Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dissociation of chlorobromomethane molecules coherently controlled by ultrafast strong field

Jing Wen-Quan Jia Li-Juan Sun Zhao-Peng Zhao Song-Feng Shu Chuan-Cun

Citation:

Dissociation of chlorobromomethane molecules coherently controlled by ultrafast strong field

Jing Wen-Quan, Jia Li-Juan, Sun Zhao-Peng, Zhao Song-Feng, Shu Chuan-Cun
cstr: 32037.14.aps.73.20241401
PDF
HTML
Get Citation
  • Coherent control of molecular dissociation in ultrafast strong fields has received considerable attention in various scientific disciplines, such as atomic and molecular physics, physical chemistry, and quantum control. Many fundamental issues still exist regarding the understanding of phenomena, exploration of mechanisms, and development of control strategies. Recent progress has shown that manipulating the spectral phase distribution of a single ultrafast strong ultraviolet laser pulse while maintaining the same spectral amplitude distribution can effectively control the total dissociation probability and branching ratio of molecules initially in the ground state. In this work, the spectral phase control of the photodissociation reaction of chlorobromomethane (CH2BrCl) is studied in depth by using a time-dependent quantum wave packet method, focusing on the influence of the initial vibrational state on the dissociation reaction. The results show that modifying the spectral phase of a single ultrafast pulse does not influence the total dissociation probability or branching ratio in the weak field limit. However, these factors exhibit significant dependence on the spectral phase of the single ultrafast pulse in the strong field limit. By analyzing the population distribution of vibrational states in the ground electronic state, we observe that chirped pulses can effectively control the resonance Raman scattering (RRS) phenomenon induced in strong fields, thereby selectively affecting the dissociation probability and branching ratio based on initial vibrational states. Furthermore, we demonstrate that by selecting an appropriate initial vibration state and controlling both the value and sign of the chirp rate, it is possible to achieve preferential cleavage of Cl+CH2Br bonds. This study provides new insights into understanding of ultrafast coherent control of photodissociation reactions in polyatomic molecules.
      Corresponding author: Zhao Song-Feng, zhaosf@nwnu.edu.cn ; Shu Chuan-Cun, cc.shu@csu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1604204), the National Natural Science Foundation of China (Grant Nos. 12164044, 12274470, 61973317), and the Natural Science Foundation of Hunan Province for Distinguished Young Scholars, China (Grant No. 2022JJ10070).
    [1]

    Mokhtari A, Cong P, Herek J, Zewail A 1990 Nature 348 225Google Scholar

    [2]

    Brumer P, Shapiro M 1992 Annu. Rev. Phys. Chem. 43 257Google Scholar

    [3]

    King W E, Campbell G H, Frank A, Reed B, Schmerge J F, Siwick B J, Stuart B C, Weber P M 2005 J. Appl. Phys. 97 111101Google Scholar

    [4]

    Sun Z, Wang C, Zhao W, Yang C 2018 J. Chem. Phys. 149 224307Google Scholar

    [5]

    Yang J, Zhu X, Wolf T J, Li Z, Nunes J P F, Coffee R, Cryan J P, Gühr M, Hegazy K, Heinz T F, Jobe K, Li R, Shen X, Veccione T, Weathersby S, Wilkin K J, Yoneda C, Zheng Q, Martinez T J, Centurion M, Wang X 2018 Science 361 64Google Scholar

    [6]

    Sun Z, Liu Y 2023 Phys. Chem. Chem. Phys. 25 17397Google Scholar

    [7]

    Rubio-Lago L, Chicharro D V, Poullain S M, Zanchet A, Koumarianou G, Glodic P, Samartzis P C, García-Vela A, Bañares L 2023 Phys. Chem. Chem. Phys. 25 11684Google Scholar

    [8]

    Kranabetter L, Kristensen H H, Ghazaryan A, Schouder C A, Chatterley A S, Janssen P, Jensen F, Zillich R E, Lemeshko M, Stapelfeldt H 2023 Phys. Rev. Lett. 131 053201Google Scholar

    [9]

    Lian Z, Hu Z, Qi H, Fei D, Luo S, Chen Z, Shu C C 2021 Phys. Rev. A 104 053105Google Scholar

    [10]

    Xu S, Lian Z, Hong Q Q, Wang L, Chen H, Huang Y, Shu C C 2024 Phys. Rev. A 110 023116Google Scholar

    [11]

    Zhang H, Lavorel B, Billard F, Hartmann J M, Hertz E, Faucher O, Ma J, Wu J, Gershnabel E, Prior Y, Averbukh I S 2019 Phys. Rev. Lett. 122 193401Google Scholar

    [12]

    Hong Q Q, Fan L B, Shu C C, Henriksen N E 2021 Phys. Rev. A 104 013108Google Scholar

    [13]

    Shu C C, Henriksen N E 2013 Phys. Rev. A 87 013408Google Scholar

    [14]

    Hong Q Q, Lian Z Z, Shu C C, Henriksen N E 2023 Phys. Chem. Chem. Phys. 25 32763Google Scholar

    [15]

