-
Quantum key distribution (QKD) has been extensively studied for practical applications. Advantage distillation (AD) represents a key technique to extract highly correlated bit pairs from weakly correlated ones, thus improving QKD protocol performance, particularly in large-error scenarios. However, its practical implementation remains under-explored. In this study, the AD is integrated into the three-intensity decoy-state BB84 protocol and its performance is demonstrated on a high-speed phase-encoding platform. The experimental system employs an asymmetric Mach-Zehnder interferometer (AMZI) fabricated on a silicon dioxide optical waveguide chip for phase encoding, which is benefited from its low coupling loss and minimum waveguide transmission loss. Phase-randomized weak coherent pulses, generated by a distributed feedback laser at 625 MHz, are modulated into decoy states of varying intensities. The signals are encoded via an AMZI and attenuated to single-photon levels before transmission. At the receiver, another AMZI demodulates the signals detected by avalanche photodiodes in gated mode. Experiments conducted at 50 km and 105 km demonstrate secure key rates of 104 kbits/s and 59 bits/s, respectively. The results at shorter distances closely match theoretical predictions, while slight deviations at 105 km are attributed to signal attenuation and noise. Despite these challenges, the results obtained at 105 km highlight the effectiveness of AD in enhancing secure key rates in the large-error scenario. This study confirms the potential of AD in extending secure communication range of QKD. By leveraging the high integration and scalability of silicon dioxide photonic chips, the proposed system lays a foundation for large-scale QKD deployment, paving the way for developing advanced protocols and real-world quantum networks.
-
图 2 BB84 QKD系统实验装置结构示意图, 其中Laser为激光器模块, IM为强度调制器, AMZI为非对称马赫-曾德尔干涉仪, APD为探测器模块, TDC为时间数字转换器
Figure 2. Schematic diagram of the experimental setup for BB84 QKD system, where Laser is the laser module, IM is the intensity modulator, AWG is the arbitrary waveform generator, AMZI is the low-loss unbalanced Mach-Zehnder interferometer chip, APD denotes the avalanche photodiode detector module, and TDC is the time-to-digital converter.
表 1 实验数据
Table 1. Experimental data.
50 km (10 dB) 105 km (21 dB) 类型 理论数值 实验数据 理论数值 实验数据 $u$ 0.66653 0.64151 $v$ 0.04537 0.07259 ${P_u}$ 0.97000 0.94795 ${P_v}$ 0.02190 0.03627 $ Q_{u} $ $ 7.195\times {10}^{-4} $ $ 7.1084\times {10}^{-4} $ $ 5.692\times {10}^{-5} $ $ 5.2736\times {10}^{-5} $ $ Q_{v} $ $ 8.006\times {10}^{-5} $ $ 7.5179\times {10}^{-5} $ $ 1.714\times {10}^{-5} $ $ 1.6844\times {10}^{-5} $ $ E_{w} $ $ 0.01403 $ $ 0.01220 $ $ 0.06510 $ $ 0.085985 $ $ E_{\emptyset} $ $ 0.04623 $ $ 0.05180 $ $ 0.1930 $ $ 0.2109 $ $ Y_{1} $ $ 9.481\times {10}^{-4} $ $ 8.756\times {10}^{-4} $ $ 7.719\times {10}^{-5} $ $ 7.7438\times {10}^{-5} $ $ e_{1} $ $ 0.02064 $ $ 0.02562 $ $ 0.0715 $ $ 0.0974 $ $ R $ $ 115700 $ $ 104260 $ $ 389.0636 $ $ 59.3501 $ -
[1] Bennett C H, Brassard G 2014 Theoret. Comput. Sci. 560 7Google Scholar
[2] Lo H K, Chau H F 1999 Science 283 2050Google Scholar
[3] Shor P W 2000 Phys. Rev. Lett. 85 441Google Scholar
[4] Mayers D 2001 Journal of the ACM 48 3
[5] Wang X B 2005 Phy. Rev. Lett. 94 230503Google Scholar
[6] Lo H K, Ma X F, Chen K 2005 Phy. Rev. Lett. 94 230504Google Scholar
[7] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar
[8] Braunstein S L, Pirandola S 2012 Phys. Rev. Lett. 108 130502Google Scholar
[9] Lucamarini M, Yuan Z L, Dynes J F, Shields A 2018 Nature 557 400Google Scholar
[10] Wang X B, Yu Z W, Hu X L 2018 Phys. Rev. A 98 062323Google Scholar
[11] Cui C, Yin Z Q, Wang R, Chen W, Wang S, Guo G C, Han Z F 2019 Phys. Rev. Appl. 11 034053Google Scholar
[12] Curty M, Azuma K, Lo H K 2019 npj Quantum Inf. 5 64Google Scholar
[13] Ma X F, Zeng P, Zhou H Y 2018 Phys. Rev. X 8 031043
[14] Zeng P, Zhou H Y, Wu W, Ma X 2022 Nat. Commun. 13 3903Google Scholar
[15] Xie Y M, Lu Y S, Weng C X, Yin H L, Chen Z B 2022 PRX Quantum 3 020315Google Scholar
[16] Maurer U M 1999 IEEE Trans. Inf. Theory 39 733
[17] Renner R 2008 Int. J. Quantum Inf. 6 1Google Scholar
[18] Tan E Y Z, Lim C C W, Renner R 2020 Phys. Rev. Lett. 124 020502Google Scholar
[19] Li H W, Zhang C M, Jiang M S, Cai Q Y 2022 Commun. Phys. 5 53Google Scholar
[20] Wang R Q, Zhang C M, Yin Z Q, Li H W, Wang S, Chen W, Guo G C, Han Z F 2022 New J. Phys. 24 073049Google Scholar
[21] Li H W, Wang R Q, Zhang C M, Cai Q Y 2023 Quantum 7 1201Google Scholar
[22] Zhu J R, Zhang C M, Wang R, Li H W 2023 Opt. Lett. 48 303Google Scholar
[23] Zhang K, Liu J, Ding H, Zhang C H, Wang Q 2023 Entropy 25 1174Google Scholar
[24] Hu L W, Zhang C M, Li H W 2023 Quantum Inf. Process. 22 77Google Scholar
[25] Boaron A, Boso G, Rusca D, Vulliez C, Autebert C, Caloz M, Perrenoud M, Gras G, Bussiѐres F, Li M J, Nolan D, Martin A, Zbinden H 2018 Phys. Rev. Lett. 121 190502Google Scholar
[26] Yuan Z, Plews A, Takahashi R, Doi K, Tam W, Sharpe A, Dixon A, Lavelle E, Dynes J, Murakami A, Kujiraoka M, Lucamarini M, Tanizawa Y, Sato H, Shields A 2018 J. Light. Technol. 36 3427Google Scholar
[27] Li W, Zhang L K, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B Z, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H, Pan J W 2023 Nat. Photonics 17 416Google Scholar
[28] Ma C X, Sacher W D, Tang Z Y, Mikkelsen J, Yang Y S, Xu F H, Thiessen T, Lo H K, Poon J K S 2016 Optica 3 1274Google Scholar
[29] Sibson P, Kennard J E, Stanisic S, Erven C, O’Brien J, Thompson M G 2017 Optica 4 172Google Scholar
[30] Wei K J, Li W, Tan H, Li Y, Min H, Zhang W J, Li H, You L X, Wang Z, Jiang X, Chen T Y, Liao S K, Pen C Z, Xu F H, Pan J W 2020 Phys. Rev. X 10 031030
Metrics
- Abstract views: 170
- PDF Downloads: 4
- Cited By: 0