mathrm{N}} $ UDL $ {\mathrm{U}\mathrm{D}\mathrm{L}}^{\mathrm{N}\mathrm{N}} $
    300120 13.05 9.83 13.03 –5.45 –5.59
    296118 11.89 9.85 11.75 –3.21 –3.35
    292116 10.64 10.34 10.08 –1.44 –1.57
    288114 9.82 10.92 10.03 0.03 –0.09
    284112 10.18 11.14 9.61 0.59 0.47
    280110 10.04 10.74 10.63 –2.88 –3.19
    302120 12.81 9.63 13.31 –6.05 –6.43
    298118 11.86 9.34 11.85 –3.48 –3.86
    294116 10.59 9.62 10.66 –1.12 –1.49
    290114 9.56 10.20 9.69 0.99 0.63
    286112 9.23 10.64 9.01 2.45 2.10
    282110 9.52 10.56 10.34 –2.16 –2.74
    304120 12.66 9.57 13.64 –6.73 –7.25
    300118 11.75 8.97 12.04 –3.94 –4.46
    296116 10.56 8.98 10.62 –1.03 –1.54
    292114 9.18 9.45 9.39 1.91 1.43
    288112 8.95 10.01 8.43 4.43 3.99
    284110 8.48 10.21 9.94 –1.09 –1.84
    306120 13.29 9.61 13.99 –7.41 –8.01
    302118 11.65 8.76 12.29 –4.54 –5.13
    298116 10.63 8.45 10.66 –1.17 –1.74
    294114 8.85 8.72 9.14 2.67 2.16
    290112 8.49 9.28 7.91 6.41 6.00
    286110 8.12 9.71 9.43 0.35 –0.51
    308120 13.07 9.73 14.32 –8.05 –8.68
    304118 12.36 8.69 12.59 –5.20 –5.82
    300116 10.57 8.08 10.77 –1.49 –2.06
    296114 8.53 8.07 8.97 3.21 2.77
    292112 8.30 8.52 7.49 8.17 7.87
    288110 7.68 9.06 8.86 2.16 1.12
    310120 11.61 9.85 14.60 –8.57 –9.21
    306118 12.61 8.73 12.89 –5.86 –6.46
    302116 11.37 7.85 10.93 –1.94 –2.44
    298114 8.32 7.53 8.89 3.47 3.18
    294112 7.96 7.78 7.20 9.44 9.26
    290110 7.56 8.33 8.26 4.24 2.91
    DownLoad: CSV
  • [1]

    Akrawy D T, Poenaru D N 2017 J. Phys. G: Nucl. Part. Phys. 44 105105Google Scholar

    [2]

    Pahlavani M R, Joharifard M 2019 Phys. Rev. C 99 044601Google Scholar

    [3]

    Deng J G, Zhang H F 2020 Phys. Rev. C 102 044314Google Scholar

    [4]

    Khuyagbaatar J, Heßberger F P, Hofmann S, Ackermann D, Burkhard H G, Heinz S, Kindler B, Kojouharov I, Lommel B, Mann R, Maurer J, Nishio K 2020 Phys. Rev. C 102 044312Google Scholar

    [5]

    Olesen E, Nazarewicz W 2019 Phys. Rev. C 99 014317Google Scholar

    [6]

    Zhao T L, Bao X J 2018 Phys. Rev. C 98 064307

    [7]

    Oganessian Y T, Utyonkov V K, Lobanov Yu V, Abdullin F Sh, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Yu S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G 2006 Phys. Rev. C 74 044602Google Scholar

    [8]

    Inauguration of the factory of superheavy elements, http://www.jinr.ru/posts/inauguration-of-the-factory-of-superheavy-elements/, accessed: 2019-05-25.

    [9]

    Hofmann S, Mnzenberg G 2000 Rev. Mod. Phys. 72 733Google Scholar

    [10]

    Sobiczewski A, Pomorski K 2007 Prog. Part. Nucl. Phys. 58 292Google Scholar

    [11]

    Oganessian Y T, Sobiczewski A, Ter-Akopian G M 2017 Phys. Scr. 92 023003Google Scholar

    [12]

    Oganessian Y T, Utyonkov V K 2015 Nucl. Phys. A 944 62Google Scholar

    [13]

    M oller P, Nix J R, Kartz K L 1997 At. Data Nucl. Data Tables 66 131Google Scholar

    [14]

    Chasman R. R, Ahmad I, Friedman A M, Erskine J R 1977 Rev. Mod. Phys. 49 833Google Scholar