    Zhang W, Gong X, Li H, Lu P, Sun F, Ji Q, Lin K, Ma J, Li H, Qiang J, He F, Wu J 2019 Nat. Commun. 10 757Google Scholar

    [16]

    Lu P, Wang J, Li H, Lin K, Gong X, Song Q, Ji Q, Zhang W, Ma J, Li H, Zeng H, He F, Wu J 2018 Proc. Natl. Acad. Sci. 115 2049Google Scholar

    [17]

    Guo Z, Fang Y, Ge P, Yu X, Wang J, Han M, Gong Q, Liu Y 2021 Phys. Rev. A 104 L051101Google Scholar

    [18]

    Yu X, Zhang X, Hu X, Zhao X, Ren D, Li X, Ma P, Wang C, Wu Y, Luo S, Ding D 2022 Phys. Rev. Lett. 129 023001Google Scholar

    [19]

    Sansone G, Kelkensberg F, Pérez-Torres J, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario L J, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov Y M, Nisoli M, Martín F, Vrakking M J J 2010 Nature 465 763Google Scholar

    [20]

    Kang H, Quan W, Wang Y, Lin Z, Wu M, Liu H, Liu X, Wang B B, Liu H J, Gu Y Q, Jia X Y, Liu J, Chen J, Cheng Y 2010 Phys. Rev. Lett. 104 203001Google Scholar

    [21]

    罗嗣佐, 陈洲, 李孝开, 胡湛, 丁大军 2019 光学学报 39 0126007Google Scholar

    Luo S Z, Chen Z, Li X K, Hu Z, Ding D J 2019 Acta Opt. Sin. 39 0126007Google Scholar

    [22]

    Li X, Liu Y, Zhang D, He L, Luo S, Shu C C, Ding D 2023 Phys. Rev. A 108 023114Google Scholar

    [23]

    Zhang W, Yu Z, Gong X, Wang J, Lu P, Li H, Song Q, Ji Q, Lin K, Ma J, Li H, Sun F, Qiang J, Zeng H, He F, Wu J 2017 Phys. Rev. Lett. 119 253202Google Scholar

    [24]

    Guo Z, Zhang Z, Deng Y, Wang J, Ye D, Liu J, Liu Y 2024 Phys. Rev. Lett. 132 143201Google Scholar

    [25]

    McFarland B K, Farrell J P, Bucksbaum P H, Guhr M 2008 Science 322 1232Google Scholar

    [26]

    Chen Y J, Fu L B, Liu J 2013 Phys. Rev. Lett. 111 073902Google Scholar

    [27]

    Huang Y, Meng C, Wang X, Lü Z, Zhang D, Chen W, Zhao J, Yuan J, Zhao Z 2015 Phys. Rev. Lett. 115 123002Google Scholar

    [28]

    Yang W, Sheng Z, Feng X, Wu M, Chen Z, Song X 2014 Opt. Express 22 2519Google Scholar

    [29]

    He M, Li Y, Zhou Y, Li M, Cao W, Lu P 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [30]

    Xie W, Yan J, Li M, Cao C, Guo K, Zhou Y, Lu P 2021 Phys. Rev. Lett. 127 263202Google Scholar

    [31]

    Zewail A H 2000 J. Phys. Chem. A 104 5660Google Scholar

    [32]

    Kobayashi Y, Chang K F, Zeng T, Neumark D M, Leone S R 2019 Science 365 79Google Scholar

    [33]

    Shu C C, Yuan K J, Dong D, Petersen I R, Bandrauk A D 2017 J. Phys. Chem. Lett. 8 1Google Scholar

    [34]

    Yang D, Cong S L 2011 Phys. Rev. A 84 013424Google Scholar

    [35]

    Jia Y W, Yuen C, Jing W Q, Zhou Z Y, Lin C, Zhao S F 2024 Phys. Rev. A 110 023112Google Scholar

    [36]

    Shapiro M, Brumer P 2001 J. Phys. Chem. A 105 2897Google Scholar

    [37]

    Csehi A, Halász G J, Cederbaum L S, Vibók Á 2015 J. Chem. Phys. 143 014305Google Scholar

    [38]

    Liebel M, Kukura P 2017 Nat. Chem. 9 45Google Scholar

    [39]

    Wilma K, Shu C C, Scherf U, Hildner R 2018 J. Am. Chem. Soc. 140 15329Google Scholar

    [40]

    Morichika I, Murata K, Sakurai A, Ishii K, Ashihara S 2019 Nat. Commun. 10 3893Google Scholar

    [41]

    Csehi A, Halász G J, Cederbaum L S, Vibók Á 2016 J. Chem. Phys. 144 074309Google Scholar

    [42]

    Tiwari A K, Henriksen N E 2016 J. Chem. Phys. 144 014306Google Scholar

    [43]

    Sun Z, Wang C, Zhao W, Zheng Y, Yang C 2018 Phys. Chem. Chem. Phys. 20 20957Google Scholar

    [44]

    Spanner M, Arango C A, Brumer P 2010 J. Chem. Phys. 133 151101Google Scholar

    [45]

