Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Machine learning-based prediction of heat load on Tokamak divertor target plates

WU Yanghai DU Hailong XUE Lei LI Jiaxian XUE Miao ZHENG Guoyao

Citation:

Machine learning-based prediction of heat load on Tokamak divertor target plates

WU Yanghai, DU Hailong, XUE Lei, LI Jiaxian, XUE Miao, ZHENG Guoyao
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The SOLPS-ITER edge plasma simulation code has become a primary tool for designing divertor physics and predicting target plate heat load in fusion research. However, SOLPS-ITER-based divertor design requires not only substantial computational time but also intensive hardware resources, which fundamentally limits its application in advancing divertor optimization, particularly in large-scale fusion reactor divertor design. In this work, the machine learning method is used for the first time to predict the plasma parameters of the divertor target plate for HL-3, which provides a theoretical basis for predicting the heat load of divertor in large fusion reactor in the future. Based on the simulation of the edge plasma code SOLPS-ITER, we first build a database of HL-3 edge plasma parameters, including the upstream inner/outer midplane region and divertor target region. Then, we use the machine learning method and combine with the database to develop an artificial neural network model. Finally, the artificial neural network is used to train a model by using the boundary plasma parameters of the HL-3 device, and the heat load of the divertor target plate is predicted by the given upstream plasma parameters.This work can effectively shorten the time of simulating edge plasma by SOLPS-ITER code from weeks, months or even half a year to several milliseconds. In this work, a multi-layer perceptron (MLP) model is established with different input parameters to predict the electron temperature, density, and parallel heat fluxes of the inner and outer divertor target plates. It is found that reasonably increasing upstream plasma parameters as inputs to the model can not only improve the model’s generalization ability and the accuracy of prediction (both reaching over 90%), but also verify the correlation between upstream plasma parameters and divertor target physical quantities. In addition, a more stable ResMLP model is established on the basis of MLP. This work demonstrates the feasibility of using the neural networks to predict the heat load of the divertor target plate.
  • 图 1  训练和预测的基本流程

    Figure 1.  Schematic of the basic workflow for training and prediction.

    图 2  机器学习网络结构示意图

    Figure 2.  Schematic diagram of the machine learning network structure.

    图 3  不同数量的上游参数作为模型输入的损失值图像

    Figure 3.  Loss values with different numbers of upstream parameters as model inputs.

    图 4  不同壁粒子再循环对应的偏滤器外靶板电子密度和电子温度曲线图

    Figure 4.  Electron density and temperature profiles at the outer divertor target plate for different wall particle recycling conditions.

    图 5  不同数量的上游参数作为模型输入的测试集相关系数

    Figure 5.  Test correlation coefficients versus upstream parameter count.

    图 6  外靶板的电子密度、温度和平行热流预测值、真实值

    Figure 6.  Predicted and true values of electron density, electron temperature, and parallel heat flux on the outer target.

    图 7  残差网络的原理图

    Figure 7.  Schematic diagram of residual network principles.

    图 8  ResMLP模型的测试集相关系数

    Figure 8.  Test set correlation coefficients of the ResMLP model.

    表 1  模型的详细输入参数

    Table 1.  Detailed input parameters of the model.

    图3
    图5
    输入参数
    壁粒子再循环系数
    (re)
    外中平面电子密度
    (nomp)
    外中平面电子温度
    (Tomp)
    外中平面平行热流
    (qomp)
    外偏滤器辐射损失
    (raouter)
    内中平面电子密度
    (nimp)
    内中平面电子温度
    (Timp)
    内中平面平行热流
    (qimp)
    内偏滤器辐射损失
    (rainner)
    (a) 4输入
    (b) 6输入
    (c) 8输入
    (d) 5输入
    (e) 7输入
    (f) 9输入
    DownLoad: CSV
  • [1]

    高翔, 万元熙, 丁宁, 彭先觉 2018 中国工程科学 20 25

    Gao X, Wan Y X, Ding N, Peng X J 2018 SSCAE 20 25

    [2]

    Kuang A Q, Ballinger S, Brunner D, Canik J, Creely A J, Gray T, Greenwald M, Hughes J W, Irby J, LaBombard B, Lipschultz B, Lore J D, Reinke M L, Terry J L, Umansky M, Whyte D G, Wukitch S 2020 J. Plasma Phys. 86 865860505Google Scholar

