Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulation of effect of halogen and oxygen-containing element doping on negative differential resistance and spin-filtering of α-2-graphyne nanoribbon

LI Xiaobo LIU Shuaiqi HUANG Yan MA Yu DING Wence

Citation:

Regulation of effect of halogen and oxygen-containing element doping on negative differential resistance and spin-filtering of α-2-graphyne nanoribbon

LI Xiaobo, LIU Shuaiqi, HUANG Yan, MA Yu, DING Wence
cstr: 32037.14.aps.74.20241518
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the gradual increase in size requirements for integrated circuit fabrication, the research on the miniaturization of electronic device is increasingly favored by more and more scientists. In this work, the edge modifications of the electronic band structure of α-2-graphyne and electronic transport characteristics of its devices are systematically investigated by employing the density functional theory combined with non-equilibrium Green's functions. The research results of the band structures doped with halogens or oxygenated group show that when the various elements are doped into the antiferromagnetic configuration of α-2-graphyne, the materials exhibit unique semiconductor properties. In particular, the periodic structure of α-2-graphyne with the O-doping exhibits relatively complex band structures near the Fermi level. It can be found that the electronic devices doped with F, Cl, O, OH show obvious negative differential resistance (NDR) and spin filtering effects. Among them, the NDR effect of the device with O doping (M4) shows particularly significant feature, and its peak-to-valley ratio in the antiparallel case is as high as 136. However, the peak-to-valley ratio reaches 128 in the antiferromagnetism configuration. In addition, the intrinsic physical mechanism of the NDR effect is further dissected by calculating the transmission spectra and local densities of states in the parallel case and antiparallel case. At the same time, the spin filtering efficiency of the device reaches a value as high as 84% at an applied voltage of –0.4 V in the parallel case and 79% at –1.6 V in the antiparallel case. By analyzing the electron transport paths of the M4, the intrinsic mechanism of the spin-filtering properties can be clearly understood for the devices based on the α-2-graphyne nanotibbons. This research has significant application value in the hot research t areas such as novel logic devices, integrated circuits, and micro/nano-electronic machines.
      Corresponding author: LI Xiaobo, xiaoboli2010@hainanu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61801520), the Hunan Provincial Natural Science Foundation of China (Grant No. 2024JJ5111), the Foundation of Hunan Provincial Xiangjiang Laboratory, China (Grant No. 22XJ03017), and the Natural Science Foundation of Changsha City, China (Grant No. kq2208055).
    [1]

    Ivanovskii A L 2013 Prog. Solid. State. Chem. 41 1Google Scholar

    [2]

    Djurišić A B, Li E H 1999 J. Appl. Phys. 85 7404Google Scholar

    [3]

    Wudl F 2002 J. Mater. Chem. 12 1959Google Scholar

    [4]

    Ebbesen T W 1996 Phys. Today 49 26

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [6]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009Google Scholar

    [7]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [8]

    Popov V N, Lambin P 2013 Phys. Rev. B 88 075427Google Scholar

    [9]

    Ni Y, Wang X, Tao W, Zhu S C, Yao K L 2016 Sci. Rep. 6 25914Google Scholar

    [10]

    Zhang X J, Peng D D, Xie X L, Li X B, Dong Y L, Long M Q 2021 Eur. Phys. J. B 94 86Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [12]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid. State. Commun. 146 351Google Scholar

    [13]

    Alexander B A, Suchismita G, Wen Z B, Irene C, Desalegne T, Feng M, Liu C N 2008 Nano Lett. 8 902Google Scholar

    [14]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256Google Scholar

    [15]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [16]

    Majidi R 2018 J. Electron. Mater. 47 2890Google Scholar

    [17]

    Jafari S N, Hakimi Y, Rouhi S 2020 Physica E 119 114022Google Scholar

    [18]

    Zeng M G, Shen L, Cai Y Q, Sha Z D, Feng Y P 2010 Appl. Phys. Lett. 96 042104Google Scholar

    [19]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [20]