    Weigel A, Sebesta A, Kukura P 2015 J. Phys. Chem. Lett. 6 4032Google Scholar

    [46]

    Brumer P, Shapiro M 1986 Chem. Phys. Lett. 126 541Google Scholar

    [47]

    Shapiro M, Brumer P 2003 Principles of the Quantum Control of Molecular Processes (New York: Wiley

    [48]

    Garcia-Vela A, Henriksen N E 2015 J. Phys. Chem. Lett. 6 824Google Scholar

    [49]

    García-Vela A 2016 Phys. Chem. Chem. Phys. 18 10346Google Scholar

    [50]

    Serrano-Jiménez A, Bañares L, García-Vela A 2019 Phys. Chem. Chem. Phys. 21 7885Google Scholar

    [51]

    Dey D, Henriksen N E 2020 J. Phys. Chem. Lett. 11 8470Google Scholar

    [52]

    Shu C C, Henriksen N E 2011 J. Chem. Phys. 134 164308Google Scholar

    [53]

    Tiwari A K, Dey D, Henriksen N E 2014 Phys. Rev. A 89 023417Google Scholar

    [54]

    Liu Y, Meng J Q, Sun Z, Shu C C 2024 J. Phys. Chem. Lett. 15 8393Google Scholar

    [55]

    García-Vela A 2018 Phys. Rev. Lett. 121 153204Google Scholar

    [56]

    Abrashkevich D G, Shapiro M, Brumer P 2002 J. Chem. Phys. 116 5584Google Scholar

    [57]

    Nichols S R, Weinacht T C, Rozgonyi T, Pearson B J 2009 Phys. Rev. A 79 043407Google Scholar

    [58]

    Luo S, Zhou S, Hu W, Li X, Ma P, Yu J, Zhu R, Wang C, Liu F, Yan B, Liu A, Yang Y, Guo F, Dajun D 2017 Phys. Rev. A 96 063415Google Scholar

    [59]

    Esposito V J, Liu T, Wang G, Caracciolo A, Vansco M F, Marchetti B, Karsili T N, Lester M I 2021 J. Phys. Chem. A 125 6571Google Scholar

    [60]

    Jing W Q, Sun Z P, Zhao S F, Shu C C 2023 J. Phys. Chem. Lett. 14 11305Google Scholar

    [61]

    Sarma M, Adhikari S, Mishra M K 2008 J. Phys. Chem. A 112 13302Google Scholar

    [62]

    Geißler D, Marquetand P, González-Vázquez J, González L, Rozgonyi T, Weinacht T 2012 J. Phys. Chem. A 116 11434Google Scholar

    [63]

    Corrales M E, de Nalda R, Bañares L 2017 Nat. Commun. 8 1345Google Scholar

    [64]

    Bouallagui A, Zanchet A, Bañares L, García-Vela A 2023 Phys. Chem. Chem. Phys. 25 20365Google Scholar

    [65]

    Rozgonyi T, González L 2008 J. Phys. Chem. A 112 5573Google Scholar

    [66]

    Shu C C, Rozgonyi T, González L, Henriksen N E 2012 J. Chem. Phys. 136 174303Google Scholar

    [67]

    Chicharro D, Marggi Poullain S, González-Vázquez J, Bañares L 2017 J. Chem. Phys. 147 013945Google Scholar

    [68]

    Muthiah B, Kasai T, Lin K C 2021 Phys. Chem. Chem. Phys. 23 6098Google Scholar

    [69]

    Lanczos C 1950 J. Res. Natl. Bur. Stand 45 255Google Scholar

    [70]

    Park T J, Light J 1986 J. Chem. Phys. 85 5870Google Scholar

    [71]

    Sun Z, Yang C, Zheng Y 2015 J. Chem. Phys. 143 224309Google Scholar

    [72]

    Kosloff R 1988 J. Phys. Chem. 92 2087Google Scholar

    [73]

    Simpson J R, Roslyak O, Duque J G, Hároz E H, Crochet J J, Telg H, Piryatinski A, Walker A R H, Doorn S K 2018 Nat. Commun. 9 637Google Scholar

    [74]

    Guo Y, Shu C C, Dong D, Nori F 2019 Phys. Rev. Lett. 123 223202Google Scholar

    [75]

    Shapiro M, Brumer P 2012 Quantum Control of Molecular Processes (New York: John Wiley & Sons) pp95–152

  • 图 1  $ \rm {CH_{2}BrCl} $光解离激光控制示意图 (a)基电子态$ \text{S}_0(\text{a}^{1}\text{A}') $、激发态$ \text{S}_1(\text{a}^{1}\text{A}') $和$ \text{S}_2(\text{a}^{1}\text{A}') $的光解离动力学模型; (b)不同初始振动态$ |\nu'\nu''\rangle $沿着Br—CH2反应坐标描绘的光解离通道; (c)不同初始振动态$ |\nu'\nu''\rangle $沿Cl—CH2反应坐标的光解离通道. 其中黑色线、红色线和蓝色线分别表示基电子态$ \text{S}_0(V_0^\text{ad}) $、第一激发电子态$ \text{S}_1(V_1^\text{ad}) $和第二激发电子态$ \text{S}_2(V_2^\text{ad}) $的绝热势能曲线, 红色虚线和黑色虚线分别表示非绝热势能曲线$ V_1^{{\mathrm{di}}} $和$ V_2^{{\mathrm{di}}} $