    [3]

    Du H L, Li J X, Xue L, Bonnin X, Zheng G Y, Xiao G L, Fan D M, Tong R H, Xue M, Song X, Wang S, Wu N, Ji X Q, Chen W, Zhong W L 2025 Nucl. Fusion 65 036023Google Scholar

    [4]

    Shi B, Yang Z D , Zhang B, Yang C, Gan K F, Chen M W, Yang J H, Zhang H, Qi LJ L, Gong X Z, Zhang X D, Wang W H 2017 Chin. Phys. Lett. 34 095201

    [5]

    Pitts R A, Kukushkin A, Loarte A, Martin A, Merola M, Kessel C E, Komarov V, Shimada M 2009 Phys. Scr. T 138 014001

    [6]

    Hayashi Y, Masuzaki S, Kobayashi M, Kawamura G, Mukai K, Tanaka H, Murase T 2025 Plasma Phys. Control. Fusion 67 025010Google Scholar

    [7]

    杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真 2013 物理学报 62 245206Google Scholar

    Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y, Wang D Z 2013 Acta Phys. Sin. 62 245206Google Scholar

    [8]

    Chen W T, Sun J Z, Gao F, Peng L, Wang D Z 2022 Chin. Phys. B 31 075204Google Scholar

    [9]

    Wang M , Nie Q Y, Huang T, Wang X G, Zhang Y J 2024 Chin. Phys. B 33 035204

    [10]

    Si H, Ding R, Senichenkov I, Rozhansky V, Molchanov P, Liu X J, Jia G Z, Sang C F, Mao S F, Chan V 2022 Nucl. Fusion 62 026031Google Scholar

    [11]

    Peng L, Sun Z, Sun J Z, Maingi R, Gao F, Bonnin X, Chang H Y, Wang W K, Liu J Y 2024 Chin. Phys. B 33 115201Google Scholar

    [12]

    Moscheni M, Meineri C, Wigram M, Carati C, De Marchi E, Greenwald M, Innocente P, LaBombard B, Subba F, Wu H, Zanino R 2022 Nucl. Fusion 62 056009

    [13]

    Coster D P 2016 Contrib. Plasma Phys. 56 790Google Scholar

    [14]

    马锐垚, 王鑫, 李树, 勇珩, 上官丹骅 2024 物理学报 73 072802Google Scholar

    Ma R Y, Wang X, Li S, Yong H, Shangguan D H 2024 Acta Phys. Sin. 73 072802Google Scholar

    [15]

    Li H, Fu Y L, Li J Q, Wang Z X 2023 Chin. Phys. Lett 40 125201Google Scholar

    [16]

    陈俊杰, 胡文慧, 肖建元, 郭笔豪, 肖炳甲 2020 计算机系统应用 29 21

    Chen J J, Hu W H, Xiao J Y, Guo B H, Xiao B J 2020 Comput. Syst. Appl. 29 21

    [17]

    Liu B, Wang Y X 2024 Chin. Phys. B 33 084401Google Scholar

    [18]

    Yan Z P, Wang Q Y, Yu X Q, Li J Z 2024 Chin. Phys. Lett. 41 098901Google Scholar

    [19]

    Yue J C, Chen R K, Ma D K, Hu S Q 2025 Chin. Phys. Lett. 42 036301Google Scholar

    [20]

    Bonnin X, Dekeyser W, Pitts R, Coster D, Voskoboynikov S, Wiesen S 2016 Plasma Fusion Res. 11 1403102Google Scholar

    [21]

    Schneider R, Bonnin X, Borrass K, Coster D P, Kastelewicz H, Reiter D, Rozhansky V A, Braams B J 2006 Contrib. Plasma Phys. 46 3Google Scholar

    [22]

    Sytova E, Senichenkov I, Kaveeva E, Rozhansky V, Veselova I, Voskoboynikov S, Coster D 2016 43rd EPS Conference on Plasma Physics Liege, Belgium, July 4–8, 2016 p1.054

    [23]

