-
The average β and γ energies data of the β——decay nuclei plays an important role in many fields of nuclear technology and scientific research, Such as the decay heat and antineutrino spectrum calculation of different kinds of reactors. However, for many nuclei, the reliable experimental measurements of their average energy are lacking, and the theoretical calculation needs to be improved to meet the accuracy requirements of the technical applications.
In this study, the average β, γ and neutrino energies of the β—decay nuclei were investigated by the neural network approach based on the newly evaluated experimental data of 543 nuclei from a total of 1136 β—decay nuclei. For the neural network approach, three different feature groups are used for model training. Each feature group contains a characteristic feature value (one of the T1/2, (1/T1/2)1/5, and 1/3Q), along with five identical feature values (Z, N, parity of Z, parity of N, and ΔZ).
The three characteristics feature values were selected based on the physical mechanism below:1. the average energy is obviously related with Q value and approximately taken as 1/3Q in the reactor industry. Hence the 1/3Q was selected as one characteristics feature value; 2. the half-live is relative with the Q value of β—decay, and T1/2 was considered; 3. considering the Sargent' s law, (1/T1/2)1/5 ∝ Q, a more accurate (1/T1/2)1/5 value were selected.
As a result, for the feature group of T1/2, the training results for all three types of average energy were unsatisfactory. For the other groups, for the average β energy data, the relative errors are 19.32% and 28.11% for(1/T1/2)1/5 and 1/3Q feature groups in the training set and 82% and 56.9% in the validation set; for the average γ energy, the relative errors were 28.9% and 76.9% for (1/T1/2)1/5 and 1/3Q feature groups and >100% and >100% in the validation set; for the average neutrino energy, the relative errors in the training set were 27.82% and 35.33% for (1/T1/2)1/5 and 1/3Q feature group and 76.32% and 37.76% in the validation set.
Considering the accuracy comparison of the three groups, 1/3Q feature group were selected to predict the average energy data of nuclei in the fission product region (mass numbers ranging from 66 to 172) for which miss reliable experimental data. As a result, we supplemented the average energy data with predicted values for 291 nuclei. Besides, a comparison were performed between the calculated data and the evaluated experimental data through the nuclide chart. It is found that the neural network provides good prediction of the experimental data for the average β and neutrino energies which exhibit relatively strong regularity. However, it shows significant deviations in predictions for average γ energy (relative error in the training set was 76.9%). Large deviation also emerges in the odd-odd nuclei and nuclei near magic numbers. This study confirms that incorporating empirical relationships and physical principles can effectively enhance the performance of the neural network, and simultaneously reveals the relationship between data regularity and model generalization capability. These findings provide a basis for future integration of physical mechanisms to optimize machine learning models.-
Keywords:
- decay heat /
- average β and γ energies /
- machine learning /
- neural networks
-
[1] Nichols A 2015 J. Nucl. Sci. Technol. 5217
[2] Rana M A 2008 Nucl. Sci. Tech. 19117
[3] Song Q F, Zhu L, Guo H, Su J 2023 Nucl. Sci. Tech. 3432
[4] Xiao K, Li P C, Wang Y J, Liu F H, Li Q F 2023 Nucl. Sci. Tech. 3462
[5] Algora A, Tain J, Rubio B, Fallot M, Gelletly W 2021 Eur. Phys. J. A 5785
[6] Greenwood R, Helmer R, Putnam M, Watts K 1997 Nucl. Instrum. Methods Phys. Res. A 39095
[7] Valencia E, Tain J, Algora A, Agramunt J, Estevez E, Jordan M, Rubio B, Rice S, Regan P, Gelletly W, et al. 2017 Phys. Rev. C 95024320
[8] Tengblad O, Aleklett K, Von Dincklage R, Lund E, Nyman G, Rudstam G 1989 Nucl. Phys. A 503136
[9] Nichols A, Dimitriou P, Algora A, Fallot M, Giot L, Kondev F, Yoshida T, Karny M, Mukherjee G, Rasco B, et al. 2023 Eur. Phys. J. A 5978
[10] Yoshida T, Nakasima R 1981 J. Nucl. Sci. Technol. 18393
