Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on average energies data of β- decay nuclei Based on neural networks

WEI Kaiwen SHANG Tianshuai TIAN Ronghe YANG Dong LI Chunjuan CHEN Jun LI Jian HUANG Xiaolong ZHU Jiali

Citation:

Research on average energies data of β- decay nuclei Based on neural networks

WEI Kaiwen, SHANG Tianshuai, TIAN Ronghe, YANG Dong, LI Chunjuan, CHEN Jun, LI Jian, HUANG Xiaolong, ZHU Jiali
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The average β and γ energies data of the β——decay nuclei plays an important role in many fields of nuclear technology and scientific research, Such as the decay heat and antineutrino spectrum calculation of different kinds of reactors. However, for many nuclei, the reliable experimental measurements of their average energy are lacking, and the theoretical calculation needs to be improved to meet the accuracy requirements of the technical applications.
    In this study, the average β, γ and neutrino energies of the β—decay nuclei were investigated by the neural network approach based on the newly evaluated experimental data of 543 nuclei from a total of 1136 β—decay nuclei. For the neural network approach, three different feature groups are used for model training. Each feature group contains a characteristic feature value (one of the T1/2, (1/T1/2)1/5, and 1/3Q), along with five identical feature values (Z, N, parity of Z, parity of N, and ΔZ).
    The three characteristics feature values were selected based on the physical mechanism below:1. the average energy is obviously related with Q value and approximately taken as 1/3Q in the reactor industry. Hence the 1/3Q was selected as one characteristics feature value; 2. the half-live is relative with the Q value of β—decay, and T1/2 was considered; 3. considering the Sargent' s law, (1/T1/2)1/5 ∝ Q, a more accurate (1/T1/2)1/5 value were selected.
    As a result, for the feature group of T1/2, the training results for all three types of average energy were unsatisfactory. For the other groups, for the average β energy data, the relative errors are 19.32% and 28.11% for(1/T1/2)1/5 and 1/3Q feature groups in the training set and 82% and 56.9% in the validation set; for the average γ energy, the relative errors were 28.9% and 76.9% for (1/T1/2)1/5 and 1/3Q feature groups and >100% and >100% in the validation set; for the average neutrino energy, the relative errors in the training set were 27.82% and 35.33% for (1/T1/2)1/5 and 1/3Q feature group and 76.32% and 37.76% in the validation set.
    Considering the accuracy comparison of the three groups, 1/3Q feature group were selected to predict the average energy data of nuclei in the fission product region (mass numbers ranging from 66 to 172) for which miss reliable experimental data. As a result, we supplemented the average energy data with predicted values for 291 nuclei. Besides, a comparison were performed between the calculated data and the evaluated experimental data through the nuclide chart. It is found that the neural network provides good prediction of the experimental data for the average β and neutrino energies which exhibit relatively strong regularity. However, it shows significant deviations in predictions for average γ energy (relative error in the training set was 76.9%). Large deviation also emerges in the odd-odd nuclei and nuclei near magic numbers. This study confirms that incorporating empirical relationships and physical principles can effectively enhance the performance of the neural network, and simultaneously reveals the relationship between data regularity and model generalization capability. These findings provide a basis for future integration of physical mechanisms to optimize machine learning models.
  • [1]

    Nichols A 2015 J. Nucl. Sci. Technol. 5217

    [2]

    Rana M A 2008 Nucl. Sci. Tech. 19117

    [3]

    Song Q F, Zhu L, Guo H, Su J 2023 Nucl. Sci. Tech. 3432

    [4]

    Xiao K, Li P C, Wang Y J, Liu F H, Li Q F 2023 Nucl. Sci. Tech. 3462

    [5]

    Algora A, Tain J, Rubio B, Fallot M, Gelletly W 2021 Eur. Phys. J. A 5785

    [6]

    Greenwood R, Helmer R, Putnam M, Watts K 1997 Nucl. Instrum. Methods Phys. Res. A 39095

    [7]

    Valencia E, Tain J, Algora A, Agramunt J, Estevez E, Jordan M, Rubio B, Rice S, Regan P, Gelletly W, et al. 2017 Phys. Rev. C 95024320

    [8]

    Tengblad O, Aleklett K, Von Dincklage R, Lund E, Nyman G, Rudstam G 1989 Nucl. Phys. A 503136

    [9]

    Nichols A, Dimitriou P, Algora A, Fallot M, Giot L, Kondev F, Yoshida T, Karny M, Mukherjee G, Rasco B, et al. 2023 Eur. Phys. J. A 5978

    [10]

    Yoshida T, Nakasima R 1981 J. Nucl. Sci. Technol. 18393

    [11]

    Fang J, Zhang X, Shi M, Niu Z 2025 Eur. Phys. J. A 611

    [12]

    Fang J, Chen J, Niu Z 2022 Phys. Rev. C 106054318

    [13]

    Azevedo M, Ferreira R, Dimarco A, Barbero C A, Samana A R, Possidonio D 2020 Brazil. J. Phys. 5057

    [14]