    Figure 1.  Schematic illustration of laser control in the photodissociation process of $ \rm {CH_{2}BrCl} $. (a) The model showcasing the photodissociation dynamics involving the ground electronic state $ \text{S}_0(\text{a}^{1}\text{A}') $, as well as the excited adiabatic electronic states $ \text{S}_1(\text{b}^{1}\text{A}') $ and $ \text{S}_2(\text{c}^{1}\text{A}') $. (b) Photodissociation channel along the Br—CH2 reaction coordinate for different initial vibrational states $ |\nu'\nu''\rangle $. (c) The channel along the Cl—CH2 reaction coordinate for the same initial states $ |\nu'\nu''\rangle $. The black, red, and blue solid lines represent the adiabatic potential energy curves of ground electronic state $ \text{S}_0(V_0^\text{ad}) $, the first excited electronic state $ \text{S}_1(V_1^\text{ad}) $, and the second excited electronic state $ \text{S}_2(V_2^\text{ad}) $, respectively. Notably, the red-dashed line and the black-dashed line represent the non-adiabatic potential $ V_1^{\mathrm{di}} $ and $ V_2^{\text{di}} $.

    图 2  CH2BrCl分子初始振动态为$ |00\rangle $, $ |10\rangle $和$ |20\rangle $时, (a)—(c)基电子态的二维振动本征函数密度分布; (d)—(f)弱场极限下Br+CH2Cl通道和Cl+CH2Br通道的含时解离概率(分别用$ P^{\mathrm{Br}} $和$ P^{\mathrm{Cl}} $标记), (g)—(i)相应的含时分支比R; (j)—(l) 强场极限下Br+CH2Cl和Cl+CH2Br两个通道的含时解离概率, (m)—(o)相应的含时解离分支比

    Figure 2.  For the initial vibrational states of $ |00\rangle $, $ |01\rangle $ and $ |02\rangle $, (a)–(c) two-dimensional vibrational eigenfunction density distributions; (d)–(f) the dissociation probabilities of Br+CH2Cl and Cl+CH2Br channels in the weak-field limit (marked with $ P^{\mathrm{Br}} $ and $ P^{\mathrm{Cl}} $, respectively), and (g)–(i) the corresponding time-dependent dissociation branching ratios R; (j)–(l) and (m)–(o) as well as in the strong-field limit.

    图 3  CH2BrCl分子初始振动态为$ |01\rangle $, $ |02\rangle $和$ |11\rangle $时, (a)—(c)基电子态的二维振动本征函数密度分布; (d)—(f)弱场极限下Br+CH2Cl通道和Cl+CH2Br通道的含时解离概率(分别用$ P^{\mathrm{Br}} $和$ P^{\mathrm{Cl}} $标记), (g)—(i)相应的含时分支比R; (j)—(l)强场极限下Br+CH2Cl和Cl+CH2Br两个通道的含时解离概率, (m)—(o)相应的含时解离分支比

    Figure 3.  For the initial vibrational states of $ |00\rangle $, $ |01\rangle $ and $ |02\rangle $, (a)–(c) two-dimensional vibrational eigenfunction density distributions; (d)–(f) the dissociation probabilities of Br+CH2Cl and Cl+CH2Br channels in the weak-field limit (marked with $ P^{\mathrm{Br}} $ and $ P^{\mathrm{Cl}} $, respectively), and (g)–(i) the corresponding time-dependent dissociation branching ratios R; (j)–(l) and (m)–(o) as well as in the strong-field limit.

    图 4  弱场极限下CH2BrCl分子总解离概率(a)—(f)和分支比(g)—(l)作为啁啾率$ \beta_{0} $和不同初始振动态$ |\nu'\nu''\rangle $的函数

    Figure 4.  Dependence of (a)−(f) total dissociation probability and (g)−(l) branching ratio of CH2BrCl on the chirp rate $ \beta_{0} $ and different initial state $ |\nu'\nu''\rangle $ in the weak-field limit.

    图 5  强场极限下, CH2BrCl分子总解离概率(a)—(f)和分支比(g)—(l)作为啁啾率$ \beta_{0} $和不同初始振动态$ |\nu'\nu''\rangle $的函数

    Figure 5.  (a)–(f) Total dissociation probability and (g)–(l) branching ratio in CH2BrCl as a function of chirp rate $ \beta_{0} $ and different initial state $ |\nu'\nu''\rangle $ in the strong-field limit.