    Stangeby P C, Sang C F 2017 Nucl. Fusion 57 056007Google Scholar

    [24]

    马逐曦 2023 博士学位论文 (长沙: 中南大学)

    Ma Z X 2023 PhD Dissertation (Changsha: Central South University

    [25]

    Meha D, Manan S 2021 Clin. eHealth 4 1Google Scholar

    [26]

    Naskath J, Sivakamasundari G, Begum A A S 2022 Wirel. Pers. Commun. 128 2913

    [27]

    Glorot X, Bordes A, Bengio Y 2011 The 14th International Conference on Artificial Intelligence and Statistics Fort Lauderdale, FL, USA, April 11–13, 2011 p315

    [28]

    Nair V, Hinton G E 2010 The 27th International Conference on Machine Learning (ICML) Haifa, Israel, June 21—24, 2010 p807

    [29]

    Hochreiter S 1998 Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6 107

    [30]

    Krizhevsky A, Sutskever I, Hinton G E 2017 Commun. ACM 60 84Google Scholar

    [31]

    任进军, 王宁 2018 甘肃高师学报 23 61Google Scholar

    Ren J J, Wang N 2018 Gansu Gaoshi Xuebao 23 61Google Scholar

    [32]

    Touvron H, Bojanowski P, Caron M, Cord M, El-Nouby A, Grave E, Izacard G, Joulin A, Synnaeve G, Verbeek J, Jégou H 2022 IEEE Trans. Pattern Anal. Mach. Intell. 45 5314

  • [1] GUO Yan, LYU Heng, DING Chunling, YUAN Chenzhi, JIN Ruibo. Machine learning identification of fractional-order vortex beam diffraction process. Acta Physica Sinica, doi: 10.7498/aps.74.20241458
    [2] ZHANG Tong, WANG Jiahao, TIAN Shuai, SUN Xuran, LI Ri. Machine learning-based study of dynamic shrinkage behavior during solidification of castings. Acta Physica Sinica, doi: 10.7498/aps.74.20241581
    [3] WANG Peng, MAIMAITINIYAZI Maimaitiabudula. Quantum dynamics of machine learning. Acta Physica Sinica, doi: 10.7498/aps.74.20240999
    [4] LIU Yujie, WANG Zhenyu, LEI Hang, ZHANG Guoyu, XIAN Jiawei, GAO Zhibin, SUN Jun, SONG Haifeng, DING Xiangdong. Machine learning-driven elasticity prediction in advanced inorganic materials via convolutional neural networks. Acta Physica Sinica, doi: 10.7498/aps.74.20250127
    [5] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, doi: 10.7498/aps.73.20240747
    [6] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, doi: 10.7498/aps.73.20231618
    [7] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, doi: 10.7498/aps.73.20240156
    [8] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, doi: 10.7498/aps.72.20230334
    [9] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, doi: 10.7498/aps.72.20231624
    [10] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, doi: 10.7498/aps.71.20220670
    [11] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, doi: 10.7498/aps.70.20210831
    [12] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, doi: 10.7498/aps.70.20210879
    [13] Zhang Yao, Zhang Yun-Bo, Chen Li. Deep-learning-assisted micro impurity detection on an optical surface. Acta Physica Sinica, doi: 10.7498/aps.70.20210403
    [14] Wang Wei, Jie Quan-Lin. Identifying phase transition point of J1-J2 antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, doi: 10.7498/aps.70.20210711
    [15] Wang Peng-Ju, Fan Jun-Yu, Su Yan, Zhao Ji-Jun. Energetic potential of hexogen constructed by machine learning. Acta Physica Sinica, doi: 10.7498/aps.69.20200690
    [16] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, doi: 10.7498/aps.57.6120
    [17] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, doi: 10.7498/aps.56.730
    [18] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, doi: 10.7498/aps.52.2723
    [19] Tan Wen, Wang Yao-Nan, Liu Zhu-Run, Zhou Shao-Wu. . Acta Physica Sinica, doi: 10.7498/aps.51.2463
    [20] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, doi: 10.7498/aps.50.674
Metrics
  • Abstract views:  299
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  24 March 2025
  • Accepted Date:  18 April 2025
  • Available Online:  10 May 2025

/

返回文章
返回