Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of structural differences and causes of ENSO temperature network

Hu Heng-Ru Gong Zhi-Qiang Wang Jian Qiao Pan-Jie Liu Li Feng Guo-Lin

Citation:

Analysis of structural differences and causes of ENSO temperature network

Hu Heng-Ru, Gong Zhi-Qiang, Wang Jian, Qiao Pan-Jie, Liu Li, Feng Guo-Lin
PDF
HTML
Get Citation
  • Based on the global surface temperature data, the global temperature correlation networks corresponding to El Niño and La Niña events are constructed respectively, and the differences in their effects on the network topological structure properties are analyzed. The results show that compared with the La Niña temperature network, the correlation between grid temperature series in El Niño temperature network is weakened, and the connectivity of the network is significantly reduced, especially in the tropical region and the southern temperate region. The network connectivity degree of equatorial eastern Pacific, equatorial western Pacific, equatorial Indian Ocean and equatorial Atlantic Ocean are relatively large, and the decrease in El Niño network is notable. They are also the four key regions leading to the differences of the structural characteristics of the two types of network. On this basis, the reason for the difference between the two types of network characteristics is preliminarily discussed. With the increase of SST in Niño3.4 region, the SST in equatorial eastern Pacific, equatorial Indian Ocean and other areas rise, which strengthenes outgoing long wave radiation and convection activities, and the interaction between low latitude and mid-latitude areas, and the variance of air temperature changes in the north and south temperate regions increase. As a result, the correlation between the temperature series of the four key regions and the rest of the world is weakened, therefore the connectivity of the global grid temperature network is reduced.
      Corresponding author: Gong Zhi-Qiang, gongzq@cma.gov.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0606301) and the National Natural Science Foundation of China (Grant Nos. 42075057, 41875100)
    [1]

    Timmermann A, An S I, Kug J S, Jin F F, Cai W J, Capotondi A, Cobb K M, Lengaigne M, McPhaden M J, Stuecker M F, Stein K, Wittenberg A T, Yun K S, Bayr T, Chen H C, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Guilyardi E, Ham Y G, Hayashi M, Ineson S, Kang D Y, Kim S Y, Kim W M, Lee J Y, Li T, Luo J J, McGregor S, Planton Y, Power S, Rashid H, Ren H L, Santoso A, Takahashi K, Todd A, Wang G, Wang G, Xie R, Yang W H, Yeh S W, Yoon J H, Zeller E, Zhang X B 2018 Nature 559 535Google Scholar

    [2]

    Michael J M, Stephen E Z, Michael H G 2006 Science 314 1740Google Scholar

    [3]

    Jia X, Lin H, Derome J 2009 Clim. Dyn. 32 495Google Scholar

    [4]

    Xie S P 1998 J. Clim. 11 189

    [5]

    Huang R, Zhang R, Yan B 2001 Sci. China, Ser. D Earth Sci. 44 1089Google Scholar

    [6]

    Wang L, Chen W, Huang R 2008 Geophys. Res. Lett. 35 L20702Google Scholar

    [7]

    Lian Y, Shen B, Li S, Zhao B, Gao Z, Liu G, Liu P, Cao L 2013 Adv. Atmos. Sci. 30 193Google Scholar

    [8]

    Li J P, Sun C, Ding R Q 2018 Decadal Coupled Ocean–Atmosphere Interaction in North Atlantic and Global Warming Hiatus//Beer T, Li J P, Alverson K Global Change and Future Earth: The Geoscience Perspective (Cambridge: Cambridge University Press) pp131–143

    [9]

    Wang G L, Tsonis A A 2009 Chin. Phys. B 18 5091Google Scholar

    [10]

    Boers N, Goswami B, Rheinwalt A, Bookhagen B, Hoskins B, Kurths J 2019 Nature 566 373Google Scholar

    [11]

    Fang J Q, Bi Q, Li Y 2007 Front. Phys. China 2 109Google Scholar

    [12]

    Nocke T, Buschmann S, Donges J F, Marwan N, Schulz H J, Tominski C 2015 Nonlinear Processes Geophys. 22 545Google Scholar