    Nakata H, Tachibana T, Yamada M 1995 Nucl. Phys. A 59427

    [15]

    Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625521

    [16]

    Tachibana T, Yamada M, Yoshida Y 1990 Prog. Theor. Phys. 84641

    [17]

    Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625521

    [18]

    Borzov I 2006 Nucl. Phys. A 777645

    [19]

    Kumar V, Srivastava P C 2023 Eur. Phys. J. A 59237

    [20]

    Ni D, Ren Z 2012 J. Phys. G 39125105

    [21]

    Nabi J U, Ishfaq M 2020 New Astron. 78101356

    [22]

    Engel J, Bender M, Dobaczewski J, Nazarewicz W, Surman R 1999 Phys. Rev. C 60014302

    [23]

    Minato F, Bai C 2013 Phys. Rev. Lett. 110122501

    [24]

    Moller P, Nix J, Myers W, Swiatecki W 1995 At. Data Nucl. Data Tables 59185

    [25]

    Möller P, Randrup J 1990 Nucl. Phys. A 5141

    [26]

    Audi G, Bersillon O, Blachot J, Wapstra A 2003 Nucl. Phys. A 7293

    [27]

    Moller P, Nix J, Kratz K 1997 At. Data Nucl. Data Tables 66131Ä211

    [28]

    Möller P, Pfeiffer B, Kratz K L 2003 Phys. Rev. C 67055802

    [29]

    Soloviev V G 2020 Theory of Atomic Nuclei, Quasi-particle and Phonons. (Boca Raton, FL:CRC Press) p226

    [30]

    Kuz-Min V, Soloviev V 1988 Nucl. Phys. A 486118

    [31]

    Soloviev V, Sushkov A 1989 Phys. Lett. B 216259

    [32]

    Luo D, Clark B K 2019 Phys. Rev. Lett. 122226401

    [33]

    Yoshida S 2020 Phys. Rev. C 102024305

    [34]

    Chen Y, Wu X 2024 Int. J. Mod. Phys. E 332450012

    [35]

    Hizawa N, Hagino K, Yoshida K 2023 Phys. Rev. C 108034311

    [36]

    Wu X, Ren Z, Zhao P 2022 Phys. Rev. C 105 L031303

    [37]

    Yang Z X, Fan X H, Li Z P, Liang H 2023 Phys. Lett. B 840137870

    [38]

    Utama R, Chen W C, Piekarewicz J 2016 J. Phys. G 43114002

    [39]

    Wu D, Bai C, Sagawa H, Zhang H 2020 Phys. Rev. C 102054323

    [40]

    Xian Z Y, Ya Y, An R 2025 Phys. Lett. B 868139662

    [41]

    Jiao B B 2024 Int. J. Mod. Phys. E 332450019

    [42]

    Zhang X, He H, Qu G, Liu X, Zheng H, Lin W, Han J, Ren P, Wada R 2024 Phys. Rev. C 110014316

    [43]

    Zhang X, Liu X, Zheng H, Lin W, Wada R, Han J, Ma C, Qiao C, Peng D, Huang Y, et al. 2025 IEEE Trans. Nucl. Sci. 72795

    [44]

    Rodríguez U B, Vargas C Z, Gonçalves M, Duarte S B, Guzmán F 2019 J. Phys. G 46115109

    [45]

    Freitas P S, Clark J W 2019 arXiv preprint arXiv:1910.12345[nucl-th]

    [46]

    Ma N N, Bao X J, Zhang H F 2021 Chin. Phys. C 45024105

    [47]

    Yuan Z, Bai D, Ren Z, Wang Z 2022 Chin. Phys. C 46024101

    [48]

    Li W, Zhang X, Niu Y, Niu Z 2023 J. Phys. G 51015103

    [49]

    Luo J, Xu Y, Li X, Wang J, Zhang Y, Deng J, Zhang F, Ma N 2025 Phys. Rev. C 111034330

    [50]

    Akkoyun S 2020 Nucl. Instrum. Methods Phys. Res. B 46251

    [51]

    Ma C W, Peng D, Wei H L, Niu Z M, Wang Y T, Wada R 2020 Chin. Phys. C 44014104

    [52]

    Sun Q K, Zhang Y, Hao Z R, Wang H W, Fan G T, Xu H H, Liu L X, Jin S, Yang Y X, Chen K J, et al. 2025 Nucl. Sci. Tech. 3652

    [53]

    Li W, Liu L, Niu Z, Niu Y, Huang X 2024 Phys. Rev. C 109044616

    [54]

    Özdoğan H, Üncü Y A, Şekerci M, Kaplan A 2024 Appl. Radiat. Isot. 204111115

    [55]

    Lay D, Flynn E, Giuliani S A, Nazarewicz W, Neufcourt L 2024 Phys. Rev. C 109044305

    [56]

    Guo Y Y, Tang X Q, Liu H X, Wu X H 2025 Nucl. Tech. 48050003(in Chinese)[郭粤颖, 唐湘琪, 刘辉鑫, 吴鑫辉2025核技术48050003]