    图 6  (a) $ |00\rangle $, (b) $ |10\rangle $, (c) $ |20\rangle $, (d) $ |01\rangle $, (e) $ |02\rangle $, (f) $ |11\rangle $分别作为初始振动态时, 基电子态其余振动态末态布居之和$ P(t_{\mathrm{f}}) $随啁啾率$ \beta_{0} $的变化行为. 对于所有不同的初始振动态, $ P(t_{\mathrm{f}}) $的最大值都出现在$ \beta_0=0 $附近

    Figure 6.  (a)–(f) Sum of the remaining vibrational states populations $ P(t_{\mathrm{f}}) $ of the ground electronic state for the initial vibrational state (a) $ |00\rangle $, (b) $ |10\rangle $, (c) $ |20\rangle $, (d) $ |01\rangle $, (e) $ |02\rangle $ and (f) $ |11\rangle $ as a function of $ \beta_0 $, respectively. The maximum of $ P(t_{\mathrm{f}}) $ appears near $ \beta_0=0 $ for all different initial vibrational states.

    图 7  随着啁啾率$ \beta_{0} $的改变, (a) $ |00\rangle $, (b) $ |10\rangle $, (c) $ |20\rangle $, (d) $ |01\rangle $, (e) $ |02\rangle $, (f) $ |11\rangle $分别作为初始振动态时, 基电子态不同振动态$ |\nu'\nu''\rangle $的末态布居分布

    Figure 7.  Final population distributions of different vibrational states $ |\nu'\nu''\rangle $ for the different initial vibrational state (a) $ |00\rangle $, (b) $ |10\rangle $, (c) $ |20\rangle $, (d) $ |01\rangle $, (e) $ |02\rangle $ and (f) $ |11\rangle $, varying with the chirp rate $ \beta_0 $.

    图 8  强场极限下啁啾脉冲诱导的基电子态振动态共振拉曼散射现象. 初始振动态为$ |00\rangle $, $ |10\rangle $和$ |20\rangle $时, (a)—(i)啁啾率$ \beta_0=0 $, $ \pm30 $ fs2时的初态含时布居$ P_{\nu'\nu''} $、基电子态其余振动态布居之和$ P(t) $、两个激发电子态的含时布居$ P_{1} $和$ P_{2} $

    Figure 8.  Resonance Raman scattering phenomenon of the vibrational states of the ground electronic state induced by a chirped pulse in the strong-field limit. For the initial vibrational states of $ |00\rangle $, $ |10\rangle $ and $ |20\rangle $, (a)–(i) the time-dependent populations of the initial state $ P_{\nu'\nu''} $, the total of remaining vibrational states of the ground electronic state $ P(t) $, and the two excited electronic states $ P_{1} $ and $ P_{2} $ with three different chirp rates $ \beta_0=0 $, $ \pm30 $ fs2.

    图 9  强场极限下啁啾脉冲诱导的基电子态振动态共振拉曼散射现象. 初始振动态为$ |01\rangle $, $ |02\rangle $和$ |11\rangle $时, (a)—(i)啁啾率$ \beta_0=0 $, $ \pm30 $ fs2时的初态含时布居$ P_{\nu'\nu''} $、基电子态其余振动态布居之和$ P(t) $、两个激发电子态的含时布居$ P_{1} $和$ P_{2} $

    Figure 9.  Resonance Raman scattering phenomenon of the vibrational states of the ground electronic state induced by a chirped pulse in the strong-field limit. For the initial vibrational states of $ |01\rangle $, $ |02\rangle $ and $ |11\rangle $, (a)–(i) the time-dependent populations of the initial state $ P_{\nu'\nu''} $, the total of the remaining vibrational states of the ground electronic state $ P(t) $, and the two excited electronic states $ P_{1} $ and $ P_{2} $ with three different chirp rates $ \beta_0=0 $, $ \pm30 $ fs2.

  • [1]

    Mokhtari A, Cong P, Herek J, Zewail A 1990 Nature 348 225Google Scholar

    [2]

    Brumer P, Shapiro M 1992 Annu. Rev. Phys. Chem. 43 257Google Scholar

    [3]

    King W E, Campbell G H, Frank A, Reed B, Schmerge J F, Siwick B J, Stuart B C, Weber P M 2005 J. Appl. Phys. 97 111101Google Scholar

    [4]

    Sun Z, Wang C, Zhao W, Yang C 2018 J. Chem. Phys. 149 224307Google Scholar

    [5]

    Yang J, Zhu X, Wolf T J, Li Z, Nunes J P F, Coffee R, Cryan J P, Gühr M, Hegazy K, Heinz T F, Jobe K, Li R, Shen X, Veccione T, Weathersby S, Wilkin K J, Yoneda C, Zheng Q, Martinez T J, Centurion M, Wang X 2018 Science 361 64Google Scholar

    [6]

    Sun Z, Liu Y 2023 Phys. Chem. Chem. Phys. 25 17397Google Scholar

    [7]

    Rubio-Lago L, Chicharro D V, Poullain S M, Zanchet A, Koumarianou G, Glodic P, Samartzis P C, García-Vela A, Bañares L 2023 Phys. Chem. Chem. Phys. 25 11684Google Scholar

    [8]

    Kranabetter L, Kristensen H H, Ghazaryan A, Schouder C A, Chatterley A S, Janssen P, Jensen F, Zillich R E, Lemeshko M, Stapelfeldt H 2023 Phys. Rev. Lett. 131 053201Google Scholar