    [13]

    Fu Z T, Li Q I, Yuan N M, Yao Z H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 83Google Scholar

    [14]

    Fu Z T, Shi L, Xie F H, Piao L 2016 Physica A 449 390Google Scholar

    [15]

    李建平, 丑纪范 2003 大气科学 27 653Google Scholar

    Li J P, Chou J F 2003 Chin. J. Atmos. Sci. 27 653Google Scholar

    [16]

    Yuan N M, Lu Z H 2019 Nat. Clim. Change 10 13

    [17]

    Tsonis A A, Roebber P J 2004 Physica A 333 497Google Scholar

    [18]

    Tsonis A A, Swanson K L 2008 Phys. Rev. Lett. 100 228502Google Scholar

    [19]

    Gong Z Q, Wang X J, Zhi R, Feng A X 2011 Chin. Phys. B 20 079201Google Scholar

    [20]

    龚志强, 周磊, 支蓉, 封国林 2008 物理学报 57 5351Google Scholar

    Gong Z Q, Zhou L, Zhi R, Feng G L 2008 Acta Phys. Sin. 57 5351Google Scholar

    [21]

    龚志强 2009 博士学位论文 (兰州: 兰州大学)

    Gong Z Q 2009 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [22]

    Ludescher J, Gozolchiani A, Bogachev M I, Bunde A, Havlin S, Schellnhuber H J 2014 Proc. Natl. Acad. Sci. 111 2064

    [23]

    Ludescher Josef A G, Mikhail I B, Armin B, Shlomo H, Hans J S 2013 Proc. Natl. Acad. Sci. U.S.A. 110 11742Google Scholar

    [24]

    Yamasaki K, Gozolchiani A, Havlin S 2008 Phys. Rev. Lett. 100 228501Google Scholar

    [25]

    Radebach A, Donner R V, Runge J, Donges J F, Kurths J 2013 Phys. Rev. E 88 052807Google Scholar

    [26]

    Wiedermann M, Radebach A, Donges J F, Kurths J, Donner R V 2016 Geophys. Res. Lett. 43 7176Google Scholar

    [27]

    Lu Z H, Yuan N M, Chen L, Gong Z Q 2020 Geophys. Res. Lett. 47 e2019GL086533

    [28]

    Lu Z H, Yuan N M, Fu Z T 2016 Sci. Rep. 6 1Google Scholar

    [29]

    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D 1996 Bull. Am. Meteorol. Soc. 77 437

    [30]

    Bollabas B 1985 Random Graphs (London: Academic Press) p20

    [31]

    Tsonis A A, Swanson K L, Roebber P J 2006 Bull. Am. Meteorol. Soc. 87 585Google Scholar

    [32]

    Robusto C C 1957 Am. Math. Mon. 64 38Google Scholar

    [33]

    Albert R, Barabási A L 2002 Rev. Mod. Phys. 74 47Google Scholar

  • 图 1  不同ENSO相位下格点气温序列相关系数概率分布, 其中shuffled表示对格点气温序列作了随机化处理

    Figure 1.  Probability distribution of correlation coefficient of grid temperature series under different ENSO phases, where shuffle represents randomization of grid temperature.

    图 2  网络特征量空间分布 (a1), (a2)连通度; (b1), (b2)集聚系数; (c1), (c2)特征路径长度

    Figure 2.  Spatial distribution of network characteristic quantity: (a1), (a2) Connectivity degree; (b1), (b2) agglomeration coefficient; (c1), (c2) characteristic path length.

    图 3  不同区域网路特征量的概率分布 (a1)−(a4)连通度; (b1)−(b4)连通距离; (c1)−(c4)集聚系数; (d1)−(d4)最短路径长度. 由上到下4行依次对应全球网络、北温带网络、热带网络和南温带网络

    Figure 3.  Probability distribution of (a1)−(a4) connectivity degree, (b1)−(b4) connectivity distance, (c1)−(c4) agglomeration coefficient, and (d1)−(d4) shortest path length of different regional network characteristic quantities. From top to bottom, four rows correspond to the global network, the northern temperate network, the tropical network, and the southern temperate network.