    [15]

    Mayer M G 1948 Phys. Rev. 74 235Google Scholar

    [16]

    Haxel O, Jensen J H D, Suess H E 1949 Phys. Rev. 75 1766

    [17]

    Mayer M G 1949 Phys. Rev. 75 1969Google Scholar

    [18]

    Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys 113 305Google Scholar

    [19]

    Wang N, Liu M 2010 Phys. Rev. C 81 044322Google Scholar

    [20]

    M oller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109 1

    [21]

    Goriely S, Chamel N, Pearson J M 2009 Phys. Rev. Lett. 102 152503Google Scholar

    [22]

    Goriely S, Hilaire S, Girod M, Péru S 2009 Phys. Rev. Lett. 102 242501Google Scholar

    [23]

    Zhao P W, Li Z P, Yao J M, Meng J 2010 Phys. Rev. C 82 054319.Google Scholar

    [24]

    Dong T, Ren Z 2010 Phys. Rev. C 82 034320Google Scholar

    [25]

    Wang M, Audi G, Kondev F G, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003Google Scholar

    [26]

    Geiger H, Nuttall J 1911 London Edinburgh Dublin Philos. Mag. J. Sci. 22 613Google Scholar

    [27]

    Wang Y Z, Wang S J, Hou Z Y, Gu J Z 2015 Phys. Rev. C 92 064301

    [28]

    Gazula S, Clark J, Bohr H 1992 Nucl. Phys. A 540 1Google Scholar

    [29]

    Gernoth K, Clark J, Prater J, Bohr H 1993 Phys. Lett. B 300 1Google Scholar

    [30]

    Gernoth K Clark J 1995 Neural Netw. 8 291Google Scholar

    [31]

    Athanassopoulos S, Mavrommatis E, Gernoth K A, Clark J W 2004 Nucl. Phys. A 743 222Google Scholar

    [32]

    Bayram T, Akkoyun S, Kara S O 2014 Ann. Nucl. Energy 63 172Google Scholar

    [33]

    Utama R, Piekarewicz J 2017 Phys. Rev. C 96 044308Google Scholar

    [34]

    Utama R, Piekarewicz J, Prosper H B 2016 Phys. Rev. C 93 014311Google Scholar

    [35]

    Zhang H F, Wang L H, Yin J P, Chen P H, Zhang H F 2017 J. Phys. G 44 045110Google Scholar

    [36]

    Niu Z M, Liang H Z 2018 Phys. Lett. B 778 48Google Scholar

    [37]

    Levenberg K 1944 Quart. Appl. Math 2 164Google Scholar

    [38]

    Marquardt D 1963 SIAM J. Appl. Math 11 431Google Scholar

    [39]

    Press W, Teukolsky S, Vetterling W, Flannery F 1992 678

    [40]

    Xu C, Ren Z Z 2006 Phy. Rev. C 74 014304

    [41]

    Bao X J, Zhang H F, Zhang H F, Royer G, Li J Q 2014 Nucl. Phys. A 921 85Google Scholar

    [42]

    Long W H, Meng J, Zhou S G 2002 Phys. Rev. C 65 047306Google Scholar

    [43]

    Qi C, Xu F R, Liotta R J, Wyss R ( 2009 Phys. Rev. Lett. 103 072501Google Scholar

    [44]

    Qi C, Xu F R, Liotta R J, Wyss R, Zhang M Y, Asawatangtrakuldee C, Hu D 2009 Phys. Rev. C 80 044326Google Scholar

    [45]

    Ni D D, Ren Z Z, Dong T K, Xu C 2008 Phys. Rev. C 78 044301

    [46]

    Parkhomenko A, Sobiczewski A 2005 Acta Phys. Pol. B 36 3095

    [47]

    Royer G 2000 J. Phys. G 26 1149Google Scholar

    [48]

    Zhao T L, Bao X J, Guo S Q 2018 J. Phys. G 45 025106Google Scholar

    [49]

    Audi G, Kondev F G, Wang M, Huang W J, Naimi S 2017 Chin Phys. C 41 030001Google Scholar

    [50]

    Zhang Z Y, Yang H B, Huang M H, Gan Z G, Yuan C X, Qi C, Andreyev A N, Liu M L, Ma L, Zhang M M, Tian Y L, Wang Y S, Wang J G, Yang C L, Li G S, Qiang Y H, Yang W Q, Chen R F, Zhang H B, Lu Z W, Xu X X, Duan L M, Yang H R, Huang W X, Liu Z, Zhou X H, Zhang Y H, Xu H S, Wang N, Zhou H B, Wen X J, Huang S, Hua W, Zhu L, Wang X, Mao Y C, He X T, Wang S Y, Xu W Z, Li H W, Ren Z Z, Zhou S G 2021 Phys. Rev. Lett. 126 152502Google Scholar