[11] Fang J, Zhang X, Shi M, Niu Z 2025 Eur. Phys. J. A 611
[12] Fang J, Chen J, Niu Z 2022 Phys. Rev. C 106054318
[13] Azevedo M, Ferreira R, Dimarco A, Barbero C A, Samana A R, Possidonio D 2020 Brazil. J. Phys. 5057
[14] Nakata H, Tachibana T, Yamada M 1995 Nucl. Phys. A 59427
[15] Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625521
[16] Tachibana T, Yamada M, Yoshida Y 1990 Prog. Theor. Phys. 84641
[17] Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625521
[18] Borzov I 2006 Nucl. Phys. A 777645
[19] Kumar V, Srivastava P C 2023 Eur. Phys. J. A 59237
[20] Ni D, Ren Z 2012 J. Phys. G 39125105
[21] Nabi J U, Ishfaq M 2020 New Astron. 78101356
[22] Engel J, Bender M, Dobaczewski J, Nazarewicz W, Surman R 1999 Phys. Rev. C 60014302
[23] Minato F, Bai C 2013 Phys. Rev. Lett. 110122501
[24] Moller P, Nix J, Myers W, Swiatecki W 1995 At. Data Nucl. Data Tables 59185
[25] Möller P, Randrup J 1990 Nucl. Phys. A 5141
[26] Audi G, Bersillon O, Blachot J, Wapstra A 2003 Nucl. Phys. A 7293
[27] Moller P, Nix J, Kratz K 1997 At. Data Nucl. Data Tables 66131Ä211
[28] Möller P, Pfeiffer B, Kratz K L 2003 Phys. Rev. C 67055802
[29] Soloviev V G 2020 Theory of Atomic Nuclei, Quasi-particle and Phonons. (Boca Raton, FL:CRC Press) p226
[30] Kuz-Min V, Soloviev V 1988 Nucl. Phys. A 486118
[31] Soloviev V, Sushkov A 1989 Phys. Lett. B 216259
[32] Luo D, Clark B K 2019 Phys. Rev. Lett. 122226401
[33] Yoshida S 2020 Phys. Rev. C 102024305
[34] Chen Y, Wu X 2024 Int. J. Mod. Phys. E 332450012
[35] Hizawa N, Hagino K, Yoshida K 2023 Phys. Rev. C 108034311
[36] Wu X, Ren Z, Zhao P 2022 Phys. Rev. C 105 L031303
[37] Yang Z X, Fan X H, Li Z P, Liang H 2023 Phys. Lett. B 840137870
[38] Utama R, Chen W C, Piekarewicz J 2016 J. Phys. G 43114002
[39] Wu D, Bai C, Sagawa H, Zhang H 2020 Phys. Rev. C 102054323
[40] Xian Z Y, Ya Y, An R 2025 Phys. Lett. B 868139662
[41] Jiao B B 2024 Int. J. Mod. Phys. E 332450019
[42] Zhang X, He H, Qu G, Liu X, Zheng H, Lin W, Han J, Ren P, Wada R 2024 Phys. Rev. C 110014316
[43] Zhang X, Liu X, Zheng H, Lin W, Wada R, Han J, Ma C, Qiao C, Peng D, Huang Y, et al. 2025 IEEE Trans. Nucl. Sci. 72795
[44] Rodríguez U B, Vargas C Z, Gonçalves M, Duarte S B, Guzmán F 2019 J. Phys. G 46115109
[45] Freitas P S, Clark J W 2019 arXiv preprint arXiv:1910.12345[nucl-th]
[46] Ma N N, Bao X J, Zhang H F 2021 Chin. Phys. C 45024105
[47] Yuan Z, Bai D, Ren Z, Wang Z 2022 Chin. Phys. C 46024101
[48] Li W, Zhang X, Niu Y, Niu Z 2023 J. Phys. G 51015103
[49] Luo J, Xu Y, Li X, Wang J, Zhang Y, Deng J, Zhang F, Ma N 2025 Phys. Rev. C 111034330
[50] Akkoyun S 2020 Nucl. Instrum. Methods Phys. Res. B 46251
[51] Ma C W, Peng D, Wei H L, Niu Z M, Wang Y T, Wada R 2020 Chin. Phys. C 44014104
[52] Sun Q K, Zhang Y, Hao Z R, Wang H W, Fan G T, Xu H H, Liu L X, Jin S, Yang Y X, Chen K J, et al. 2025 Nucl. Sci. Tech. 3652
[53] Li W, Liu L, Niu Z, Niu Y, Huang X 2024 Phys. Rev. C 109044616
[54] Özdoğan H, Üncü Y A, Şekerci M, Kaplan A 2024 Appl. Radiat. Isot. 204111115
[55] Lay D, Flynn E, Giuliani S A, Nazarewicz W, Neufcourt L 2024 Phys. Rev. C 109044305
[56] Guo Y Y, Tang X Q, Liu H X, Wu X H 2025 Nucl. Tech. 48050003(in Chinese)[郭粤颖, 唐湘琪, 刘辉鑫, 吴鑫辉2025核技术48050003]
[57] Utama R, Piekarewicz J 2017 Phys. Rev. C 96044308
[58] Neufcourt L, Cao Y, Nazarewicz W, Viens F 2018 Phys. Rev. C 98034318
[59] Utama R, Piekarewicz J 2018 Phys. Rev. C 97014306
[60] Neufcourt L, Cao Y, Nazarewicz W, Olsen E, Viens F 2019 Phys. Rev. Lett. 122062502
[61] Neufcourt L, Cao Y, Giuliani S, Nazarewicz W, Olsen E, Tarasov O B 2020 Phys. Rev. C 101014319
[62] Lu Y, Shang T, Du P, Li J, Liang H, Niu Z 2025 Phys. Rev. C 111014325
[63] Zeng L X, Yin Y Y, Dong X X, Geng L S 2024 Phys. Rev. C 109034318
[64] Yiu T C, Liang H, Lee J 2024 Chin. Phys. C 48024102
[65] Yüksel E, Soydaner D, Bahtiyar H 2024 Phys. Rev. C 109064322
[66] Tan K Z, Gao W Q, Liu J 2025 Nucl. Tech. 48050010(in Chinese)[谭凯中, 高琬晴, 刘健2025核技术 48050010]
[67] ENSDF:Evaluated Nuclear Structure Data File, National Nuclear Data Center https://www.nndc.bnl.gov/ensdf/[2025-07-07]
[68] Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45030003
[69] Sargent B 1933 Proc. R. Soc. A 139659
Metrics
- Abstract views: 11
- PDF Downloads: 0
- Cited By: 0