Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transmission of low energy electrons through PET nanocapillaries with 800 nm in diameter

Li Peng-Fei Liu Wan-Qi Ha Shuai Pan Yu-Zhou Fan Xu-Hong Du Zhan-Hui Wan Cheng-Liang Cui Ying Yao Ke Ma Yue Yang Zhi-Hu Shao Cao-Jie Reinhold Schuch Lu Di Song Yu-Shou Zhang Hong-Qiang Chen Xi-Meng

Citation:

Transmission of low energy electrons through PET nanocapillaries with 800 nm in diameter

Li Peng-Fei, Liu Wan-Qi, Ha Shuai, Pan Yu-Zhou, Fan Xu-Hong, Du Zhan-Hui, Wan Cheng-Liang, Cui Ying, Yao Ke, Ma Yue, Yang Zhi-Hu, Shao Cao-Jie, Reinhold Schuch, Lu Di, Song Yu-Shou, Zhang Hong-Qiang, Chen Xi-Meng
PDF
Get Citation
  • The transmission of 2-keV electrons through Polyethylene Terephthalate (PET) nanocapillaries with 800 nm diameter and 10 μm length was studied. The transmitted electrons were detected using microchannel plates (MCPs) with a phosphor screen. It is found that the transmission rate for the transmitted electrons with the incident energy can reach up to 10 % for the aligned capillaries in the beam direction, but drops to less than 1 % when the tilt angle exceeds the geometrical allowed angle. There is no corresponding shift of the transmitted electrons with the incident energy as the tilt angle changes, and thus no guiding of the incident electrons in the insulating capillaries, unlike what is observed with positive ions. The angular distribution of the transmitted electrons within the geometrical allowed angle splits into two peaks along the observation angle perpendicular to the tilt angle in the final stage of the transmission. The time evolution of the transmitted full angular distribution shows that, at the beginning when the beam turns on, the transmission profile forms a single peak. As the incident charge/time accumulates, the transmission profile starts stretching in the plane perpendicular to the tilt angle and gradually splits into two peaks. This splitting tends to disappear as the tilt angle of the nanocapillaries increases beyond the geometrical allowed angle. Simulation of the charge deposition in the capillaries, directly exposed to the beam, indicates that positive charge patches are formed, which are not conducive to guiding, as seen with positive ions. Depending on the simulation results, we provide an explanation for our data. Then, the possible reasons for the splitting of the transmission angular profiles are discussed.
  • [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201.

    [2]

    Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902.

    [3]

    Sahana M B, Skog P, Vikor G, Kumar R T R, Schuch R 2006 Phys. Rev. A 73 040901(R).

    [4]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Phys. Lett. 89 163502.

    [5]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instr. Meth. Phys. Res. B 258 145.

    [6]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X.A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B. 18 2739.

    [7]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Inst. Meth. Phys. Res. B 267 674

    [8]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Inst. Meth. Phys. Res. B 267 2381.

    [9]

    Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R J, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903.

    [10]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202.

    [11]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901.

    [12]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901.

    [13]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202.

    [14]

    Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901

    [15]

    Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704.

    [16]

    Giglio E, Guillous S, Cassimi A, Zhang H Q, Nagy G U L, Tőkési K 2017 Phys. Rev. A 95 030702(R).

    [17]

    Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704.

    [18]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237.

    [19]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1.

    [20]

    Wan C L, Pan Y Z, Zhu L P, Zhang H W, Zhao Z Y, Yuan H, Li P F, Fan X H, Sun W S, Du Z H, Chen Q, Cui Y, Liao T F, Wei X H, Wang T Q, Chen X M, Li G P, Schuch R, Zhang H Q 2024 Acta Phys. Sin. 73 104101 (in Chinese) [万城亮, 潘俞舟, 朱丽萍, 李鹏飞, 张浩文, 赵卓彦, 袁华, 樊栩宏, 孙文胜, 杜战辉, 陈乾, 崔莹, 廖天发, 魏晓慧, 王天琦, 陈熙萌, 李公平, Reinhold Schuch, 张红强 2024 物理学报 73 104101].

    [21]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lv X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902.

    [22]

    Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lv X Y, Sun G Z, Wang J, Chen Y F, Xi F Y, Chen X M 2011 Phys. Rev. A 84 032901.

    [23]

    Chen L, Lv X Y, Jia J J, Ji M C, Zhou P, Sun G Z, Wang J, Chen Y F, Xi F Y, Cui Y, Shao J X, Qiu X Y, Guo Y L, Chen X M 2011 Phys. B: At. Mol. Opt. Phys. 44 045203.

    [24]

    Zhang Q, Liu Z L, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704.