    Dong X S, Chen T, Liu G G, Xie L Z, Zhou G H, Long M Q 2022 ACS Sensors 7 3450Google Scholar

    [21]

    Li Y, Li X B, Zhang S D, Zhang X J, Long M Q 2022 J. Magn. Magn. Mater. 546 168842Google Scholar

    [22]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550Google Scholar

    [23]

    Lang N D, Avouris P 1998 Phys. Rev. Lett. 81 3515Google Scholar

    [24]

    Ding W C, Zhang J, Li X B, Chen T, Zhou G H 2022 Physica E 142 115316Google Scholar

    [25]

    Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X, Yang J L 2012 J. Chem. Phys. 136 064707Google Scholar

    [26]

    Evlashin S A, Tarkhov M A, Chernodubov D A, Inyushkin A V, Pilevsky A A, Dyakonov P V, Pavlov A A, Suetin N V, Akhatov I S, Perebeinos V 2021 Phys. Rev. Appl. 15 054057Google Scholar

    [27]

    Peng D D, Zhang X J, Li X B, Wu D, Long M Q 2018 J. Appl. Phys. 124 184303Google Scholar

    [28]

    Hu J, Ruan X, Chen Y P 2009 Nano. Lett. 9 2730Google Scholar

    [29]

    Zeng J, Chen K Q 2013 J. Mater. Chem. C 1 4014Google Scholar

    [30]

    Pan J B, Zhang Z H, Ding K H, Deng X Q, Guo C 2011 Appl. Phys. Lett. 98 092102Google Scholar

    [31]

    Li J, Zhang Z H, Qiu M, Yuan C, Deng X Q, Fan Z Q, Tang G P, Liang B 2014 Carbon 80 575Google Scholar

    [32]

    Meyer J C, Girit C O, Crommie M F, Zettl A 2008 Nature 454 319Google Scholar

    [33]

    Caridad J M, Calogero G, Pedrinazzi P, Santos J E, Impellizzeri A, Gunst T, Booth T J, Sordan R, Bøggild P, Brandbyge M 2018 Nano. Lett. 18 4675Google Scholar

    [34]

    Saffarzadeh A, Farghadan R 2011 Appl. Phys. Lett. 98 023106Google Scholar

    [35]

    Mohammadi A, Zaminpayma E 2018 Org. Electron. 61 334Google Scholar

    [36]

    Zhang L W, Yang Y Q, Chen J, Zheng X H, Zhang L, Xiao L T, Jia S T 2020 Phys. Chem. Chem. Phys. 22 18548Google Scholar

    [37]

    Bhattacharya B, Sarkar U 2016 J. Phys. Chem. C 120 26793Google Scholar

    [38]

    Li X B, Zhou J Y, Yu M, Li Y, Zhou K Z, Wang X J, Zhang X J, Long M Q 2023 J. Magn. Magn. Mater. 587 171367Google Scholar

    [39]

    Chen X, Xu W, Song B, He P 2020 J. Phys. Condens. Matter 32 215501Google Scholar

    [40]

    Cao L M, Li X B, Li Y, Zhou G H 2020 J. Mater. Chem. C 8 9313Google Scholar

    [41]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [42]

    Li X B, Cao L M, Long M Q, Liu Z R, Zhou G H 2018 Carbon 131 160Google Scholar

    [43]

    Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811Google Scholar

    [44]

    Ren H, Li Q X, Luo Y, Yang J L 2009 Appl. Phys. Lett. 94 173110Google Scholar

    [45]

    Li X B, Qi F, Zhao R D, Qiu Z J, Li Y, Long M Q, Zhou G H 2022 J. Mater. Chem. C 10 5292Google Scholar

    [46]

    彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强 2023 物理学报 72 058501Google Scholar

    Peng S P, Huang X D, Liu Q, Ren P, Wu D, Fan Z Q 2023 Acta Phys. Sin. 72 058501Google Scholar

    [47]