    图 4  大洋关键区-全球气温关联网络连通度的空间分布图 (a1), (a2)大西洋关键区与全球相关; (b1), (b2)印度洋关键区与全球相关; (c1), (c2)赤道西太平洋关键区与全球相关; (d1), (d2)赤道东太平洋关键区与全球相关

    Figure 4.  Spatial distribution of the connectivity between key regions of the ocean and global temperature network: (a1), (a2) Atlantic Ocean key region relevant to global; (b1), (b2) Indian Ocean key region relevant to global; (c1), (c2) equatorial western Pacific key region relevant to global; (d1), (d2) equatorial eastern Pacific key region relevant to global.

    图 5  大洋关键区-全球气温关联网络连通性的概率分布图 (a1)−(a4)连通度; (b1)−(b4)链路距离. 其中(a1), (a2)为大西洋关键区与全球相关, (b1), (b2)为印度洋关键区与全球相关, (c1), (c2)为赤道西太平洋关键区与全球相关, (d1), (d2)为赤道东太平洋关键区与全球相关

    Figure 5.  Probability distribution of the connectivity between key regions of ocean and global temperature correlation network: (a1)−(a4) Connectivity degree; (b1)−(b4) link distance. Panels (a1), (a2) correspond to the key region of the Atlantic Ocean relevant to global, panels (b1), (b2) correspond to the key region of the Indian Ocean relevant to global, panels (c1), (c2) correspond to the key region of the equatorial western Pacific relevant to global, panels (d1), (d2) correspond to the key region of the equatorial eastern Pacific relevant to global.

    图 6  El Niño和La Niña事件对应的海温距平(等值线, 单位: ℃)和净长波辐射距平(填色部分, 单位: $ {\mathrm{W}/\mathrm{m}}^{2} $)空间分布图 (a) El Niño; (b) La Niña

    Figure 6.  Spatial distribution diagram of SST anomaly (isolines, unit: ℃) and net long-wave radiation anomaly (color filling, unit: $ {\mathrm{W}/\mathrm{m}}^{2} $) corresponding to El Niño and La Niña events: (a) El Niño; (b) La Niña.

    图 7  各关键区海温距平((a1)−(a4))、长波辐射距平((b1)−(b4))和垂直速度距平((c1)−(c4))的概率分布  (a1)−(c1)赤道大西洋; (a2)−(c2)赤道印度洋; (a3)−(c3)赤道西太平洋; (a4)−(c4)赤道东太平洋

    Figure 7.  Probability distribution of SST anomaly ((a1)−(a4)), long-wave radiation anomaly ((b1)−(b4)) and vertical velocity anomaly ((c1)−(c4)) in each key area: (a1)−(c1) Equatorial Atlantic Ocean; (a2)−(c2) equatorial Indian Ocean; (a3)−(c3) equatorial western Pacific; (a4)−(c4) equatorial eastern Pacific.

    图 8  排序后Niño 3.4区域冬半年的海温均值序列, 虚线内窗口宽度30 a, 滑动步长为1 a

    Figure 8.  Sequence of mean SST of winter half year in Niño 3.4 region after sorting. The window width in the dashed line is 30 a, and the sliding step length is 1 a.

    图 9  全球气温关联网络结构特征量平均值随Niño3.4区域海温升高变化特征 (a) 连通度; (b) 连通距离; (c)特征路径长度

    Figure 9.  Variation characteristics of the mean value of structural characteristics of global temperature correlation network with the rise of SST in Niño3.4 region: (a) Connectivity degree; (b) connectivity distance; (c) characteristic path length.

    图 10  大洋关键区域长波辐射、垂直速度场随Niño3.4指数升高的变化特征

    Figure 10.  Variation characteristics of long wave radiation and vertical velocity fields in key regions of the ocean with Niño3.4 index increasing.