    [57]

    Utama R, Piekarewicz J 2017 Phys. Rev. C 96044308

    [58]

    Neufcourt L, Cao Y, Nazarewicz W, Viens F 2018 Phys. Rev. C 98034318

    [59]

    Utama R, Piekarewicz J 2018 Phys. Rev. C 97014306

    [60]

    Neufcourt L, Cao Y, Nazarewicz W, Olsen E, Viens F 2019 Phys. Rev. Lett. 122062502

    [61]

    Neufcourt L, Cao Y, Giuliani S, Nazarewicz W, Olsen E, Tarasov O B 2020 Phys. Rev. C 101014319

    [62]

    Lu Y, Shang T, Du P, Li J, Liang H, Niu Z 2025 Phys. Rev. C 111014325

    [63]

    Zeng L X, Yin Y Y, Dong X X, Geng L S 2024 Phys. Rev. C 109034318

    [64]

    Yiu T C, Liang H, Lee J 2024 Chin. Phys. C 48024102

    [65]

    Yüksel E, Soydaner D, Bahtiyar H 2024 Phys. Rev. C 109064322

    [66]

    Tan K Z, Gao W Q, Liu J 2025 Nucl. Tech. 48050010(in Chinese)[谭凯中, 高琬晴, 刘健2025核技术 48050010]

    [67]

    ENSDF:Evaluated Nuclear Structure Data File, National Nuclear Data Center https://www.nndc.bnl.gov/ensdf/[2025-07-07]

    [68]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45030003

    [69]

    Sargent B 1933 Proc. R. Soc. A 139659

  • [1] ZHANG Tong, WANG Jiahao, TIAN Shuai, SUN Xuran, LI Ri. Machine learning-based study of dynamic shrinkage behavior during solidification of castings. Acta Physica Sinica, doi: 10.7498/aps.74.20241581
    [2] WANG Peng, MAIMAITINIYAZI Maimaitiabudula. Quantum dynamics of machine learning. Acta Physica Sinica, doi: 10.7498/aps.74.20240999
    [3] LIU Yujie, WANG Zhenyu, LEI Hang, ZHANG Guoyu, XIAN Jiawei, GAO Zhibin, SUN Jun, SONG Haifeng, DING Xiangdong. Machine learning-driven elasticity prediction in advanced inorganic materials via convolutional neural networks. Acta Physica Sinica, doi: 10.7498/aps.74.20250127
    [4] ZHANG Suncheng, HAN Tongwei, WANG Rumeng, YANG Yantao, ZHANG Xiaoyan. Prediction and optimization of negative Poisson’s ratio in rhombic perforated graphene based on machine learning. Acta Physica Sinica, doi: 10.7498/aps.74.20241624
    [5] WU Yanghai, DU Hailong, XUE Lei, LI Jiaxian, XUE Miao, ZHENG Guoyao. Machine learning-based prediction of heat load on Tokamak divertor target plates. Acta Physica Sinica, doi: 10.7498/aps.74.20250381
    [6] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, doi: 10.7498/aps.73.20240747
    [7] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, doi: 10.7498/aps.73.20231618
    [8] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, doi: 10.7498/aps.73.20240156
    [9] Ma Rui-Yao, Wang Xin, Li Shu, Yong Heng, Shangguan Dan-Hua. An efficient calculation method for particle transport problems based on neural network. Acta Physica Sinica, doi: 10.7498/aps.73.20231661
    [10] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, doi: 10.7498/aps.72.20231624
    [11] Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, doi: 10.7498/aps.72.20230896
    [12] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, doi: 10.7498/aps.72.20230334
    [13] Li Wei, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Classification of magnetic ground states and prediction of magnetic moments of inorganic magnetic materials based on machine learning. Acta Physica Sinica, doi: 10.7498/aps.71.20211625
    [14] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, doi: 10.7498/aps.70.20210879
    [15] Zhang Yao, Zhang Yun-Bo, Chen Li. Deep-learning-assisted micro impurity detection on an optical surface. Acta Physica Sinica, doi: 10.7498/aps.70.20210403
    [16] Wang Wei, Jie Quan-Lin. Identifying phase transition point of J1-J2 antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, doi: 10.7498/aps.70.20210711
    [17] Wang Peng-Ju, Fan Jun-Yu, Su Yan, Zhao Ji-Jun. Energetic potential of hexogen constructed by machine learning. Acta Physica Sinica, doi: 10.7498/aps.69.20200690
    [18] Zhang Xian, Wang Hong-Li. Selective forgetting extreme learning machine and its application to time series prediction. Acta Physica Sinica, doi: 10.7498/aps.60.080504
    [19] Peng Jian-Hua, Yu Hong-Jie. Associative memory and segmentation in the neural system under stimulation of stochastic or chaotic perceptual singals. Acta Physica Sinica, doi: 10.7498/aps.56.4353
    [20] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, doi: 10.7498/aps.50.674
Metrics
  • Abstract views:  11
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  18 July 2025
  • /

    返回文章
    返回