    Ding W C, Zhang J, Li X B, Zhou G H 2024 Appl. Surf. Sci. 664 160043Google Scholar

    [48]

    Yu G L, Ding W C, Xiao X B, Li X B, Zhou G H 2020 Nanoscale. Res. Lett. 15 185Google Scholar

    [49]

    Zhou Y H, Zeng J, Chen K Q 2014 Carbon 76 175Google Scholar

  • 图 1  (a)—(e) M1—M5为α-2-GY边缘碳原子分别被H, F, Cl, O, OH边缘钝化的结构模型图. 右侧灰色、白色、绿色、深绿色、红色圆点分别代表C, H, F, Cl, O等元素, 坐标轴指示了周期性元胞的取向

    Figure 1.  (a)–(e) M1–M5 show the structural diagrams of α-2-GY with the edge carbon atoms passivated by H, F, Cl, O or OH atoms, respectively. The gray, white, green, olive, and red circles on the right part represent the elements of C, H, F, Cl and O, respectively, and the coordinate axes indicate the orientation of the periodic cells.

    图 2  在NM下(a)—(e) M1—M5模型的能带结构图(左图)与态密度(DOS)分布图(右图). 绿色虚线代表费米能级

    Figure 2.  Energy band structure diagrams (left) and the distribution on the density of states (DOS) (right) for the (a)–(e) M1–M5 model within the NM state; the green dashed line represents the Fermi energy level.

    图 3  在NM态下(a)—(d) M2—M5的PDOS分布图, 能量零点设置为费米能级

    Figure 3.  (a)–(d) The distribution on the PDOS for the M2–M5 within the NM state, and the Fermi energy level is set to zero.

    图 4  (a)—(e), (f)—(j) M1—M5模型在FM和AFM构型态下的能带结构图和DOS分布图; 蓝色和红色实线分别表示自旋向上(SU)和向下(SD)的自旋方向; 绿色虚线指示对应的费米能级

    Figure 4.  (a)–(e), (f)–(j) The energy band structure maps and DOS distributions of the M1–M5 models within the FM and AFM states; the blue and red solid lines indicate the spin-up (SU) and spin-down (SD) directions; the green dashed lines indicate the corresponding Fermi energy levels.

    图 5  M2—M5分别是由F, Cl, O, OH边缘钝化的分子结器件模型图. 器件M2—M5左/右两端的蓝/红色渐变阴影部分分别代表器件的左/右电极, 中间部分为散射区

    Figure 5.  M2–M5 are model diagrams of molecular junction devices, which are passivated by F, Cl, O or OH group, respectively. The blue/red gradient shaded portions at left/right sides of M2–M5 represent the left/right leads of the device, and the middle portion is the scattering region.

    图 6  该图展示器件(a), (b) M2, (c), (d) M3, (e), (f) M4, (g), (h) M5在P和AP自旋组态下的伏安特性(current-voltage, I-V)曲线; (i), (j)器件M4在FM和AFM磁性配置下的I-V曲线; 蓝色实线、红色虚线分别表示SU和SD自旋方向的电流

    Figure 6.  The insets demonstrate the I-V curves of devices (a), (b) M2, (c), (d) M3, (e), (f) M4, and (g), (h) M5 within the P and AP spin grouping state; (i), (j) are the I-V curves of M4 within the FM and AFM magnetic configuration; the blue solid and red dashed lines denote the SU and SD directions, respectively.

    图 7  (a), (b)器件M4在P, AP自旋组态下的透射谱分布图, 实线和虚线分别表示DNR效应中峰值和谷值电压对应的透射谱; (c), (d), (e), (f)在P, AP组态下峰值和谷值时的局域态密度分布图; (g), (h)在P组态下峰值(g)和谷值(h)时的能带结构图和透射谱图, 蓝色和红色实线分别表示SU和SD的自旋方向. 全图中蓝色和黄色阴影区域表示对应的偏压窗.