    [9]

    Lian Z, Hu Z, Qi H, Fei D, Luo S, Chen Z, Shu C C 2021 Phys. Rev. A 104 053105Google Scholar

    [10]

    Xu S, Lian Z, Hong Q Q, Wang L, Chen H, Huang Y, Shu C C 2024 Phys. Rev. A 110 023116Google Scholar

    [11]

    Zhang H, Lavorel B, Billard F, Hartmann J M, Hertz E, Faucher O, Ma J, Wu J, Gershnabel E, Prior Y, Averbukh I S 2019 Phys. Rev. Lett. 122 193401Google Scholar

    [12]

    Hong Q Q, Fan L B, Shu C C, Henriksen N E 2021 Phys. Rev. A 104 013108Google Scholar

    [13]

    Shu C C, Henriksen N E 2013 Phys. Rev. A 87 013408Google Scholar

    [14]

    Hong Q Q, Lian Z Z, Shu C C, Henriksen N E 2023 Phys. Chem. Chem. Phys. 25 32763Google Scholar

    [15]

    Zhang W, Gong X, Li H, Lu P, Sun F, Ji Q, Lin K, Ma J, Li H, Qiang J, He F, Wu J 2019 Nat. Commun. 10 757Google Scholar

    [16]

    Lu P, Wang J, Li H, Lin K, Gong X, Song Q, Ji Q, Zhang W, Ma J, Li H, Zeng H, He F, Wu J 2018 Proc. Natl. Acad. Sci. 115 2049Google Scholar

    [17]

    Guo Z, Fang Y, Ge P, Yu X, Wang J, Han M, Gong Q, Liu Y 2021 Phys. Rev. A 104 L051101Google Scholar

    [18]

    Yu X, Zhang X, Hu X, Zhao X, Ren D, Li X, Ma P, Wang C, Wu Y, Luo S, Ding D 2022 Phys. Rev. Lett. 129 023001Google Scholar

    [19]

    Sansone G, Kelkensberg F, Pérez-Torres J, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario L J, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov Y M, Nisoli M, Martín F, Vrakking M J J 2010 Nature 465 763Google Scholar

    [20]

    Kang H, Quan W, Wang Y, Lin Z, Wu M, Liu H, Liu X, Wang B B, Liu H J, Gu Y Q, Jia X Y, Liu J, Chen J, Cheng Y 2010 Phys. Rev. Lett. 104 203001Google Scholar

    [21]

    罗嗣佐, 陈洲, 李孝开, 胡湛, 丁大军 2019 光学学报 39 0126007Google Scholar

    Luo S Z, Chen Z, Li X K, Hu Z, Ding D J 2019 Acta Opt. Sin. 39 0126007Google Scholar

    [22]

    Li X, Liu Y, Zhang D, He L, Luo S, Shu C C, Ding D 2023 Phys. Rev. A 108 023114Google Scholar

    [23]

    Zhang W, Yu Z, Gong X, Wang J, Lu P, Li H, Song Q, Ji Q, Lin K, Ma J, Li H, Sun F, Qiang J, Zeng H, He F, Wu J 2017 Phys. Rev. Lett. 119 253202Google Scholar

    [24]

    Guo Z, Zhang Z, Deng Y, Wang J, Ye D, Liu J, Liu Y 2024 Phys. Rev. Lett. 132 143201Google Scholar

    [25]

    McFarland B K, Farrell J P, Bucksbaum P H, Guhr M 2008 Science 322 1232Google Scholar

    [26]

    Chen Y J, Fu L B, Liu J 2013 Phys. Rev. Lett. 111 073902Google Scholar

    [27]

    Huang Y, Meng C, Wang X, Lü Z, Zhang D, Chen W, Zhao J, Yuan J, Zhao Z 2015 Phys. Rev. Lett. 115 123002Google Scholar

    [28]

    Yang W, Sheng Z, Feng X, Wu M, Chen Z, Song X 2014 Opt. Express 22 2519Google Scholar

    [29]

    He M, Li Y, Zhou Y, Li M, Cao W, Lu P 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [30]

    Xie W, Yan J, Li M, Cao C, Guo K, Zhou Y, Lu P 2021 Phys. Rev. Lett. 127 263202Google Scholar

    [31]

    Zewail A H 2000 J. Phys. Chem. A 104 5660Google Scholar

    [32]

    Kobayashi Y, Chang K F, Zeng T, Neumark D M, Leone S R 2019 Science 365 79Google Scholar

    [33]

    Shu C C, Yuan K J, Dong D, Petersen I R, Bandrauk A D 2017 J. Phys. Chem. Lett. 8 1Google Scholar

    [34]

    Yang D, Cong S L 2011 Phys. Rev. A 84 013424Google Scholar

    [35]

    Jia Y W, Yuen C, Jing W Q, Zhou Z Y, Lin C, Zhao S F 2024 Phys. Rev. A 110 023112Google Scholar

    [36]

    Shapiro M, Brumer P 2001 J. Phys. Chem. A 105 2897Google Scholar

    [37]