    [25]

    Ha S, Zhang W M, Xie Y M, Li P F, Jin B, Niu B, Wei L, Zhang Q, Liu Z L, Ma Y, Lu D, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2020 Acta Phys. Sin. 69 094101(in Chinese) [哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 牛犇, 魏龙, 张琦, 刘中林, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌 2020 物理学报69 094101]

    [26]

    Liu Z L, Ha S, Zhang W M, Xie Y M, Li P F, Jin B, Zhang Q, Ma Y, Lu D, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2021 Nucl. Phys. Rev. 38 95 (in Chinese) [刘中林, 哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 张琦, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌 2021 原子核物理评论 38 95]

    [27]

    Milosavljević A R, Víkor Gy, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901(R).

    [28]

    Milosavljević A R, Jureta J, Víkor G, Pešić Z D, Šević D, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B P 2009 Europhys. Lett. 86 23001.

    [29]

    Milosavljević A, Schiessl K, Lemell C, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B P, Burgdörfer J 2012 Nucl. Instr. Meth. Phys. Res. B 279 190.

    [30]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716.

    [31]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201.

    [32]

    Dassanayake B S, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J A 2013 Nucl. Instr. Meth. Phys. Res. B 298 1.

    [33]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2013 Nucl. Instr. Meth. Phys. Res. B 317 105.

    [34]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2016 Nucl. Instr. Meth. Phys. Res. B 382 67.

    [35]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2015 Phys. Rev. A 92 012703.

    [36]

    Vokhmyanina K A, Kubankin A S, Myshelovka L V, Zhang H Q, Kaplii A A, Sotnikova V S, Zhukova M A 2020 J. Instrum. 15 C04003.

    [37]

    Dassanayake B S, Das S, Bereczky R J, Tőkési K, Tanis J A 2010 Phys. Rev. A 81 020701(R).

    [38]

    Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökési K, Tanis J A 2011 Phys. Rev. A 83 012707.

    [39]

    Wickramarachchi S J, Ikeda T, Dassanayake B S, Keerthisinghe D, Tanis J A 2016 Phys. Rev. A 94 022701.

    [40]

    Stolterfoht N, Tanis J A 2018 Nucl. Instr. Meth. Phys. Res. B 421 32.

    [41]

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Schuch R, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103 (in Chinese) [万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103]

    [42]

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Müller A M, Dobeli M, Song Z Y, Yang Z H, Schuch R, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101 (in Chinese) [钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万城亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报66 124101]

    [43]

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101 (in Chinese) [李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101].

    [44]

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104 (in Chinese) [李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 084104]

    [45]

    Zhou P, Wan C L, Yuan H, Cheng Z D, Li P F, Zhang H W, Cui Y, Zhang H Q, Chen X M 2023 High Pow. Laser Part. Beams 35 026001 (in Chinese) [周鹏, 万城亮, 袁华, 程紫东, 李鹏飞, 张浩文, 崔莹, 张红强, 陈熙萌 2023 强激光与粒子束 35 026001]

    [46]

    Data sheets of Mylar (http://www.dupontteijinfilms.com)

    [47]

    Hovington P, Drouin D, Gauvin R. 1997 Scanning 19 1.

    [48]

    Drouin D, Couture A R, Joly D, Taster X, Aimez V, Gauvin R 2007 Scanning 29 92.

    [49]

    Demers H, Poirrier-Demers N, Couture A R, Joly D, Guilmain M, Jonge N D, Drouin D 2011 Scanning 33 135.

    [50]

    Joy D C, Luo S 1989 Scanning 11 176.

    [51]

    Lowney J R 1996 Scanning 18 301.

    [52]

    Reimer L 1998 Scanning electron microscopy 2nd (Berlin: Springer) p57-134.