    Figure 7.  (a), (b) The transmission spectra of M4 within the P and AP spin configuration, and the solid and dashed lines indicate the transmission spectra corresponding to the peak and valley voltages in the DNR effect; (c), (d), (e), (f) the distributions about the LDOS at peak and valley voltages within the P and AP configurations, respectively; (g), (h) the energy band structures and the transmission spectra of M4 at the peak (g) and valley (h) voltages within P configuration, and blue and red solid lines indicate the SU and SD directions, respectively. The blue and yellow shaded areas on the entire map represent the corresponding bias window.

    图 8  (a), (b)器件M2, M4的自旋过滤系数随电压变化的曲线图; (c), (d), (e), (f) 器件M4在P, AP组态下偏置电压为–0.4, –1.6 V时的SU, SD方向的电子传输路径, 蓝色/红色箭头表示电子从左/右移动到右/左电极的传输方向

    Figure 8.  (a), (b) SFE versus voltage for M2 and M4; (c), (d), (e), (f) the electron transport paths for M4 in the SU and SD direction within the P, AP configuration at a bias voltage of –0.4, –1.6 V; the blue/red arrows indicate the direction of the electron transport path from left /right lead to the right/left lead.

  • [1]

    Ivanovskii A L 2013 Prog. Solid. State. Chem. 41 1Google Scholar

    [2]

    Djurišić A B, Li E H 1999 J. Appl. Phys. 85 7404Google Scholar

    [3]

    Wudl F 2002 J. Mater. Chem. 12 1959Google Scholar

    [4]

    Ebbesen T W 1996 Phys. Today 49 26

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [6]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009Google Scholar

    [7]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [8]

    Popov V N, Lambin P 2013 Phys. Rev. B 88 075427Google Scholar

    [9]

    Ni Y, Wang X, Tao W, Zhu S C, Yao K L 2016 Sci. Rep. 6 25914Google Scholar

    [10]

    Zhang X J, Peng D D, Xie X L, Li X B, Dong Y L, Long M Q 2021 Eur. Phys. J. B 94 86Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [12]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid. State. Commun. 146 351Google Scholar

    [13]

    Alexander B A, Suchismita G, Wen Z B, Irene C, Desalegne T, Feng M, Liu C N 2008 Nano Lett. 8 902Google Scholar

    [14]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256Google Scholar

    [15]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [16]

    Majidi R 2018 J. Electron. Mater. 47 2890Google Scholar

    [17]

    Jafari S N, Hakimi Y, Rouhi S 2020 Physica E 119 114022Google Scholar

    [18]

    Zeng M G, Shen L, Cai Y Q, Sha Z D, Feng Y P 2010 Appl. Phys. Lett. 96 042104Google Scholar

    [19]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [20]

    Dong X S, Chen T, Liu G G, Xie L Z, Zhou G H, Long M Q 2022 ACS Sensors 7 3450Google Scholar

    [21]

    Li Y, Li X B, Zhang S D, Zhang X J, Long M Q 2022 J. Magn. Magn. Mater. 546 168842Google Scholar

    [22]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550Google Scholar

    [23]

    Lang N D, Avouris P 1998 Phys. Rev. Lett. 81 3515Google Scholar

    [24]

    Ding W C, Zhang J, Li X B, Chen T, Zhou G H 2022 Physica E 142 115316Google Scholar

    [25]

    Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X, Yang J L 2012 J. Chem. Phys. 136 064707Google Scholar

    [26]

    Evlashin S A, Tarkhov M A, Chernodubov D A, Inyushkin A V, Pilevsky A A, Dyakonov P V, Pavlov A A, Suetin N V, Akhatov I S, Perebeinos V 2021 Phys. Rev. Appl. 15 054057Google Scholar

    [27]

    Peng D D, Zhang X J, Li X B, Wu D, Long M Q 2018 J. Appl. Phys. 124 184303Google Scholar

    [28]

    Hu J, Ruan X, Chen Y P 2009 Nano. Lett. 9 2730Google Scholar

    [29]