    Csehi A, Halász G J, Cederbaum L S, Vibók Á 2015 J. Chem. Phys. 143 014305Google Scholar

    [38]

    Liebel M, Kukura P 2017 Nat. Chem. 9 45Google Scholar

    [39]

    Wilma K, Shu C C, Scherf U, Hildner R 2018 J. Am. Chem. Soc. 140 15329Google Scholar

    [40]

    Morichika I, Murata K, Sakurai A, Ishii K, Ashihara S 2019 Nat. Commun. 10 3893Google Scholar

    [41]

    Csehi A, Halász G J, Cederbaum L S, Vibók Á 2016 J. Chem. Phys. 144 074309Google Scholar

    [42]

    Tiwari A K, Henriksen N E 2016 J. Chem. Phys. 144 014306Google Scholar

    [43]

    Sun Z, Wang C, Zhao W, Zheng Y, Yang C 2018 Phys. Chem. Chem. Phys. 20 20957Google Scholar

    [44]

    Spanner M, Arango C A, Brumer P 2010 J. Chem. Phys. 133 151101Google Scholar

    [45]

    Weigel A, Sebesta A, Kukura P 2015 J. Phys. Chem. Lett. 6 4032Google Scholar

    [46]

    Brumer P, Shapiro M 1986 Chem. Phys. Lett. 126 541Google Scholar

    [47]

    Shapiro M, Brumer P 2003 Principles of the Quantum Control of Molecular Processes (New York: Wiley

    [48]

    Garcia-Vela A, Henriksen N E 2015 J. Phys. Chem. Lett. 6 824Google Scholar

    [49]

    García-Vela A 2016 Phys. Chem. Chem. Phys. 18 10346Google Scholar

    [50]

    Serrano-Jiménez A, Bañares L, García-Vela A 2019 Phys. Chem. Chem. Phys. 21 7885Google Scholar

    [51]

    Dey D, Henriksen N E 2020 J. Phys. Chem. Lett. 11 8470Google Scholar

    [52]

    Shu C C, Henriksen N E 2011 J. Chem. Phys. 134 164308Google Scholar

    [53]

    Tiwari A K, Dey D, Henriksen N E 2014 Phys. Rev. A 89 023417Google Scholar

    [54]

    Liu Y, Meng J Q, Sun Z, Shu C C 2024 J. Phys. Chem. Lett. 15 8393Google Scholar

    [55]

    García-Vela A 2018 Phys. Rev. Lett. 121 153204Google Scholar

    [56]

    Abrashkevich D G, Shapiro M, Brumer P 2002 J. Chem. Phys. 116 5584Google Scholar

    [57]

    Nichols S R, Weinacht T C, Rozgonyi T, Pearson B J 2009 Phys. Rev. A 79 043407Google Scholar

    [58]

    Luo S, Zhou S, Hu W, Li X, Ma P, Yu J, Zhu R, Wang C, Liu F, Yan B, Liu A, Yang Y, Guo F, Dajun D 2017 Phys. Rev. A 96 063415Google Scholar

    [59]

    Esposito V J, Liu T, Wang G, Caracciolo A, Vansco M F, Marchetti B, Karsili T N, Lester M I 2021 J. Phys. Chem. A 125 6571Google Scholar

    [60]

    Jing W Q, Sun Z P, Zhao S F, Shu C C 2023 J. Phys. Chem. Lett. 14 11305Google Scholar

    [61]

    Sarma M, Adhikari S, Mishra M K 2008 J. Phys. Chem. A 112 13302Google Scholar

    [62]

    Geißler D, Marquetand P, González-Vázquez J, González L, Rozgonyi T, Weinacht T 2012 J. Phys. Chem. A 116 11434Google Scholar

    [63]

    Corrales M E, de Nalda R, Bañares L 2017 Nat. Commun. 8 1345Google Scholar

    [64]

    Bouallagui A, Zanchet A, Bañares L, García-Vela A 2023 Phys. Chem. Chem. Phys. 25 20365Google Scholar

    [65]

    Rozgonyi T, González L 2008 J. Phys. Chem. A 112 5573Google Scholar

    [66]

    Shu C C, Rozgonyi T, González L, Henriksen N E 2012 J. Chem. Phys. 136 174303Google Scholar

    [67]

    Chicharro D, Marggi Poullain S, González-Vázquez J, Bañares L 2017 J. Chem. Phys. 147 013945Google Scholar

    [68]

    Muthiah B, Kasai T, Lin K C 2021 Phys. Chem. Chem. Phys. 23 6098Google Scholar

    [69]

    Lanczos C 1950 J. Res. Natl. Bur. Stand 45 255Google Scholar

    [70]

    Park T J, Light J 1986 J. Chem. Phys. 85 5870Google Scholar

    [71]

    Sun Z, Yang C, Zheng Y 2015 J. Chem. Phys. 143 224309Google Scholar

    [72]

    Kosloff R 1988 J. Phys. Chem. 92 2087Google Scholar

    [73]