    图 11  南温带(30°S−65°S)和北温带(30°N−65°N)平均气温方差随Niño3.4区域海温升高的变化图

    Figure 11.  Variance of mean temperature in the south and north temperate regions (30°S−65°S, 30°N−65°N) with the increase of SST in Niño3.4.

    表 1  连通度平均值与差异率

    Table 1.  Average connectivity and difference rate.

    ${ \widetilde {C}_{\mathrm{E}\mathrm{l}\;\mathrm{N}\mathrm{i}{\tilde {\rm{n} } }\mathrm{o} } }$${\widetilde {C}_{\mathrm{L}\mathrm{a}\;\mathrm{N}\mathrm{i}{\tilde {\rm{n} } }\mathrm{a} } }$差异率D
    全球0.0350.05555%
    北温带0.0240.0252%
    热带0.0570.09772%
    南温带0.0200.03363%
    DownLoad: CSV

    表 2  各大洋关键区的划分范围

    Table 2.  Range of key regions in the oceans.

    纬度经度
    赤道大西洋5°N—10°S40°W—10°E
    赤道印度洋10°N—5°S60°E—100°E
    赤道西太平洋20°N—5°N110°E—150°E
    赤道东太平洋5°N—5°S170°W—120°W
    DownLoad: CSV
  • [1]

    Timmermann A, An S I, Kug J S, Jin F F, Cai W J, Capotondi A, Cobb K M, Lengaigne M, McPhaden M J, Stuecker M F, Stein K, Wittenberg A T, Yun K S, Bayr T, Chen H C, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Guilyardi E, Ham Y G, Hayashi M, Ineson S, Kang D Y, Kim S Y, Kim W M, Lee J Y, Li T, Luo J J, McGregor S, Planton Y, Power S, Rashid H, Ren H L, Santoso A, Takahashi K, Todd A, Wang G, Wang G, Xie R, Yang W H, Yeh S W, Yoon J H, Zeller E, Zhang X B 2018 Nature 559 535Google Scholar

    [2]

    Michael J M, Stephen E Z, Michael H G 2006 Science 314 1740Google Scholar

    [3]

    Jia X, Lin H, Derome J 2009 Clim. Dyn. 32 495Google Scholar

    [4]

    Xie S P 1998 J. Clim. 11 189

    [5]

    Huang R, Zhang R, Yan B 2001 Sci. China, Ser. D Earth Sci. 44 1089Google Scholar

    [6]

    Wang L, Chen W, Huang R 2008 Geophys. Res. Lett. 35 L20702Google Scholar

    [7]

    Lian Y, Shen B, Li S, Zhao B, Gao Z, Liu G, Liu P, Cao L 2013 Adv. Atmos. Sci. 30 193Google Scholar

    [8]

    Li J P, Sun C, Ding R Q 2018 Decadal Coupled Ocean–Atmosphere Interaction in North Atlantic and Global Warming Hiatus//Beer T, Li J P, Alverson K Global Change and Future Earth: The Geoscience Perspective (Cambridge: Cambridge University Press) pp131–143

    [9]

    Wang G L, Tsonis A A 2009 Chin. Phys. B 18 5091Google Scholar

    [10]

    Boers N, Goswami B, Rheinwalt A, Bookhagen B, Hoskins B, Kurths J 2019 Nature 566 373Google Scholar

    [11]

    Fang J Q, Bi Q, Li Y 2007 Front. Phys. China 2 109Google Scholar

    [12]

    Nocke T, Buschmann S, Donges J F, Marwan N, Schulz H J, Tominski C 2015 Nonlinear Processes Geophys. 22 545Google Scholar

    [13]

    Fu Z T, Li Q I, Yuan N M, Yao Z H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 83Google Scholar

    [14]

    Fu Z T, Shi L, Xie F H, Piao L 2016 Physica A 449 390Google Scholar

    [15]

    李建平, 丑纪范 2003 大气科学 27 653Google Scholar

    Li J P, Chou J F 2003 Chin. J. Atmos. Sci. 27 653Google Scholar

    [16]

    Yuan N M, Lu Z H 2019 Nat. Clim. Change 10 13

    [17]

