-
Phase space reconstruction plays a pivotal role in calculating features of nonlinear systems. By mapping one-dimensional time series onto a high-dimensional phase space using phase space reconstruction techniques, the dynamical characteristics of nonlinear systems can be revealed. However, existing nonlinear analysis methods are primarily based on phase space reconstruction of single-channel data and cannot directly exploit the rich information contained in multi-channel array data. The reconstructed data matrix exhibits structural similarities with multi-channel array data. The relationship between phase space reconstruction and array data structure, as well as the gain in nonlinear features brought by array data, has not been sufficiently studied. This paper employs two classical nonlinear features: multiscale sample entropy and multiscale permutation entropy. Utilizing array multi-channel data to replace the phase space reconstruction step in algorithms to enhance the algorithmic performance. Initially, the relationship between phase space reconstruction parameters and actual array structures is analyzed, and conversion relationships are established. Then, multiple sets of simulated and real-world array data are used to evaluate the performance of the two entropy algorithms. The results show that substituting array data for phase space reconstruction effectively improves the performance of both entropy algorithms. Specifically, the multiscale sample entropy algorithm, when applied to array data, allows for the differentiation of noisy target signals from background noise at low signal-to-noise ratios. Meanwhile, the multiscale permutation entropy algorithm using array data more accurately reveals the complexity structure of signals at different time scales.
-
Keywords:
- Nonlinear Dynamics /
- Array Data Analysis /
- Multiscale Sample Entropy /
- Multiscale Permutation Entropy
-
图 4 使用按照相空间重构逻辑构造的阵列数据的多尺度样本熵与多尺度排列熵算法结果: (a) 多尺度样本熵; (b) 多尺度排列熵
Figure 4. The multiscale sample entropy and multiscale permutation entropy results using array data constructed according to phase space reconstruction technique; (a) Multiscale sample entropy result; (b) Multiscale permutation entropy result.
表 1 舰船辐射噪声相邻阵元的时间延迟
Table 1. Time delay of adjacent array elements of ship-radiated noise
舰船类型 通道1-
通道2通道2-
通道3通道3-
通道4通道4-
通道5平均时间
延迟舰船1 22 23 22 18 21.25 舰船2 20 21 21 17 19.75 -
[1] Chen H, Li L, Shang C, Huang B 2022 IEEE T Cybernetics 53 4259
[2] Richard B, Kerry A E, Zhang F 2019 Science 363 342Google Scholar
[3] Hsieh D A 1991 J Financ 46 1839Google Scholar
[4] Xu F, Zou Z, Yin J, Cao J 2013 Ocean Eng 67 68Google Scholar
[5] Takens F 1980 Dynamical Systems and Turbulence (Heidelberg: Springer Berlin) 1981 366
[6] 刘秉正, 彭建华 2004 非线性动力学(北京: 高等教育出版社)
Liu B, Peng J H 2004 Nonlinear Dynamics
[7] Zhao J Y, Jin N D 2012 Acta Phys. Sin 61 094701Google Scholar
[8] Huang Z H, Li Y A, Chen Z, Liu L 2020 Acta Phys. Sin 69 160501Google Scholar
[9] Grigoryeva L, Hart A, Ortega J 2021 Phys Rev E 103 062204
[10] Kennel M B, Brown R, Abarbanel H 1992 Phys Rev A 45 3403Google Scholar
[11] Zhang S, Jia J, Gao M, Han X 2010 Acta Phys. Sin 59 1576Google Scholar
[12] Richman J S, Moorman J R 2000 Am. J. Physiol-Heart. C 278 H2039Google Scholar
[13] Bandt C, Pompe B 2002 Phys. Rev. Lett 88 174102Google Scholar
[14] Bryant P, Brown R, Abarbanel H 1990 Phys Rev Lett 65 1523Google Scholar
[15] Ferrara E, Parks T 1983 IEEE T Antenn Propag 31 231Google Scholar
[16] He J, Liu Z 2009 Signal Process 89 1715Google Scholar
[17] Costa M, Goldberger A L, Peng C K 2005 Phys. Rev. E 71 021906Google Scholar
[18] Liu T, Yao W, Wu M, Shi Z, Ning X 2017 Physica A 471 492Google Scholar
[19] Humeau-Heurtier A, Wu C, Wu S 2015 IEEE Signal Proc Let 22 2364Google Scholar
[20] Amigó J M, Dale R, Tempesta P 2021 Chaos 31 013115Google Scholar
[21] Li W J, Shen X H, Li Y A 2019 Entropy-Switz 21 793Google Scholar
[22] Li Y, Xu M, Wang R, Huang W 2016 J Sound Vib 360 277Google Scholar
[23] Gao S, Wang Q, Zhang Y 2021 IEEE T Instrum Meas 70 1
[24] He L, Du L, Zhuang Y Q, Li W H, Chen J P 2008 Acta Phys. Sin 57 6545Google Scholar
[25] Zhang Y 1991 Journal de Physique I 1 971
[26] Fogedby H C 1992 J Stat Phys 69 411Google Scholar
Metrics
- Abstract views: 207
- PDF Downloads: 4
- Cited By: 0