  • [1] Wan Cheng-Liang, Pan Yu-Zhou, Zhu Li-Ping, Li Peng-Fei, Zhang Hao-Wen, Zhao Zhuo-Yan, Yuan Hua, Fan Xu-Hong, Sun Wen-Sheng, Du Zhan-Hui, Chen Qian, Cui Ying, Liao Tian-Fa, Wei Xiao-Hui, Wang Tian-Qi, Chen Xi-Meng, Li Gong-Ping, Reinhold Schuch, Zhang Hong-Qiang. Production and measurement of MeV proton microbeams in atmospheric environment based on glass capillary. Acta Physica Sinica, doi: 10.7498/aps.73.20240301
    [2] Shi Zhi-Qi, He Xiao, Liu Lin, Chen De-Hua, Wang Xiu-Ming. Elastic wave propagation characteristics in unsaturated double-porosity medium under capillary pressure. Acta Physica Sinica, doi: 10.7498/aps.72.20222063
    [3] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, doi: 10.7498/aps.71.20212435
    [4] Jiang Qi-Li, Duan Ze-Ming, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin. A new type of micro-X-ray diffractometer focused by polycapillary optics. Acta Physica Sinica, doi: 10.7498/aps.68.20190497
    [5] Bai Xiong-Fei, Niu Shu-Tong, Zhou Wang, Wang Guang-Yi, Pan Peng, Fang Xing, Chen Xi-Meng, Shao Jian-Xiong. Dynamic evolution of 20-keV H+ transmitted through polycarbonate nanocapillaries. Acta Physica Sinica, doi: 10.7498/aps.66.093401
    [6] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, doi: 10.7498/aps.65.095201
    [7] Wan Cheng-Liang, Li Peng-Fei, Qian Li-Bing, Jin Bo, Song Guang-Yin, Gao Zhi-Min, Zhou Li-Hua, Zhang Qi, Song Zhang-Yong, Yang Zhi-Hu, Shao Jian-Xiong, Cui Ying, Reinhold Schuch, Zhang Hong-Qiang, Chen Xi-Meng. Dynamics of slow electrons transmitting through straight glass capillary and tapered glass capillary. Acta Physica Sinica, doi: 10.7498/aps.65.204103
    [8] Zhou Hong-Wei, Wang Lin-Wei, Xu Sheng-Hua, Sun Zhi-Wei. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, doi: 10.7498/aps.64.124703
    [9] Li Xing-Ji, Lan Mu-Jie, Liu Chao-Ming, Yang Jian-Qun, Sun Zhong-Liang, Xiao Li-Yi, He Shi-Yu. The influence of bias conditions on ionizing radiation damage of NPN and PNP transistors. Acta Physica Sinica, doi: 10.7498/aps.62.098503
    [10] Yun Mei-Juan, Zheng Wei, Li Yun-Bao, Li Yu. Fractal analysis of Herschel-Bulkley fluid flow in a capillary. Acta Physica Sinica, doi: 10.7498/aps.61.164701
    [11] Gu Yu-Qiu, Ma Zhan-Nan, Zheng Wu-Di, Wang Xiao-Fang, Wu Yu-Chi, Zhu Bin, Dong Ke-Gong, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Zhang Bao-Han, Jiao Chun-Ye, Wen Xian-Lun, Zang Hua-Ping, Yu Jin-Qing, Wei Lai. Density measurement and MHD simulation ofgas-filled capillary discharge waveguide. Acta Physica Sinica, doi: 10.7498/aps.60.095202
    [12] Huang Wen-Tong, Li Shou-Zhe, Wang De-Zhen, Ma Teng-Cai. Characteristics of the plasma discharge generated in dielectric capillary at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.59.4110
    [13] Chen Yi-Feng, Chen Xi-Meng, Lou Feng-Jun, Xu Jin-Zhang, Shao Jian-Xiong, Sun Guang-Zhi, Wang Jun, Xi Fa-Yuan, Yin Yong-Zhi, Wang Xing-An, Xu Jun-Kui, Cui Ying, Ding Bao-Wei. Guiding of 60 keV O+ ions through Al2O3 nanocapillaries with two different diameters. Acta Physica Sinica, doi: 10.7498/aps.59.222
    [14] Guo Tie-Ying, Lou Shu-Qin, Li Hong-Lei, Jian Shui-Sheng. Capillary drawing for fabrication of photonic crystal fibers: theoretical calculation and experiments. Acta Physica Sinica, doi: 10.7498/aps.58.4724
    [15] Li Wei-Qin, Zhang Hai-Bo. Negative charging process of a grounded insulating thin film under low-energy electron beam irradiation. Acta Physica Sinica, doi: 10.7498/aps.57.3219
    [16] Yu Jiang-Zhou, Feng Hao, Sun Wei-Guo. Studies on the momentum transfer cross sections for low-energy electron scattering by nitrogen molecule. Acta Physica Sinica, doi: 10.7498/aps.57.4143
    [17] Cao Shi-Ying, Wang Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue, Yang Jian-Jun, Zhu Xiao-Nong. Spectrum evolution of filamentation restricted by capillary in high pressure gas. Acta Physica Sinica, doi: 10.7498/aps.55.4734
    [18] Wei Zhong-Chao, Dai Qiao-Feng, Wang He-Zhou. Spectral properties of fcc-like cylindrical colloidal crystals. Acta Physica Sinica, doi: 10.7498/aps.55.733
    [19] Zhao Yong-Peng, Cheng Yuan-Li, Wang Qi, Hayashi Yasushi, Hotta Eiki. The lasing time of soft x-ray laser pumped by capillary discharge. Acta Physica Sinica, doi: 10.7498/aps.54.2731
    [20] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, doi: 10.7498/aps.54.4979
Metrics
  • Abstract views:  94
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  03 December 2024

/

返回文章
返回