    Tsonis A A, Roebber P J 2004 Physica A 333 497Google Scholar

    [18]

    Tsonis A A, Swanson K L 2008 Phys. Rev. Lett. 100 228502Google Scholar

    [19]

    Gong Z Q, Wang X J, Zhi R, Feng A X 2011 Chin. Phys. B 20 079201Google Scholar

    [20]

    龚志强, 周磊, 支蓉, 封国林 2008 物理学报 57 5351Google Scholar

    Gong Z Q, Zhou L, Zhi R, Feng G L 2008 Acta Phys. Sin. 57 5351Google Scholar

    [21]

    龚志强 2009 博士学位论文 (兰州: 兰州大学)

    Gong Z Q 2009 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [22]

    Ludescher J, Gozolchiani A, Bogachev M I, Bunde A, Havlin S, Schellnhuber H J 2014 Proc. Natl. Acad. Sci. 111 2064

    [23]

    Ludescher Josef A G, Mikhail I B, Armin B, Shlomo H, Hans J S 2013 Proc. Natl. Acad. Sci. U.S.A. 110 11742Google Scholar

    [24]

    Yamasaki K, Gozolchiani A, Havlin S 2008 Phys. Rev. Lett. 100 228501Google Scholar

    [25]

    Radebach A, Donner R V, Runge J, Donges J F, Kurths J 2013 Phys. Rev. E 88 052807Google Scholar

    [26]

    Wiedermann M, Radebach A, Donges J F, Kurths J, Donner R V 2016 Geophys. Res. Lett. 43 7176Google Scholar

    [27]

    Lu Z H, Yuan N M, Chen L, Gong Z Q 2020 Geophys. Res. Lett. 47 e2019GL086533

    [28]

    Lu Z H, Yuan N M, Fu Z T 2016 Sci. Rep. 6 1Google Scholar

    [29]

    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D 1996 Bull. Am. Meteorol. Soc. 77 437

    [30]

    Bollabas B 1985 Random Graphs (London: Academic Press) p20

    [31]

    Tsonis A A, Swanson K L, Roebber P J 2006 Bull. Am. Meteorol. Soc. 87 585Google Scholar

    [32]

    Robusto C C 1957 Am. Math. Mon. 64 38Google Scholar

    [33]