    Zeng J, Chen K Q 2013 J. Mater. Chem. C 1 4014Google Scholar

    [30]

    Pan J B, Zhang Z H, Ding K H, Deng X Q, Guo C 2011 Appl. Phys. Lett. 98 092102Google Scholar

    [31]

    Li J, Zhang Z H, Qiu M, Yuan C, Deng X Q, Fan Z Q, Tang G P, Liang B 2014 Carbon 80 575Google Scholar

    [32]

    Meyer J C, Girit C O, Crommie M F, Zettl A 2008 Nature 454 319Google Scholar

    [33]

    Caridad J M, Calogero G, Pedrinazzi P, Santos J E, Impellizzeri A, Gunst T, Booth T J, Sordan R, Bøggild P, Brandbyge M 2018 Nano. Lett. 18 4675Google Scholar

    [34]

    Saffarzadeh A, Farghadan R 2011 Appl. Phys. Lett. 98 023106Google Scholar

    [35]

    Mohammadi A, Zaminpayma E 2018 Org. Electron. 61 334Google Scholar

    [36]

    Zhang L W, Yang Y Q, Chen J, Zheng X H, Zhang L, Xiao L T, Jia S T 2020 Phys. Chem. Chem. Phys. 22 18548Google Scholar

    [37]

    Bhattacharya B, Sarkar U 2016 J. Phys. Chem. C 120 26793Google Scholar

    [38]

    Li X B, Zhou J Y, Yu M, Li Y, Zhou K Z, Wang X J, Zhang X J, Long M Q 2023 J. Magn. Magn. Mater. 587 171367Google Scholar

    [39]

    Chen X, Xu W, Song B, He P 2020 J. Phys. Condens. Matter 32 215501Google Scholar

    [40]

    Cao L M, Li X B, Li Y, Zhou G H 2020 J. Mater. Chem. C 8 9313Google Scholar

    [41]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [42]

    Li X B, Cao L M, Long M Q, Liu Z R, Zhou G H 2018 Carbon 131 160Google Scholar

    [43]

    Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811Google Scholar

    [44]

    Ren H, Li Q X, Luo Y, Yang J L 2009 Appl. Phys. Lett. 94 173110Google Scholar

    [45]

    Li X B, Qi F, Zhao R D, Qiu Z J, Li Y, Long M Q, Zhou G H 2022 J. Mater. Chem. C 10 5292Google Scholar

    [46]

    彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强 2023 物理学报 72 058501Google Scholar

    Peng S P, Huang X D, Liu Q, Ren P, Wu D, Fan Z Q 2023 Acta Phys. Sin. 72 058501Google Scholar

    [47]

    Ding W C, Zhang J, Li X B, Zhou G H 2024 Appl. Surf. Sci. 664 160043Google Scholar

    [48]

    Yu G L, Ding W C, Xiao X B, Li X B, Zhou G H 2020 Nanoscale. Res. Lett. 15 185Google Scholar

    [49]