    Simpson J R, Roslyak O, Duque J G, Hároz E H, Crochet J J, Telg H, Piryatinski A, Walker A R H, Doorn S K 2018 Nat. Commun. 9 637Google Scholar

    [74]

    Guo Y, Shu C C, Dong D, Nori F 2019 Phys. Rev. Lett. 123 223202Google Scholar

    [75]

    Shapiro M, Brumer P 2012 Quantum Control of Molecular Processes (New York: John Wiley & Sons) pp95–152

  • [1] Wei Jin-Zhi, Wang Jin-Hao, Chen Jun-Xue. Coherent control of polarization transformation of Bloch surface waves. Acta Physica Sinica, 2023, 72(21): 214201. doi: 10.7498/aps.72.20231050
    [2] Zhao Jia-Lin, Cheng Kai, Yu Xue-Ke, Zhao Ji-Jun, Su Yan. Theoretical research of time-dependent density functional on initiated photo-dissociation of some typical energetic materials at excited state. Acta Physica Sinica, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [3] Meng Da, Cong Xin, Leng Yu-Chen, Lin Miao-Ling, Wang Jia-Hong, Yu Bin-Lu, Liu Xue-Lu, Yu Xue-Feng, Tan Ping-Heng. Resonant Multi-phonon Raman scattering of black phosphorus. Acta Physica Sinica, 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [4] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [5] Luo Jin-Long, Ling Feng-Zi, Li Shuai, Wang Yan-Mei, Zhang Bing. Ultrafast photodissociation dynamics of butanone in 3s Rydberg state. Acta Physica Sinica, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [6] Qin Chao-Chao, Huang Yan, Peng Yu-Feng. Photodissociation dynamics of Br2 in wavelength range of 360-610 nm. Acta Physica Sinica, 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [7] Liu Yu-Zhu, Xiao Shao-Rong, Wang Jun-Feng, He Zhong-Fu, Qiu Xue-Jun, Gregor Knopp. Multi-photon dissociation dynamics of Freon 1110 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [8] Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp. Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [9] Liu Yu-Zhu, Deng Xu-Lan, Li Shuai, Guan Yue, Li Jing, Long Jin-You, Zhang Bing. Multi-photon dissociation dynamics of Freon 114B2 under UV radiation by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(19): 193301. doi: 10.7498/aps.65.193301
    [10] Zhang Lei, Ge Yan, Zhang Xiang-Yang. Study on atomic localization of Λ-type quasi-four level atoms based on absorption with quantum coherent control. Acta Physica Sinica, 2015, 64(13): 134204. doi: 10.7498/aps.64.134204
    [11] Yang Xue, Yan Bing, Lian Ke-Yan, Ding Da-Jun. Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state. Acta Physica Sinica, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [12] Yao Yun-Hua, Lu Chen-Hui, Xu Shu-Wu, Ding Jing-Xin, Jia Tian-Qing, Zhang Shi-An, Sun Zhen-Rong. Femtosecond pulse shaping technology and its applications. Acta Physica Sinica, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [13] Yao Hong-Bin, Zhang Ji, Peng Min, Li Wen-Liang. Theoretical study of the dissociation of H2+ and the quantum control of dynamic process by an intense laser field. Acta Physica Sinica, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [14] Xu Tian-Yu, He Feng. Control of electron localization in the dissociation of H2+ using attosecond and two-color femtosecond pulses. Acta Physica Sinica, 2013, 62(6): 068201. doi: 10.7498/aps.62.068201
    [15] Liu Yu-Zhu, Xiao Shao-Rong, Zhang Cheng-Yi, Zheng Gai-Ge, Chen Yun-Yun. Calibration of velocity map imaging system and photodissociation dynamics of 1, 4-C4H8BrCl. Acta Physica Sinica, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [16] Su Jia-Ni, Deng Wen-Wu, Li Gao-Xiang. Coherent control of the Goos-Hnchen shift in four-level atomic medium. Acta Physica Sinica, 2012, 61(14): 144210. doi: 10.7498/aps.61.144210
    [17] Zhang Jun, Tan Ping-Heng, Zhao Wei-Jie. Accurate determination of electronic transition energy of carbon nanotubes from the resonant behavior of radial breathing modes and their overtones. Acta Physica Sinica, 2010, 59(11): 7966-7973. doi: 10.7498/aps.59.7966
    [18] Li Rui, Yan Bing, Zhao Shu-Tao, Guo Qing-Qun, Lian Ke-Yan, Tian Chuan-Jin, Pan Shou-Fu. Spin-orbit ab initio calculation of photodissociation of methyl iodide. Acta Physica Sinica, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [19] Guo Hong, Li Gao-Xiang, Peng Ji-Sheng. . Acta Physica Sinica, 2002, 51(11): 2517-2523. doi: 10.7498/aps.51.2517
    [20] HUANG SHI-HUA, MO YU-DONG. RESONANT RAMAN SCATTERING OF Hg1-xCdxTe . Acta Physica Sinica, 2001, 50(5): 964-967. doi: 10.7498/aps.50.964
Metrics
  • Abstract views:  175
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  08 October 2024
  • Accepted Date:  13 November 2024
  • Available Online:  29 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回