    [51]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [52]

    M Öller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109 1

    [53]

    Oganessian Y T, Sobiczewski A, Ter-Akopian G M 2017 Phys. Scr. 92 023003Google Scholar

    [54]

    Ma N N, Zhang H F, Bao X J, Zhang H F 2019 Chin. Phys. C 43 0441

  • [1] TIAN Wenjing, YANG Zongyu, XU Min, LONG Ting, HE Xiaoxue, KE Rui, YANG Shuosu, YU Deliang, SHI Zhongbing, GAO Zhe. Rapid analysis model and extrapolation method of neural network in spectral diagnostic. Acta Physica Sinica, doi: 10.7498/aps.74.20241739
    [2] WEI Kaiwen, SHANG Tianshuai, TIAN Ronghe, YANG Dong, LI Chunjuan, CHEN Jun, LI Jian, HUANG Xiaolong, ZHU Jiali. Average energy data of β decay nuclei based on neural networks. Acta Physica Sinica, doi: 10.7498/aps.74.20250655
    [3] XING Fengzhu, LE Xiankai, WANG Nan, WANG Yanzhao. Research on α decay properties of superheavy nuclei with Z = 118–120. Acta Physica Sinica, doi: 10.7498/aps.74.20240907
    [4] Ma Rui-Yao, Wang Xin, Li Shu, Yong Heng, Shangguan Dan-Hua. An efficient calculation method for particle transport problems based on neural network. Acta Physica Sinica, doi: 10.7498/aps.73.20231661
    [5] Zhang Kai-Lin, Han Sheng-Xian, Yue Sheng-Jun, Liu Zuo-Ye, Hu Bi-Tao. Influence of strong laser field on nuclear α decay. Acta Physica Sinica, doi: 10.7498/aps.73.20231627
    [6] Jiao Bao-Bao. Nucleus density based new relationship of nuclear charge radius. Acta Physica Sinica, doi: 10.7498/aps.72.20230126
    [7] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, doi: 10.7498/aps.71.20220670
    [8] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, doi: 10.7498/aps.73.20240050
    [9] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, doi: 10.7498/aps.64.110503
    [10] Li Huan, Wang You-Guo. Noise-enhanced information transmission of a non-linear multilevel threshold neural networks system. Acta Physica Sinica, doi: 10.7498/aps.63.120506
    [11] Chen Tie-Ming, Jiang Rong-Rong. New hybrid stream cipher based on chaos and neural networks. Acta Physica Sinica, doi: 10.7498/aps.62.040301
    [12] Zhang Wei-Hong, Niu Zhong-Ming, Wang Feng, Gong Xiao-Bo, Sun Bao-Hua. Uncertainties of nucleo-chronometers from nuclear physics inputs. Acta Physica Sinica, doi: 10.7498/aps.61.112601
    [13] Li Hua-Qing, Liao Xiao-Feng, Huang Hong-Yu. Synchronization of uncertain chaotic systems based on neural network and sliding mode control. Acta Physica Sinica, doi: 10.7498/aps.60.020512
    [14] Zhao Hai-Quan, Zhang Jia-Shu. Adaptive nonlinear channel equalization based on combination neural network for chaos-based communication systems. Acta Physica Sinica, doi: 10.7498/aps.57.3996
    [15] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, doi: 10.7498/aps.57.6120
    [16] Huang Ming-Hui, Gan Zai-Guo, Fan Hong-Mei, Su Peng-Yuan, Ma Long, Zhou Xiao-Hong, Li Jun-Qing. The driving potential and cross sections for synthesizing super heavy nuclei with hot fusion. Acta Physica Sinica, doi: 10.7498/aps.57.1569
    [17] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, doi: 10.7498/aps.56.730
    [18] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, doi: 10.7498/aps.52.2723
    [19] Tan Wen, Wang Yao-Nan, Liu Zhu-Run, Zhou Shao-Wu. . Acta Physica Sinica, doi: 10.7498/aps.51.2463
    [20] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, doi: 10.7498/aps.50.674
Metrics
  • Abstract views:  394
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  04 June 2025
  • Accepted Date:  07 August 2025
  • Available Online:  11 August 2025
  • /

    返回文章
    返回