    Zhou Y H, Zeng J, Chen K Q 2014 Carbon 76 175Google Scholar

  • [1] Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie. First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2. Acta Physica Sinica, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Electronic properties and modulation effects on edge-modified GeS2 nanoribbons. Acta Physica Sinica, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [3] Mo Qiu-Yan, Zhang Song, Jing Tao, Zhang Hong-Yun, Li Xian-Xu, Wu Jia-Yin. First-principles study of surface modification of CuSe. Acta Physica Sinica, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [4] Yang Wei, Han Jiang-Chao, Cao Yuan, Lin Xiao-Yang, Zhao Wei-Sheng. Efficient spin injection in Fe3GeTe2/h-BN/graphene heterostructure. Acta Physica Sinica, 2021, 70(12): 129101. doi: 10.7498/aps.70.20202136
    [5] Xiang Yang, Zheng Jun, Li Chun-Lei, Guo Yong. Spin filter effect of germanene nanoribbon controlled by local exchange field and electric field. Acta Physica Sinica, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [6] Zeng Shao-Long, Li Ling, Xie Zheng-Wei. Tunneling times in double spin-filter junctions. Acta Physica Sinica, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [7] Zhu Zhen, Li Chun-Xian, Zhang Zhen-Hua. Magnetic device properties for a heterojunction based on functionalized armchair-edged graphene nanoribbons. Acta Physica Sinica, 2016, 65(11): 118501. doi: 10.7498/aps.65.118501
    [8] Chai Feng-Tao, Yue Ji-Li, Qiu Wu-Jie, Guo Hai-Bo, Chen Li-Jiang, Shi Si-Qi. Preparation and characterization of orthorhombic Fe2(MoO4)3 and first-principle study of its negative thermal expansion properties. Acta Physica Sinica, 2016, 65(5): 056501. doi: 10.7498/aps.65.056501
    [9] Deng Xiao-Qing, Sun Lin, Li Chun-Xian. Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Acta Physica Sinica, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [10] Li Yong-Hui, Yan Qiang, Zhou Li-Ping, Han Qin. Gold nanowire tip-contact-related negative differential resistance twice and the rectification effects. Acta Physica Sinica, 2015, 64(5): 057301. doi: 10.7498/aps.64.057301
    [11] Wen Ping, Li Chun-Fu, Zhao Yi, Zhang Feng-Chun, Tong Li-Hua. First principles calculation of occupancy, bonding characteristics and alloying effect of Cr, Mo, Ni in bulk α-Fe?. Acta Physica Sinica, 2014, 63(19): 197101. doi: 10.7498/aps.63.197101
    [12] Yang Li-Jian, Liu Bin, Gao Song-Wei, Chen Li-Jia. First-principles caculation and experimental study of metal magnetic memory effects. Acta Physica Sinica, 2013, 62(8): 086201. doi: 10.7498/aps.62.086201
    [13] Liu Yuan, Yao Jie, Chen Chi, Miao Ling, Jiang Jian-Jun. First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons. Acta Physica Sinica, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [14] Tang Dong-Hua, Xue Lin, Sun Li-Zhong, Zhong Jian-Xin. Doping effect of boron in Hg0.75Cd0.25Te: first-principles study. Acta Physica Sinica, 2012, 61(2): 027102. doi: 10.7498/aps.61.027102
    [15] Fan Zhi-Qiang, Xie Fang. Effect of B and N doping on the negative differential resistance in molecular device. Acta Physica Sinica, 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [16] Li Ai-Hong, Mu Yan-Qing, Yang Wei-Ming, Hou Hua, Han Pei-De, Zhang Su-Ying, Huang Zhi-Wei, Zhao Yu-Hong. First principles study on substitution behavior and alloying effects of Nb in Ni3Al. Acta Physica Sinica, 2011, 60(4): 047103. doi: 10.7498/aps.60.047103
    [17] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun, Guan Yu-Qin, Lin Lin, Li Ji-Jun. Effects of the concentration of Ga high doping on electric conductivity and red shift of ZnO from frist-principles. Acta Physica Sinica, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [18] Han Jiu-Rong, Jiang Xue-Fan, Liu Xian-Feng. First-principles studies of helical-spin order in frustrated triangular antiferromagnet AgCrO2. Acta Physica Sinica, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [19] Jiang Xue-Fan, Luo Li-Jin, Jiang Qing, Zhong Chong-Gui, Tan Zhi-Zhong, Quan Hong-Rui. First-principle prediction of magnetic shape memory effect of Heusler alloy Mn2NiGe. Acta Physica Sinica, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [20] Dang Hong-Li, Wang Chong-Yu, Yu Tao. First-principles investigation on alloying effect of Nb and Mo in γ-TiAl. Acta Physica Sinica, 2007, 56(5): 2838-2844. doi: 10.7498/aps.56.2838
Metrics
  • Abstract views:  563
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2024
  • Accepted Date:  02 December 2024
  • Available Online:  07 January 2025
  • Published Online:  05 March 2025

/

返回文章
返回