    Albert R, Barabási A L 2002 Rev. Mod. Phys. 74 47Google Scholar

  • [1] LI Weijia, SHEN Xiaohong, LI Yaan, Zhang Kui. Nonlinear Feature Extraction Based On Multi-Channel Dataset. Acta Physica Sinica, 2025, 74(4): 040501. doi: 10.7498/aps.74.20241512
    [2] Li Wei-Jia, Shen Xiao-Hong, Li Ya-An. Unbiased multivariate multiscale sample entropy. Acta Physica Sinica, 2024, 73(11): 110502. doi: 10.7498/aps.73.20231133
    [3] Huang Xiao-Dong, He Bin-Xuan, Song Zhen, Mi Yuan-Yuan, Qu Zhi-Lin, Hu Gang. A review of advances in multiscale modelings, computations, and dynamical theories of arrhythmias. Acta Physica Sinica, 2024, 73(21): 218702. doi: 10.7498/aps.73.20240977
    [4] Song Yu-Ping, Ni Jing. Effect of variable network clustering on the accuracy of node centrality. Acta Physica Sinica, 2016, 65(2): 028901. doi: 10.7498/aps.65.028901
    [5] Dang Xiao-Yu, Li Hong-Tao, Yuan Ze-Shi, Hu Wen. Chaotic map implementation based on digital-analog hybrid method. Acta Physica Sinica, 2015, 64(16): 160501. doi: 10.7498/aps.64.160501
    [6] Yu Jie, Guo Xia-Sheng, Tu Juan, Zhang Dong. Mecanism and applications of the nonlinear dynamic response to ultrasound contrast agent microbubbles. Acta Physica Sinica, 2015, 64(9): 094306. doi: 10.7498/aps.64.094306
    [7] Liu Yan, Zhang Wen-Ming, Zhong Zuo-Yang, Peng Zhi-Ke, Meng Guang. Nonlinear dynamic analysis of nano-resonator driven by optical gradient force. Acta Physica Sinica, 2014, 63(2): 026201. doi: 10.7498/aps.63.026201
    [8] Lei Peng-Fei, Zhang Jia-Zhong, Wang Zhuo-Pu, Chen Jia-Hui. Lagrangian coherent structure and transport in unsteady transient flow. Acta Physica Sinica, 2014, 63(8): 084702. doi: 10.7498/aps.63.084702
    [9] Liao Zhi-Xian, Luo Xiao-Shu. Research on synchronous method for photovoltaic supplied micro-grid based on small-world network model. Acta Physica Sinica, 2014, 63(23): 230502. doi: 10.7498/aps.63.230502
    [10] Yu Yang, Mi Zeng-Qiang. Nonlinear dynamic model and chaotic characteristics of mechanical thastic energy storage unit in energy storage process. Acta Physica Sinica, 2013, 62(3): 038403. doi: 10.7498/aps.62.038403
    [11] Liu Jian-Guo, Ren Zhuo-Ming, Guo Qiang, Wang Bing-Hong. Node importance ranking of complex networks. Acta Physica Sinica, 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [12] Lin Wan-Tao, Chen Li-Hua, Ouyang Cheng, Mo Jia-Qi. Asymptotic solving method of soliton for El Nio/La Nia-southern oscillation nonlinear disturbed model. Acta Physica Sinica, 2012, 61(8): 080204. doi: 10.7498/aps.61.080204
    [13] Yang Pu, Zheng Zhi-Gang. Analysis the convergency speed of estimating the network topology based on the dynamical synchronization. Acta Physica Sinica, 2012, 61(12): 120508. doi: 10.7498/aps.61.120508
    [14] Wang Cong-Qing, Wu Peng-Fei, Zhou Xin. Control and modeling of chaotic dynamics for a free-floating rigid-flexible coupling space manipulator based on minimal joint torque's optimization. Acta Physica Sinica, 2012, 61(23): 230503. doi: 10.7498/aps.61.230503
    [15] Zheng An-Jie, Wu Zheng-Mao, Deng Tao, Li Xiao-Jian, Xia Guang-Qiong. Nonlinear dynamics of 1550 nm vertical-cavity surface-emitting laser with polarization- preserved optical feedback. Acta Physica Sinica, 2012, 61(23): 234203. doi: 10.7498/aps.61.234203
    [16] Lü Yu-Xiang, Sun Shuai, Yang Xing. Simultaneous all-optical individual channel clock extraction and wavelength conversion using an optically injected Fabry-Perot laser diode. Acta Physica Sinica, 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [17] Niu Sheng-Xiao, Zhang Ming-Jiang, An Yi, He Hu-Cheng, Li Jing-Xia, Wang Yun-Cai. Frequency-tunable all-optical clock division using semiconductor laser subjected to external optical injection. Acta Physica Sinica, 2008, 57(11): 6998-7004. doi: 10.7498/aps.57.6998
    [18] Sheng Zheng-Mao, Wang Yong, Ma Jian, Zheng Si-Bo. Simulation on heating of plasma in a magnetic field with electrostatic wave. Acta Physica Sinica, 2006, 55(3): 1301-1306. doi: 10.7498/aps.55.1301
    [19] Li Xin-Xia, Tang Yi. Heat conduction in one-dimensional systems with damping. Acta Physica Sinica, 2006, 55(12): 6556-6561. doi: 10.7498/aps.55.6556
    [20] Jiang Ke-Yu, Cai Zhi-Ming. Optimization of scaled probabilistic cleaning methods. Acta Physica Sinica, 2005, 54(10): 4596-4601. doi: 10.7498/aps.54.4596
Metrics
  • Abstract views:  5285
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2021
  • Accepted Date:  19 June 2021
  • Available Online:  30 August 2021
  • Published Online:  20 December 2021

/

返回文章
返回